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Universidad de Sevilla,

Aptdo. de Correos 1160 - 41080 Sevilla, SPAIN

(Communicated by the associate editor name)

Abstract. We study the existence of very weak solutions regularity for the

Stokes, Oseen and Navier-Stokes system when non-smooth Dirichlet boundary

data for the velocity are considered in domains of class C1,1. In the Navier-
Stokes case, the results will be valid for external forces non necessarily small.

Regularity results for more regular data will be also discussed.

1. Introduction and notations. In this work, we are interested in some questions
concerning the Navier-Stokes equations, defined in Ω a bounded open set of R3 with
boundary Γ:

(NS)


−∆u + u · ∇u +∇q = f in Ω,

∇ · u = h in Ω,

u = g on Γ,

where u denotes the velocity and q the pressure and both are unknown. The external
force f , the compressibility condition h and the boundary condition for the velocity
g are given functions. The vector fields and matrix fields (and the corresponding
spaces) defined over Ω or over R3 are respectively denoted by boldface Roman and
special Roman.

In the homogeneous case, h = 0, it has been well-known since Leray [18] (see
also [19]) that if f ∈ W−1,p(Ω) and g ∈ W1−1/p,p(Γ) with p ≥ 2 and for any
i = 0, . . . , I, ∫

Γi

g · n dσ = 0, (1)

where Γi denote the connected components of the boundary Γ of the open set Ω,
then there exists a solution (u , q) ∈ W1,p(Ω)×Lp(Ω) satisfying (NS). In [25], Serre
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proved the existence of weak solution (u , q) ∈ W1,p(Ω)× Lp(Ω) for any 3
2 < p < 2

when h = 0 and g satisfies the above conditions. More recently, Kim [17] improves
Serre’s existence and regularity results on weak solutions of (NS) for any 3

2 ≤ p < 2
(including the case p = 3

2 ), when the boundary of Ω is connected (I = 0) provided
h is small in an appropriate norm (due to the compatibility condition between h
and g , then g is also small in the corresponding appropriate norm).

On the other hand, the notion of very weak solutions (u , q) ∈ Lp(Ω)×W−1,p(Ω)
for Stokes or Navier-Stokes equations, corresponding to very irregular data, has been
developed in the last years by Giga [15] (in a domain Ω of class C∞), Amrouche-
Girault [3] (in a domain Ω of class C1,1) and more recently by Galdi-Simader-
Sohr [14], Farwig-Galdi-Sohr [11] (in a domain Ω of class C2,1, see also Schumacher
[24]). In this context, the boundary condition is chosen in Lp(Γ) (see Brown-Shen
[7], Conca [9], Fabes-Kenig-Verchota [10], Moussaoui [21], Shen [26], Savaré [23],
Marusic-Paloka [20]) or more generally in W−1/p,p(Γ).

The purpose of our work is to develop a unified theory of very weak solutions of
the Dirichlet problem for Stokes, Oseen and Navier-Stokes equations (and also for
the Laplace equation), see Theorem 4.6 and Theorem 5.3. One important question
is to define rigorously the traces of the vector functions which are living in subspaces
of Lp(Ω) (see Lemma 2.10 and Lemma 2.11). We prove existence and regularity
of very weak solutions (u , q) ∈ Lp(Ω) × W−1,p(Ω) of Stokes and Oseen equations
for any 1 < p < ∞ with arbitrary large data belonging to some Sobolev spaces of
negative order. In the case of Navier-Stokes equations the existence of very weak
solution is proved for arbitrary large external forces, but with a smallness condition
for both h and g . Uniqueness of very weak solutions is also proved for small enough
data.

Existence of very weak solution u ∈ L3(Ω), for arbitrary large external forces
f ∈ H−1(Ω), h = 0 and arbitrary large boundary condition g ∈ L2(Γ) and without
assuming condition (1), was proved first by Marusic-Paloka in [20] (see Theorem
5) with Ω a bounded simply-connected open set of class C1,1. But the proof of
Theorem 5 becomes correct only if either condition (1) or condition (56) holds.
The same result was proved by Kim [17] for arbitrary large external forces f ∈
[W1,3/2

0 (Ω) ∩W 2,3(Ω)]′, for small h ∈ [W 1,3/2(Ω)]′ and g ∈ W−1/3,3(Γ) and where
the boundary of Ω is supposed connected (I = 0). Remark that the space chosen for
the divergence condition h is not correct, because D(Ω) is not dense in W−1/3,3(Γ)
and his dual is not a subspace of distributions. Similar argument can be done for
the space chosen for the external forces f . The origin of this mistake (also present
everywhere in the same paper [17]) is due to the fact that when we want to solve
a boundary value problem, it is necessary to have an adequate Green formula and
corresponding density lemmas.

In a close context, we also consider the case where the data, and then the solu-
tions, belong to fractionary Sobolev spaces W s,p(Ω) with s a real number possibly
not integer (see Theorem 4.7)

The work is organized as follows: In the remains of this section, we recall the
definitions of some spaces and their respective norms.

In §2, some preliminary results are stated, including density lemmas, general
trace’s results, characterization of dual spaces and trace’s result for very weak so-
lutions. In §3, we present Stokes’ results related to the very weak, weak and strong
solution. Some of them generalized those appearing in [3] in order to be extended
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to the Oseen and Navier-Stokes systems. In §4, we extend the results fo §3 for the
Oseen system. The first two main results in this paper are presented here: one
about existence and uniqueness of very weak solution for the Oseen equations in
Lp(Ω)×W−1,p(Ω) with 1 < p < ∞ (see Theorem 4.6), and another one related to
the regularity of solutions for the Oseen equations (see Theorem 4.7). We consider
in particular the case where the external forces f and the divergence condition h are
not regular, more precisely f ∈ Wσ−2,p(Ω) and h ∈ W σ−1,p(Ω) with 1

p < σ ≤ 2. In
§5, existence of very weak solution for the Navier-Stokes system is obtained, using
a fixed point technique over the Oseen system, first for the case of small data and
then for arbitrary large external forces f but sufficiently small h and g in a domain
possibly multiply-connected. The results is stated in Theorem 5.3. Regularity re-
sults for this system are obtained in Theorem 5.4. The complete proofs of results
can be seen in [5].

In all this work, if we do not say anything else, Ω will be considered as a Lipschitz
open bounded set of R3. When Ω is connected, we will say Ω is a domain. We will
only specify the regularity of Ω when it to be different from the regularity presented
above.

1.1. Functional framework. In what follows, for any s ∈ R, p denotes a real
number such that 1 < p < ∞ and p′ stands for its conjugate: 1/p + 1/p′ = 1. We
shall denote by m the integer part of s and by σ its fractional part: s = m+σ with
0 ≤ σ < 1. We denote by W s,p(R3) the space of all distributions v defined in R3

such that:
• Dαv ∈ Lp(R3), for all |α| ≤ m, when s = m is a nonnegative integer
• v ∈ Wm,p(R3) and∫

R3×R3

|Dαv(x)−Dαv(y)|p

|x− y|3+σp
dxdy < ∞,

for all |α| = m, when s = m + σ is nonnegative and is not an integer.
The space W s,p(R3) is a reflexive Banach space equipped by the norm:

‖v‖W m, p(R3) =
( ∑
|α|≤m

∫
R3
|Dαv(x)|p dx

)1/p

in the first case, and by the norm

‖v‖W s, p(R3) =
(
‖v‖p

W m,p(R3) +
∑
|α|=m

∫
R3×R3

|Dαv(x)−Dαv(y)|p

|x− y|3+σp
dxdy

)1/p

,

in the second case. For s < 0, we denote by W s, p(R3) the dual space of W−s, p′(R3).
In the special case of p = 2, we shall use the notation Hs(R3) instead of W s, 2(R3).

Now, we introduce the Sobolev space

Hs,p(R3) = {v ∈ Lp(R3); (I −∆)s/2v ∈ Lp(R3)}.

It is known that Hs,p(R3) = W s,p(R3) if s is an integer or if p = 2. Furthermore,
for any real number s, we have the following embeddings:

W s,p(R3) ↪→ Hs,p(R3) if p ≤ 2 and Hs,p(R3) ↪→ W s,p(R3) if p ≥ 2.

The definition of the space W s,p(Ω) is exactly the same as in the case of the whole
space. Because D(Ω) is not dense in W s,p(Ω), the dual space of W s,p(Ω) cannot
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be identified to a space of distributions in Ω. For this reason, we define W s,p
0 (Ω) as

the closure of D(Ω) in W s,p(Ω) and we denote by W−s, p′(Ω) its dual space.
For every s > 0, we denote by W s,p(Ω) the space of all distributions in Ω which

are restrictions of elements of W s,p(R3) and by W̃ s,p(Ω) the space of functions
u ∈ W s,p(Ω) such that the extension ũ by zero outside of Ω belongs to W s,p(R3).

2. Preliminary results. We present here some trace results, density results, De
Rham’s theorems and characterizations of some spaces, either known or designed
specially for the Stokes, Oseen and Navier-Stokes problems, that will be used in the
following sections.

Recall now some density results ([1, 16]):

i) The space D(Ω) is dense in W s,p(Ω) for any real s.
ii) The space D(R3) is dense in W s,p(R3) and in Hs,p(R3) for any real s.
iii) The space D(Ω) is dense in W̃ s,p(Ω) for all s > 0.
iv) The space D(Ω) is dense in W s,p(Ω) for all 0 < s ≤ 1/p, that means that

W s,p(Ω) = W s,p
0 (Ω).

Next result gives some properties of traces of functions living in W s, p(Ω) ([1, 16]).

Theorem 2.1. Let Ω be a bounded open set of class Ck,1, for some integer k ≥ 0.
Let s be real number such that s ≤ k+1, s−1/p = m+σ, where m ≥ 0 is an integer
and 0 < σ < 1.
i) The following mapping

γ0 : u 7→ u|Γ

W s, p(Ω) → W s−1/p, p(Γ)

is continuous and surjective. When 1/p < s < 1+1/p, we have Ker γ0 = W s, p
0 (Ω).

ii) For m ≥ 1, the following mapping

(γ0, γ1) : u 7→ (u|Γ, ∂u
∂n |Γ)

W s, p(Ω) → (W s−1/p, p(Γ)×W s−1−1/p, p(Γ))

is continuous and surjective. When 1 + 1/p < s < 2 + 1/p, we have Ker (γ0, γ1) =
W s, p

0 (Ω).

We recall also the following embeddings:

W s, p(Ω) ↪→ W t, q(Ω) for t ≤ s, p ≤ q such that s− 3/p = t− 3/q

and
W s, p(Ω) ↪→ Ck, α(Ω) for k < s− 3/p < k + 1, α = s− k − 3/p,

where k is a non negative integer.

Then, we introduce the following spaces:

Dσ(Ω) = {ϕ ∈ D(Ω); ∇ ·ϕ = 0}, Dσ(Ω) = {ψ ∈ D(Ω)3; ∇ ·ψ = 0}.

Recall now two versions of De Rham’s Theorem, the first one proved by G. de Rham
[22] and the second by C. Amrouche & V. Girault [3]:
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Lemma 2.2 (De Rham’s Theorem for distributions). Let Ω be any open
subset of R3 and let f be a distribution of D′(Ω) that satisfies:

∀v ∈ Dσ(Ω), 〈f, v〉 = 0.

Then, there exists a distribution π in D′(Ω) such that f = ∇π.

Lemma 2.3 (De Rham’s Theorem in W−m,p(Ω)). Let m be any integer, p any
real number with 1 < p < ∞. Let f ∈ W−m,p(Ω) satisfy:

ϕ ∈ Dσ(Ω), 〈f,ϕ〉 = 0.

Then, there exists π ∈ W−m+1,p(Ω) such that f = ∇π. If in addition the set Ω is
connected, then π is defined uniquely, up to an additive constant, and there exists
a positive constant C, independent of f, such that:

inf
K∈R

‖π + K‖W−m+1,p(Ω)/R ≤ C ‖f‖W−m,p(Ω).

The two next lemmas are density results:

Lemma 2.4. The space Dσ(Ω) is dense in Hp(Ω) = {v ∈ Lp(Ω); ∇ · v = 0}.

Sketch of the proof. Let ` be a linear and continuous mapping in Hp(Ω) such that〈`, v〉 =
0 for any v ∈ Dσ(Ω). We want to prove that ` = 0. Since Hp is a subspace of
Lp(Ω), we can extend ` to L ∈ Lp′(Ω). We will suppose that Ω is bounded, con-
nected but eventually multiply-connected (when Ω is not connected, we can repeat
the procedure above in each connected component of Ω), being

⋃
1≤i≤I ωi its wholes,

and its boundary Γ is Lipschitz-continuous. We denote by ω0 the exterior of Ω, by
Γ0 the exterior boundary of Ω and by Γi, 1 ≤ i ≤ I, the other components of Γ. The
duality between W−1/p,p′(Γi) and W1/p,p(Γi), and W−1/p,p′(Γ0) and W1/p,p(Γ0),
will be denoted by 〈·, ·〉Γi

and 〈·, ·〉Γ0 , respectively. By De Rham’s Lemma 2.3, there
exists a unique q ∈ W 1,p′(Ω) ∩ Lp′

0 (Ω) such that L = ∇q and

Lp′

0 (Ω) =
{

ϕ ∈ Lp′(Ω);
∫

Ω

ϕ(x ) dx = 0
}

.

Moreover,
∀v ∈ Dσ(Ω), 〈`, v〉 = 〈q, v · n〉Γ = 0.

We extend L by zero out of Ω and denote the extension by L̃. Then, for any
ϕ ∈ D(R3) such that ∇ ·ϕ = 0 in R3,∫

R3
L̃ ·ϕ dx =

∫
Ω

L ·ϕ dx = 0.

From that, we deduce that, thanks to De Rham’s Lemma 2.2, there exists h ∈
D′(R3) verifying ∇h ∈ Lp′(R3) such that L̃ = ∇h (see Lemma 2.1 in [4]). It is clear
that h ∈ W 1,p′

loc (R3). As h is unique up to an additive constant and ∇h = 0 in ω0,
we can choose this constant in such a way that h = 0 in ω0. Therefore, we deduce
that: h = 0 in ω0, h = ci in each ωi, h = q + c0 in Ω,
and thus: q = −c0 on Γ0, q = ci − c0 on Γi, 1 ≤ i ≤ I.
Let j ∈ {1, . . . , I} be a fixed index, choosing v j ∈ Dσ(Ω) such that 〈v j ·n , 1〉Γk

= δjk

for 1 ≤ k ≤ I and 〈v j · n , 1〉Γ0 = −1, we can deduce that cj = 0. In consequence,
for every v ∈ Hp(Ω), we have:

〈`, v〉 =
∫

Ω

∇h · v dx = 0.
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Thus, we deduce that ` = 0 in H′
p(Ω).

In the sequel, we will use the following space

Xr,p(Ω) = {ϕ ∈ W1,r
0 (Ω); ∇ ·ϕ ∈ W 1,p

0 (Ω)}, 1 < r, p < ∞, (2)

and we set Xp,p(Ω) = Xp(Ω). Observe that the space Xp,p(Ω) were used in [3] in
order to define very weak solution for the Stokes problem. In the case of Navier-
Stokes problem, the generalization to the space Xr,p(Ω) is necessary. In this sense,
the proof of the next result follows from an argument appearing in [2].

Lemma 2.5. The space D(Ω) is dense in Xr,p(Ω) and for all q ∈ W−1,p(Ω) and
ϕ ∈ Xr′,p′(Ω), we have

〈∇q, ϕ〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω) = −〈q, ∇ · ϕ〉
W−1,p(Ω)×W 1,p′

0 (Ω)
. (3)

Next lemmas characterize the space (Xr,p(Ω))′ and give a density result.

Lemma 2.6. Let f ∈ (Xr,p(Ω))′. Then, there exist F0 = (fij)1≤i,j≤3 such that
F0 ∈ Lr′(Ω) and f1 ∈ W−1,p′(Ω) such that

f = ∇ · F0 +∇f1. (4)

Moreover,

‖f‖[Xr,p(Ω)]′ = max{‖fij‖Lr′ (Ω), 1 ≤ i, j ≤ 3, ‖f1‖W−1,p′ (Ω)}.

Conversely, if f satisfies (4), then f ∈ (Xr,p(Ω))′.

As a consequence of Lemma 2.5, we have the following embeddings:

W−1,r(Ω) ↪→ (Xr′,p′(Ω))′ ↪→ W−2,p(Ω), (5)

where the second embedding holds if 1
r ≤

1
p + 1

3 .

Lemma 2.7. Let Ω be a Lipschitz bounded open set. Then, the space D(Ω) is dense
in (Xr,p(Ω))′.

One of the main difficulties for the definition of a very weak solution for Stokes,
Oseen and Navier-Stokes problems is to give a meaning to the trace, because we
are not in the classical variational framework. We shall use the spaces1:

Tp,r(Ω) = {v ∈ Lp(Ω); ∆v ∈ (Xr′,p′(Ω))′}, Tp,r,σ(Ω) = {v ∈ Tp,r(Ω); ∇·v = 0},
endowed with the topology given by the norm:

‖v‖Tp,r(Ω) = ‖v‖Lp(Ω) + ‖∆v‖[Xr′,p′ (Ω)]′ ,

and
Hp,r(div; Ω) = {v ∈ Lp(Ω); ∇ · v ∈ Lr(Ω)},

which is equipped with the graph norm. Next density lemmas will be necessary:

Lemma 2.8. i) The space D(Ω) is dense in Tp,r(Ω).
ii) The space D(Ω) is dense in Tp,r(Ω) ∩Hp,r(div; Ω).

Lemma 2.9. The space Dσ(Ω) is dense in Tp,r,σ(Ω).

1When p = r, these spaces are denoted as Tp(Ω) and Tp,σ(Ω), respectively. Observe that

these spaces were introduced in [2, 3]
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For the following two lemmas, we will need to introduce the space:

Yp′(Ω) = {ψ ∈ W2,p′(Ω); ψ|Γ = 0, (∇ ·ψ)|Γ = 0}

that can also be described (see [3]) as:

Yp′(Ω) = {ψ ∈ W2,p′(Ω); ψ|Γ = 0,
∂ψ

∂n
· n
∣∣∣
Γ

= 0}. (6)

Observe that the range space of the normal derivative γ1 : Yp′(Ω) → W1/p,p′(Γ) is

Zp′(Γ) = {z ∈ W1/p,p′(Γ); z · n = 0}.

In these lemmas, we prove that the tangential trace of functions v of Tp,r,σ(Ω)
belongs to the dual space of Zp′(Γ), which is:

(Zp′(Γ))′ = {µ ∈ W−1/p,p(Γ); µ · n = 0}. (7)

Recall that we can decompose v into its tangential, v τ , and normal parts, that is:
v = v τ + (v · n)n .

Lemma 2.10. Let Ω be a bounded open set of R3 of class C1,1. Let 1 < p < ∞ and
r > 1 be such that 1

r ≤
1
p + 1

3 . The mapping γτ : v 7→ vτ |Γ on the space D(Ω)3 can
be extended by continuity to a linear and continuous mapping, still denoted by γτ ,
from Tp,r(Ω) into W−1/p,p(Γ). The Green formula reads: for any v ∈ Tp,r(Ω) and
ψ ∈ Yp′(Ω),

〈∆v,ψ〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω) =
∫

Ω

v ·∆ψ dx−
〈
vτ ,

∂ψ

∂n

〉
W−1/p,p(Γ)×W1/p,p′ (Γ)

.

Lemma 2.11. i) The space D(Ω)3 is dense in Hp,r(div; Ω).
ii) Let 1 < p < ∞ and r > 1 such that 1

r ≤
1
p + 1

3 . The mapping γn : v 7→ v · n|Γ
on the space D(Ω)3 can be extended by continuity to a linear and continuous
mapping, still denoted by γn, from Hp,r(div; Ω) into W−1/p,p(Γ), and we have
the Green formula: for any v ∈ Hp,r(div; Ω) and ϕ ∈ W 1,p′(Ω),∫

Ω

v · ∇ϕ dx +
∫

Ω

ϕ div v dx = 〈v · n, ϕ 〉W−1/p,p(Γ)×W1/p,p′ (Γ) .

Lemma 2.12. Let Ω be a Lipschitz bounded open set. Let h ∈ Lr(Ω) and g ∈
W−1/p,p(Γ) be given such that the condition (11) holds. For every ε > 0, there exist
sequences (hε) ⊂ D(Ω) and (gε) ⊂ C∞(Γ) such that∫

Ω

hε(x) dx =
∫

Γ

gε · n dσ (8)

and verifying

‖h− hε‖Lr(Ω) ≤ ε and ‖g− gε‖W−1/p,p(Γ) ≤ ε (9)

‖hε‖Lr(Ω) +
i=I∑
i=0

|〈gε · n, 1〉Γi | ≤ 2

(
‖h‖Lr(Ω) +

i=I∑
i=0

|〈g · n, 1〉Γi |

)
. (10)

In all the rest of this work , if we do not say anything else, we assume that
Ω is a bounded connected open set of class C1,1.
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3. The Stokes problem. Before starting the study of the Oseen and Navier-
Stokes problems, we focus on the study of the Stokes problem in order to make
an appointment about all the knowing results about this system. Recall that the
Stokes problem is:

(S) −∆u +∇q = f and ∇ · u = h in Ω, u = g on Γ,

with the compatibility condition:∫
Ω

h(x ) dx = 〈g · n , 1〉W−1/p,p(Γ)×W 1/p,p′ (Γ). (11)

Basic results on weak and strong solutions of problem (S) in Lp(Ω) Sobolev spaces
may be summarized in the following theorem (see [3], [8], [12]).

Theorem 3.1. i) For every f, h, g with f ∈ W−1,p(Ω), h ∈ Lp(Ω), g ∈
W1−1/p,p(Γ), and satisfying the compatibility condition (11), the Stokes prob-
lem (S) has exactly one solution u ∈ W1,p(Ω) and q ∈ Lp(Ω)/R. Moreover,
there exists a constant C > 0 depending only on p and Ω such that:

‖u‖W1,p(Ω) + ‖q‖Lp(Ω)/R ≤ C (‖f‖W−1,p(Ω) + ‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)). (12)

ii) Moreover, if f ∈ Lp(Ω), h ∈ W 1,p(Ω), g ∈ W2−1/p,p(Γ), then u ∈ W2,p(Ω),
q ∈ W 1,p(Ω) and there exists a constant C > 0 depending only on p and Ω
such that:

‖u‖W2,p(Ω) + ‖q‖W 1,p(Ω)/R ≤ C (‖f‖Lp(Ω) + ‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ)). (13)

In the case of a bounded domain Ω which is only Lipschitz, the result of point i) is
only valid for a more restricted p. In fact, if f = 0, h = 0 and g ∈ W1−1/p,p(Γ) with∫
Γ
g ·n = 0, then there exists ε > 0 such that if 2 ≤ p ≤ 3+ε, and if f ∈ W−1,p(Ω),

h = 0 and g = 0, then the result is valif for a ε such that (3+ε)/(2+ε) < p < 3+ε
(see [7]).

We are interested in the case of singular data satisfying the following assumptions:

f ∈ (Xr′,p′(Ω))′, h ∈ Lr(Ω), g ∈ W−1/p,p(Γ), with
1
r
≤ 1

p
+

1
3

and r ≤ p. (14)

Recall that the space (Xr′,p′(Ω))′ is an intermediate space between W−1,r(Ω) and
W−2,p(Ω) (see embeddings (5)).

We recall the definition and the existence result of very weak solution for the
Stokes problem.

Definition 3.2 (Very weak solution for the Stokes problem). We say that
(u , q) ∈ Lp(Ω)×W−1,p(Ω) is a very weak solution of (S) if the following equalities
hold: For any ϕ ∈ Yp′(Ω) and π ∈ W 1,p′(Ω),

−
∫

Ω

u ·∆ϕ dx − 〈q,∇ ·ϕ〉
W−1,p(Ω)×W 1,p′

0 (Ω)
= 〈f ,ϕ〉Ω − 〈gτ ,

∂ϕ

∂n
〉Γ,∫

Ω

u · ∇π dx = −
∫

Ω

h π dx + 〈g · n , π〉Γ,

(15)

where the dualities on Ω and Γ are defined by:

〈·, ·〉Ω = 〈·, ·〉[Xr′,p′ (Ω)]′×Xr′,p′ (Ω), 〈·, ·〉Γ = 〈·, ·〉W−1/p,p(Γ)×W1/p,p′ (Γ). (16)
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Note that W 1,p′(Ω) ↪→ Lr′(Ω) and Yp′(Ω) ↪→ Xr′,p′(Ω) if 1
r ≤ 1

p + 1
3 , that means

that all the brackets and integrals have a sense.

Proposition 1. Suppose that f, h, g satisfy (14). Then the following two state-
ments are equivalent:

i) (u, q) ∈ Lp(Ω)×W−1,p(Ω) is a very weak solution of (S),
ii) (u, q) satisfies the system (S) in the sense of distributions.

Sketch of the proof. i) Let (u , q) very weak solution to problem (S). It is clear that
−∆u +∇q = f and ∇ · u = h in Ω and consequently u belongs to Tp,r(Ω). Using
Lemma 2.11 point ii), Lemma 2.10 and (3), we obtain

−
∫

Ω

u ·∆ϕ dx+〈uτ ,
∂ϕ

∂n
〉W−1/p,p(Γ)×W1/p,p′ (Γ)−〈q,∇·ϕ〉W−1,p(Ω)×W 1,p′

0 (Ω)
= 〈f ,ϕ〉Ω .

Since for any ϕ ∈ Yp′(Ω),

〈uτ ,
∂ϕ

∂n
〉W−1/p,p(Γ)×W1/p,p′ (Γ) = 〈gτ ,

∂ϕ

∂n
〉W−1/p,p(Γ)×W1/p,p′ (Γ),

we deduce that uτ = gτ in W−1/p,p(Γ). From the equation ∇ · u = h, we deduce
that for any π ∈ W 1,p′(Ω), we have

〈u · n , π〉Γ = 〈g · n , π〉Γ.

Consequently u · n = g · n in W−1/p,p(Γ) and finally u = g on Γ.
ii) The converse is a simple consequence of Lemma 2.11 point ii), Lemma 2.10 and
(3).

The following result is a variation from Proposition 4.11 in [3], which was made
for f = 0 and h = 0. In the case r = p, we have

Proposition 2. Let f, h, g be given with

f ∈ (Xp′(Ω))′, h ∈ Lp(Ω), g ∈ W−1/p,p(Γ),

and satisfying the compatibility condition (11). Then, the Stokes problem (S) has
exactly one solution u ∈ Lp(Ω) and q ∈ W−1,p(Ω)/R. Moreover, there exists a
constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖q‖W−1,p(Ω)/R ≤ C
{
‖f‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) + ‖g‖W−1/p,p(Γ)

}
. (17)

Moreover u ∈ Tp(Ω) and

‖u‖Tp(Ω) ≤ C
{
‖f‖[Xp′ (Ω)]′ + ‖h‖Lp(Ω) + ‖g‖W−1/p,p(Γ)

}
.

More generally, taking into account that now we use f ∈ (Xr′,p′(Ω))′ instead of
f ∈ (Xp′(Ω))′ and h ∈ Lr(Ω) instead of h ∈ Lp(Ω), we can adapt Proposition 2
obtaining:

Theorem 3.3. Let f, h, g be given satisfying (14) and (11). Then, the Stokes
problem (S) has exactly one solution u ∈ Lp(Ω) and q ∈ W−1,p(Ω)/R. Moreover,
there exists a constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖q‖W−1,p(Ω)/R ≤ C
{
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ)

}
(18)
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Moreover u ∈ Tp,r(Ω) and

‖u‖Tp,r(Ω) ≤ C
{
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ)

}
.

In particular, if f ∈ W−1,r0(Ω) and h ∈ Lr0(Ω) with r0 = 3p/(3 + p), then (u, q) ∈
Lp(Ω)×W−1,p(Ω) with the corresponding estimates.

Although that in [14] Theorem 3 the authors obtain a similar result, observe
that the domain is considered of class C2,1 instead of class C1,1, and the divergence
term h ∈ Lp(Ω) instead of h ∈ Lr(Ω). Moreover, our solution is obtained in the
space Tp,r(Ω) which has been clearly characterized contrary to the space Ŵ1,p(Ω)
appearing in [14] which is not charaterized, is completely abstract and is obtained
as closure of W1,p(Ω) for the norm

‖u‖
Ŵ1,p(Ω)

= ‖u‖Lp(Ω) + ‖A−1/2
r Pr∆u‖Lr(Ω),

where Ar is the Stokes operator with domain equal to W2,p(Ω)∩W1,p
0 (Ω)∩Lp

σ(Ω)
and Pr is the Helmholtz projection operator from Lr(Ω) onto Lr

σ(Ω).

Corollary 1. Let f, h, g be given satisfying (11) and

f = ∇·F0+∇f1 with F0 ∈ Lr(Ω), f1 ∈ W−1,p(Ω), h ∈ Lr(Ω), g ∈ W1−1/r,r(Γ).

Then the solution u given by Theorem 3.3 belongs to W1,r(Ω). Moreover, if f1

belongs to Lr(Ω), then the solution q given by Theorem 3.3 belongs to Lr(Ω). In
the both cases, we have the corresponding estimates.

Remark 1. i) It is clear that W1,r(Ω) ↪→ Tp,r(Ω) when 1
r ≤ 1

p + 1
3 , and

therefore Tp,r(Ω) is an intermediate space between W1,r(Ω) and Lp(Ω).
ii) As a consequence of Proposition 2, we have the following Helmholtz decom-

position: for any f ∈ (Xp′(Ω))′, there exist ψ ∈ W−1,p(Ω) and q ∈ W−1,p(Ω)
such that

f = curl ψ +∇q, div ψ = 0 in Ω.

iii) In the same way, suppose that f = ∇ · F with F ∈ Lp(Ω), h ∈ Lp(Ω) and g ∈
W1−1/p,p(Γ) verifying the compatibility condition (11). Then, the solution
(u , q) ∈ Lp(Ω)×W−1,p(Ω) given by Theorem 3.3 satisfies (u , q) ∈ W1,p(Ω)×
Lp(Ω) with the appropriate estimate.

Corollary 2. Let us consider h and g satisfying:

h ∈ Lr(Ω), g ∈ W−1/p,p(Γ),
∫

Ω

h(x) dx = 〈g · n, 1〉Γ,

with 1
r ≤ 1

p + 1
3 and r ≤ p. Then, there exists at least one solution u ∈ Tp,r(Ω)

verifying
∇ · u = h in Ω, u = g on Γ.

Moreover, there exists a constant C = C(Ω, p, r) such that:

‖u‖Tp,r(Ω) ≤ C
(
‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ)

)
.

The following corollary gives the existence of a unique Stokes solution (u , q) in
fractionary Sobolev spaces of type Wσ,p(Ω)×W σ−1,p(Ω), with 0 < σ < 2 by using
an interpolation argument.
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Corollary 3. Let s be a real number such that 0 ≤ s ≤ 1.
i) Let f = ∇ · F0 +∇f1, h and g satisfy the compatibility condition (11) with

F0 ∈ Ws,r(Ω), f1 ∈ W s−1,p(Ω), g ∈ Ws−1/p,p(Γ), h ∈ W s,r(Ω),

with 1
r ≤

1
p + 1

3 and r ≤ p. Then, Stokes Problem (S) has exactly one solution
(u, q) ∈ Ws,p(Ω)×W s−1,p(Ω)/R satisfying the estimate

‖u‖Ws,p(Ω)+‖q‖W s−1,p(Ω)/R ≤ C (‖F0‖Ws,r(Ω)+‖f1‖W s−1,p(Ω)+‖h‖W s,r(Ω)+‖g‖Ws−1/p,p(Γ))

ii) Assume that

f ∈ Ws−1,p(Ω), g ∈ Ws+1−1/p,p(Γ), h ∈ W s,p(Ω),

with the compatibility condition (11). Then, Stokes Problem (S) has exactly
one solution (u, q) ∈ Ws+1,p(Ω)×W s,p(Ω)/R with

‖u‖Ws+1,p(Ω) + ‖q‖W s,p(Ω)/R ≤ C (‖f‖Ws−1,p(Ω) + ‖h‖W s,p(Ω) + ‖g‖Ws+1−1/p,p(Γ))

Remark 2. We can reformulate the point ii) as follows. For any

f ∈ W−s,p′(Ω), h ∈ W−s+1,p′(Ω), g ∈ W2−s−1/p′,p′(Γ),

with 0 ≤ s ≤ 1, then problem (S) has a unique solution (u , q) ∈ W2−s,p′(Ω) ×
W 1−s,p′(Ω)/R.

The following theorem gives solutions for external forces f ∈ Ws−2,p(Ω) and diver-
gence condition h ∈ W s−1,p(Ω) with 1/p < s < 2. If p = 2, we can obtain solutions
in H1/2+ε(Ω)×H1/2+ε(Ω), 0 < ε ≤ 3/2.

Theorem 3.4. Let s be a real number such that 1
p < s ≤ 2. Let f, h and g satisfy

the compatibility condition (11) with

f ∈ Ws−2,p(Ω), h ∈ W s−1,p(Ω) and g ∈ Ws−1/p,p(Γ).

Then, the Stokes problem (S) has exactly one solution (u, q) ∈ Ws,p(Ω)×W s−1,p(Ω)/R
satisfying the estimate

‖u‖Ws,p + ‖q‖W s−1,p/R ≤ C (‖f‖Ws−2,p(Ω) + ‖h‖W s−1,p + ‖g‖Ws−1/p,p(Γ)) (19)

Sketch of the proof. Theorem 3.4 is proved by Corollary 3 point ii) if 1 ≤ s ≤ 2.
Using Theorem 2.1, we can suppose g = 0. Let s be a real number such that
1
p < s < 1. It remains to consider the following equivalent problem:

Find (u , q) ∈ Ws,p
0 (Ω) × W s−1,p(Ω)/R such that: ∀w ∈ W−s+2,p′

0 (Ω), ∀π ∈
W−s+1,p′(Ω)

〈u , −∆w +∇π〉Ws,p
0 (Ω)×W−s,p′ (Ω) − 〈q,∇ ·w〉

W s−1,p(Ω)×W−s+1,p′
0 (Ω)

= 〈f , w〉
Ws−2,p(Ω)×W−s+2,p′

0 (Ω)
− 〈h, π〉

W s−1,p(Ω)×W−s+1,p′
0 (Ω)

.

Note that W−s+1,p′

0 (Ω) = W−s+1,p′(Ω) because −s + 1 < 1/p′. Using Riesz’ rep-
resentation theorem we deduce that there exists a unique (u , q) ∈ Ws,p

0 (Ω) ×
W s−1,p(Ω)/R solution of (S) and satisfying the bound (19).
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Remark 3. i) If n = 2, Ω convex polygon, with Γ = ∪Γi,Γi linear segments,
f = 0, h = 0 and g ∈ Hs(Γi), for i = 1, . . . , I0 and −1/2 < s < 1/2, then
u ∈ Hr(Ω) for any r < s + 1/2 and q ∈ Hs−1/2(Ω) (see [21]).

ii) When Ω is a bounded Lipschitz domain in Rn, with n ≥ 3, f = 0, h = 0,
g ∈ L2(Γ) (respectively g ∈ W1,2(Γ)) , with

∫
Γ
g · n = 0, then u ∈ H1/2(Ω)

(respectively u ∈ H3/2(Ω) and q ∈ H−1/2(Ω) (respectively q ∈ H1/2(Ω))
(see Fabes et al. [10]). If g ∈ Lp(Γ), there exists ε = ε(Ω) > 0 such that if
2 − ε ≤ p ≤ 2 + ε, then u ∈ W1−1/p(Ω) and q ∈ W−1/p(Ω). For a similar
result in the case where g ∈ L2(Γ) and Ω is a simply connected domain of R2,
we can see [6].

iii) When Ω is only a bounded Lipschitz domain, with connected boundary, the
same result has be proved by [26] with f = 0 and h = 0 for any p ≥ 2.

4. The Oseen problem. We want to study the existence of a generalized, strong
and very weak solutions for the problem (O), given by:

(O) −∆u + v · ∇u +∇q = f and ∇ · u = h in Ω, u = g on Γ

where v ∈ Hs(Ω) (s ≥ 3) is given.

First, we present several results related to the existence of weak and strong
solution for (O). Then, the definition of a very weak solution for (O) will be done
and a proof of their existence. Finally, regularity results in fractional Sobolev
intermediate spaces will appear.

Theorem 4.1 (Existence of solution for (O)). Let Ω be a Lipschitz bounded
domain. Let us consider

f ∈ H−1(Ω), v ∈ H3(Ω), h ∈ L2(Ω) and g ∈ H1/2(Γ)

verifying the compatibility condition (11) for p = 2. Then, the problem (O) has a
unique solution (u, q) ∈ H1(Ω) × L2(Ω)/R. Moreover, there exist some constants
C1 > 0 and C2 > 0 such that:

‖u‖H1(Ω) ≤ C1

(
‖f‖H−1(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
, (20)

‖q‖L2(Ω)/R ≤ C2

(
‖f‖H−1(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
(21)

where C1 = C(Ω) and C2 = C1

(
1 + ‖v‖L3(Ω)

)
.

Proof. In order to prove the existence of solution, first (using Lemma 3.3 in [3],
for instance) we lift the boundary and the divergence data. Then, there exists
u0 ∈ H1(Ω) such that ∇ · u0 = h in Ω, u0 = g on Γ and:

‖u0‖H1(Ω) ≤ C
(
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

)
. (22)

Therefore, it remains to find (z , q) = (u − u0, q) in H1
0(Ω)× L2(Ω) such that:

−∆z − v · ∇z +∇q = f̃ and ∇ · z = 0 in Ω, z = 0 on Γ.

being f̃ = f + ∆u0 + (v · ∇)u0. Observe that f̃ ∈ H−1(Ω). Since the space ϕ ∈
Dσ(Ω) = {ϕ ∈ D(Ω); ∇·ϕ = 0} is dense in the space V = {z ∈ H1

0(Ω); ∇·z = 0},
then the previous problem is equivalent to: Find z ∈ V such that:

∀ϕ ∈ V,

∫
Ω

∇z · ∇ϕ dx − b(v , z ,ϕ) = 〈f̃ ,ϕ〉H−1(Ω)×H1
0(Ω),
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where b is a trilinear antisymmetric form with respect to the last two variables,
well-defined for v ∈ L3(Ω), z , ϕ ∈ H1

0(Ω). (We can recover the pressure π thanks
to the De Rham’s Lemma 2.3). By Lax-Milgram’s Theorem we can deduce the
existence of a unique z ∈ H1

0(Ω) verifying:

‖z‖H1(Ω) ≤ C(‖f ‖H−1 + ‖∆u0‖H−1(Ω) + ‖∇ · (v ⊗ u0)‖H−1(Ω))

≤ C
(
‖f ‖H−1(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖L2(Ω) + ‖g‖H1/2(Γ)

) )
,

which added to estimate (22) makes (20).

Now, −∆z − v · ∇z − f̃ ∈ H−1(Ω) and:

∀ϕ ∈ V, 〈−∆z − v · ∇z − f̃ ,ϕ〉H−1(Ω)×H1
0(Ω) = 0.

Thanks to De Rham’s Lemma 2.3, there exists a unique q ∈ L2(Ω)/R such that:

−∆z − v · ∇z +∇q = f̃

with ‖q‖L2(Ω)/R ≤ C ‖∇q‖H−1(Ω). Finally, estimate (21) follows from the previous
equation and estimate for z .

As a consequence of Theorem 4.1, Theorem 3.1 and the inequality

‖v · ∇u‖L6/5(Ω) ≤ ‖v‖L3(Ω)‖∇u‖L2(Ω),

we can deduce the following result:

Corollary 4. Let us assume

f ∈ L6/5(Ω), v ∈ H3(Ω), h ∈ W 1,6/5(Ω) and g ∈ W7/6,6/5(Γ)

be given verifying the compatibility condition (11). Then, the solution (u, q) given by
Theorem 4.1 belongs to W2,6/5(Ω)×W 1,6/5(Ω) and verifies the following estimate:

‖u‖W2,6/5(Ω) + ‖q‖W 1,6/5(Ω)/R

≤ C
(
1 + ‖v‖L3(Ω)

) (
‖f‖L6/5(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖W 1,6/5(Ω) + ‖g‖W7/6,6/5(Γ)

) )
Theorem 4.2 (Strong regularity for p ≥ 6/5). Let p ≥ 6

5 ,

f ∈ Lp(Ω), h ∈ W 1,p(Ω), v ∈ Hs(Ω) and g ∈ W2−1/p,p(Γ),

be given with

s = 3 if p < 3, s = p if p > 3, s = 3 + ε if p = 3, (23)

for some arbitrary ε > 0, and satisfying the compatibility condition:∫
Ω

h(x) dx =
∫

Γ

g · n dσ.

Then, the unique solution of (O) given by Theorem 4.1 verifies (u, q) ∈ W2,p(Ω)×
W 1,p(Ω). Moreover, there exists a constant C > 0 such that:

‖u‖W2,p(Ω) + ‖q‖W 1,p(Ω)/R ≤ C
(
1 + ‖v‖Ls(Ω)

)
×

×
(
‖f‖Lp(Ω) +

(
1 + ‖v‖Ls(Ω)

) (
‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ)

) ) (24)
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Proof. First, by Corollary 4, we can suppose p ≥ 6/5 and then we have the following
embeddings:

Lp(Ω) ↪→ H−1(Ω), W 1,p(Ω) ↪→ L2(Ω), and W2−1/p,p(Γ) ↪→ H1/2(Γ).

Thanks to the regularity of f and Theorem 4.1 there exists a unique solution (u , q) ∈
H1(Ω)× L2(Ω)/R verifying the following estimates:

‖u‖H1(Ω) ≤ C
(
‖f ‖H−1(Ω) +

(
1 + ‖v‖L3(Ω)

)
(‖h‖L2(Ω) + ‖g‖H1/2(Γ))

)
(25)

and
‖u‖H1(Ω) + ‖q‖L2(Ω)/R ≤ C

(
1 + ‖v‖L3(Ω)

)
×

×
(
‖f ‖H−1(Ω) +

(
1 + ‖v‖L3(Ω)

)
(‖h‖L2(Ω) + ‖g‖H1/2(Γ))

)
.

(26)

Observe that, a priori, the regularity for the Oseen problem cannot be deduced from
the Stokes one. This follows from the fact that v · ∇u = ∇ · (v ⊗ u) ∈ H−1(Ω).

In order to obtain the strong solution in W2,p(Ω) × W 1,p(Ω), first we apply
Lemma 2.4 to function v , and we take for any λ > 0, vλ as the velocity of the
convection term, where vλ ∈ D(Ω) such that ∇ · vλ = 0 and ‖vλ − v‖Ls(Ω) ≤ λ.
Therefore, we search for (uλ, qλ) ∈ W2,p(Ω)×W 1,p(Ω) solution of the problem:

(Oλ)


−∆uλ − vλ · ∇uλ +∇qλ = f in Ω,

∇ · uλ = h in Ω,

uλ = g on Γ.

From above we can obtain a unique solution (uλ, qλ) bounded in H1
0(Ω)×L2(Ω)/R

independently from λ. Then, we obtain again estimates (25) and (26). As vλ·∇uλ ∈
L2(Ω), if f and h are regular enough, then using the Stokes regularity we deduce that
(uλ, qλ) ∈ H2(Ω)×H1(Ω) if 2 ≤ p and (uλ, qλ) ∈ W2,p(Ω)×W 1,p(Ω) if 6/5 < p ≤ 2.
A bootstrap argument moreover shows that (uλ, qλ) ∈ W2,p(Ω)×W 1,p(Ω) if 2 < p.

Thus, we focus on the getting of a strong estimate for (uλ, qλ). Let ε > 0 with
0 < λ < ε/2. We consider

vλ = vε
1 + vε

λ,2 where vε
1 = ṽ ? ρε/2, and vε

λ,2 = vλ − ṽ ? ρε/2. (27)

where ṽ is the extension of v by zero to R3 and ρε is the classical mollifier. By
regularity estimates for the Stokes problem, we have

‖uλ‖W2,p(Ω) + ‖qλ‖W 1,p(Ω)/R ≤ C (‖f ‖Lp(Ω)

+ ‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ) + ‖vλ · ∇uλ‖Lp(Ω)).
(28)

Now, we use the decomposition (27) in order to bound the term ‖vλ · ∇uλ‖Lp(Ω).
We observe first that

‖vε
λ,2‖Ls(Ω) ≤ ‖vλ − v‖Ls(Ω) + ‖v − ṽ ? ρε/2‖Ls(Ω) ≤ λ + ε/2 < ε.

Recall that
W 2,p(Ω) ↪→ W 1,k(Ω) (29)

for any k ∈ [1, p∗], with 1
p∗ = 1

p −
1
3 , if p < 3, for any k ≥ 1 if p = 3 and for any

k ∈ [1,∞] if p > 3. Moreover the embedding

W 2,p(Ω) ↪→ W 1,q(Ω) (30)

is compact for any q ∈ [1, p ∗ [ if p < 3, for any q ∈ [1,∞[ if p = 3 and for q ∈ [1,∞]
if p > 3. Then, using the Hlder inequality and the Sobolev embedding, we obtain

‖vε
λ,2 · ∇uλ‖Lp(Ω) ≤ ‖vε

λ,2‖Ls(Ω)‖∇uλ‖Lk(Ω) ≤ C ε‖uλ‖W2,p(Ω) (31)
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where 1
k = 1

p −
1
s , which is well defined (see the defintion of the real number s). For

the second estimate, we consider two cases.
i) Case p ≤ 2. Let r ∈ ]3,∞] be such that 1

p = 1
r + 1

2 and t ≥ 1 such that 1+ 1
r = 1

3 + 1
t

satisfy

‖vε
1 · ∇uλ‖Lp(Ω) ≤ ‖vε

1‖Lr(Ω)‖∇uλ‖L2(Ω)

≤ ‖v‖L3(Ω)‖ρε/2‖Lt(R3)‖∇uλ‖L2(Ω).

Using the estimate (25), we have

‖vε
1 · ∇uλ‖Lp(Ω) ≤ Cε‖v‖L3(Ω)

(
‖f ‖Lp(Ω) +

(
1 + ‖v‖L3(Ω)

)
× (‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ))

)
.

(32)

From (32) and (31), we deduce that

‖uλ‖W2,p(Ω) + ‖qλ‖W 1,p(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)
×

×
(
‖f ‖Lp(Ω) +

(
1 + ‖v‖L3(Ω)

)
(‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ))

) (33)

ii) Case p > 2. First, we choose the exponent q given in (30) such that q > 2. For
any ε′, we known that there exists Cε′ > 0 such that

‖∇uλ‖Lq(Ω) ≤ ε′‖uλ‖W2,p(Ω) + Cε′‖uλ‖H1(Ω).

Let first consider p < 3 and choose q < p∗ and close of p∗. Then, there exist r > 3
such that 1

p = 1
r + 1

q and t > 1 such that 1 + 1
r = 1

3 + 1
t satisfying

‖vε
1 · ∇uλ‖Lp(Ω) ≤ ‖vε

1‖Lr(Ω)‖∇uλ‖Lq(Ω)

≤ ‖v‖L3(Ω)‖ρε/2‖Lt(R3)‖∇uλ‖Lq(Ω).

If p ≥ 3,

‖vε
1 · ∇uλ‖Lp(Ω) ≤ ‖vε

1‖Ls(Ω)‖∇uλ‖Lq(Ω)

≤ ‖v‖Ls(Ω)‖ρε/2‖L1(R3)‖∇uλ‖Lq(Ω),

where we choose q = ∞ if p > 3 and q large enough if p = 3. In the both cases, in
order to control the first term on the right hand side of (28) with the term on the
left hand side, we fix ε and ε′ small enough to obtain

‖uλ‖W2,p(Ω) + ‖qλ‖W 1,p(Ω)/R ≤ C
{
‖f ‖Lp(Ω) + ‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ)

+ Cε′‖v‖Ls(Ω)‖ρε/2‖Lt(Ω)

×
(
‖f ‖Lp(Ω) +

(
1 + ‖v‖Ls(Ω)

)
(‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ))

}
.

(34)

Thus, we deduce that (uλ, qλ) satisfies (33), where we replace ‖v‖L3 by ‖v‖Ls .
The estimate (33) is uniform with respect to λ, and therefore we can extract

subsequences, that we still call {uλ}λ and {qλ}λ, such that if λ → 0,

uλ −→ u weakly in W2,p(Ω),

and for the pressure, there exists a sequence of real numbers kλ such that

qλ + kλ → q weakly in W 1,p(Ω).

It is easy to verify that (u , q) is solution of (O) satisfying estimate (24) and this
solution is unique.

Thanks to the strong regularity, we can deduce the following regularity:
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Theorem 4.3 (Regularity in W1,p(Ω)× Lp(Ω), p > 1). Let us consider

f ∈ W−1,p(Ω), v ∈ H3(Ω), h ∈ Lp(Ω) and g ∈ W1−1/p,p(Γ)

be given verifying the compatibility condition (11). Then, the problem (O) has a
unique solution (u, q) ∈ W1,p(Ω)×Lp(Ω)/R. Moreover, there exists some constant
C > 0 such that:

i) if p ≥ 2, then

‖u‖W1,p(Ω) + ‖q‖Lp(Ω)/R ≤

≤ C
(
1 + ‖v‖L3(Ω)

)2 (‖f‖W−1,p(Ω) + ‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

) (35)

holds,
ii) if p < 2, then

‖u‖W1,p(Ω) + ‖q‖Lp(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)2×
×
(
‖f‖W−1,p(Ω) +

(
1 + ‖v‖L3(Ω)

)
‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

) (36)

holds.

Sketch of the proof. i) First case: p ≥ 2. Let (u0, q0) ∈ W1,p(Ω) × Lp(Ω) be the
solution of:

−∆u0 +∇q0 = f and ∇ · u0 = h in Ω, u0 = g on Γ.

verifying the estimate:

‖u0‖W1,p(Ω) + ‖q0‖Lp(Ω)/R ≤ C
(
‖f ‖W−1,p(Ω) + ‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

)
(37)

and (z , θ) ∈ W2,t(Ω)×W 1,t(Ω) verifying:

−∆z + v · ∇z +∇θ = −v · ∇u0 and ∇ · z = 0 in Ω, z = 0 on Γ,

with 1
t = 1

3 + 1
p and satisfying the estimate

‖z‖W2,t(Ω) + ‖θ‖W 1,t(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)
‖v · ∇u0‖Lt(Ω)

≤ C
(
1 + ‖v‖L3(Ω)

)
‖v‖L3(Ω)(‖f ‖W−1,p(Ω) + ‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)).

(38)

Here, we have applied Theorem 4.2 because of v · ∇u0 ∈ Lt(Ω). Observe that
6
5 ≤ t < 3, if and only if p ≥ 2.

Thanks to the embedding W2,t(Ω) ↪→ W1,p(Ω), the pair (u , q) = (z + u0, θ +
q0) ∈ W1,p(Ω) × Lp(Ω) verifies the problem (O). Estimate (35) follows from (37)
and (38).

ii) Second case: p < 2. We use duality argument.

Using quickly the reasoning given in Theorem 4.2, we can improve estimates (35)
and (36) for some values of p:

Proposition 3. Under the assumptions of Theorem 4.3 and supposing that 6
5 ≤

p ≤ 6, the solution (u, q) satisfies the estimate:

‖u‖W1,p(Ω) + ‖q‖Lp(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)
×

×
(
‖f‖W−1,p(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖Lp(Ω) + ‖g‖W1−1/p,p(Γ)

) ) (39)

Moreover assuming v ·n = 0 on Γ, then the estimate (39) holds for any 1 < p < ∞.
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Remark 4. If we suppose that v ∈ Hp(Ω), then estimate (39), where we replace the
norm ‖v‖L3(Ω) by ‖v‖Lp(Ω), holds when p > 6 (and then also, by duality argument,
when p < 6/5 and v ∈ Hp′(Ω)).

Corollary 5 (Strong regularity for 1 < p < 6/5). Let 1 < p < 6/5 and let us

f ∈ Lp(Ω), v ∈ H3(Ω), h ∈ W 1,p(Ω) and g ∈ W2−1/p,p(Γ)

be satisfied the compatibility condition (11). Then, the solution given by Theorem
4.3 satisfies (u, q) ∈ W2,p(Ω)×W 1,p(Ω) and the estimate

‖u‖W2,p(Ω) + ‖q‖W 1,p(Ω)/R ≤ C
(
1 + ‖v‖L3(Ω)

)
×
(
‖f‖Lp(Ω) +

(
1 + ‖v‖L3(Ω)

) (
‖h‖W 1,p(Ω) + ‖g‖W2−1/p,p(Γ)

) ) (40)

holds.

Sketch of the proof. Let us consider 1 < p < 6/5 and (u , q) ∈ W1,p(Ω)× Lp(Ω) be
the solution given by Theorem 4.3. Then

Lp(Ω) ↪→ W−1,r(Ω), W 1,p(Ω) ↪→ Lr(Ω), W2−1/p,p(Γ) ↪→ W1−1/r,(Γ)

where r ∈ ] 32 , 2[ satisfies 1
r = 1

p −
1
3 . From Theorem 4.3, we deduce that (u , q) ∈

W1,r(Ω)×Lr(Ω) and then v ·∇u ∈ Lp(Ω). By Stokes regularity let us to conclude
that (u , q) ∈ W2,p(Ω)×W 1,p(Ω). To obtain the estimate (40), we proceed similarly
to the proof of Theorem 4.2.

We can summarize Theorem 4.2 and Corollary 5 by the following theorem:

Theorem 4.4 (Strong regularity). Let f, h, g be such that

f ∈ Lp(Ω), h ∈ W 1,p(Ω) and g ∈ W2−1/p,p(Γ)

verifying the compatibility condition (11) and v ∈ Hs(Ω) be with s defined by (23).
Then, the solution given by Theorem 4.3 satisfies (u, q) ∈ W2,p(Ω)×W 1,p(Ω) and
satisfies estimate (24).

The concepts of weak and strong solutions are known for the Oseen equations.
Now, we define and prove the existence of a very weak solution for the Oseen
equations.

Definition 4.5 (Very weak solution for the Oseen problem). Let f , h, g
be given satisfying (14) and (11) and v ∈ Hs(Ω) for s as (42). We say that
(u , q) ∈ Lp(Ω)×W−1,p(Ω) is a very weak solution of (O) if the following equalities
hold: For any ϕ ∈ Yp′(Ω) and π ∈ W 1,p′(Ω),∫

Ω

u · (−∆ϕ− v · ∇ϕ) dx − 〈q,∇ ·ϕ〉
W−1,p(Ω)×W 1,p′

0 (Ω)

= 〈f ,ϕ〉Ω − 〈gτ ,
∂ϕ

∂n
〉Γ,∫

Ω

u · ∇π dx = −
∫

Ω

h π dx + 〈g · n , π〉Γ,

(41)

where the dualities on Ω and Γ are defined by (16).
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As for the Stokes problem, the previous duality have sense. Moreover, note that

W1,p′(Ω) ↪→ Lp′∗(Ω) and then the integral
∫

Ω

u · (v · ∇)ϕ dx is well defined.

Theorem 4.6 (Very weak solution for Oseen equations). Let us f, h, g satisfy
(11),

f ∈ (Xr′,p′(Ω))′, h ∈ Lr(Ω), g ∈ W−1/p,p(Γ), with
1
r

=
1
p

+
1
s

and v ∈ Hs(Ω) with

s = 3 if p > 3/2, s = p′ if p < 3/2, s = 3 + ε if p = 3/2. (42)

Then, the Oseen problem (O) has a unique solution (u, q) ∈ Tp,r(Ω)×W−1,p(Ω)/R
verifying the following estimates:

‖u‖Tp,r(Ω) ≤ C
(
1 + ‖v‖Ls(Ω)

) (
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ)

)
, (43)

‖q‖W−1,p(Ω)/R ≤ C
(
1 + ‖v‖Ls(Ω)

)2
×
(
‖f‖[Xr′,p′ (Ω)]′ + ‖h‖Lr(Ω) + ‖g‖W−1/p,p(Γ)

)
.

(44)

Proof. First, we shall prove that if the pair (u , q) ∈ Lp(Ω)×W−1,p(Ω)/R satisfies
the two first equations of (O), then u belongs to Tp,r(Ω) and thus the boundary
condition u = g on Γ makes sense. Hence, if a pair (u , q) ∈ Lp(Ω) × W−1,p(Ω)
satisfies the two first equations of (O), because of v ∈ Hs(Ω) with ∇ · v = 0
and thanks (again) to Lemma 2.6, then ∆u = ∇ · (v ⊗ u) +∇q − f ∈ (Xr′,p′(Ω))′.
Therefore, u ∈ Tp,r,σ(Ω) and its tangential trace belongs to W−1/p,p(Γ). Moreover,
as u ∈ Lp(Ω) and ∇ · u ∈ Lr(Ω), then u · n |Γ ∈ W−1/p,p(Γ), and the whole trace
u |Γ ∈ W−1/p,p(Γ) can be identified with u |Γ = g .

It suffices to consider the case where g ·n |Γ = 0 and
∫

Ω

h(x ) dx = 0, the general

case is similar to the proof given in the end of Proposition 2. The result can be
deduced (see [5]) applying the Riesz’s Lemma.

Similarly to Corollary 3, we can prove:

Corollary 6. i) Let σ be a real number such that 0 < σ < 1. Let f = ∇ · F0 +
∇f1, h and g satisfy the compatibility condition (11) with

F0 ∈ Wσ,r(Ω), f1 ∈ W σ−1,p(Ω), g ∈ Wσ−1/p,p(Γ), h ∈ W σ,r(Ω),

with 1
r = 1

p + 1
s and r ≤ p. Let us consider v ∈ Hs(Ω) with

s = 3 if p > 3/2, s = p′ if p < 3/2, s = 3 + ε if p = 3/2.

Then, the Oseen problem (O) has a unique solution (u, q) belonging to Wσ,p(Ω)×
W σ−1,p(Ω)/R and satisfying the estimate

‖u‖Wσ,p(Ω) + ‖q‖W σ−1/p,p(Ω)/R ≤ C (1 + ‖v‖Ls(Ω))

×
(
‖F0‖Wσ,r(Ω) + ‖f1‖W σ−1,p(Ω) + (1 + ‖v‖Ls(Ω))(‖h‖W σ,r(Ω) + ‖g‖Wσ−1/p,p(Γ))

)
.
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ii) If moreover F0, f1, g, h satisfy that

F0 ∈ Wσ+1,r(Ω), f1 ∈ W σ,p(Ω), g ∈ Wσ+1−1/p,p(Γ), h ∈ W σ+1,r(Ω),

with 1
r ≤

1
p + 1

s and v ∈ Hs(Ω), where

s = 3 if p < 3, s = p if p > 3, s = 3 + ε if p = 3,

then (u, q) ∈ Wσ+1,p
0 (Ω)×W σ,p(Ω) and satisfies

‖u‖Wσ+1,p(Ω) + ‖q‖W σ,p(Ω)/R ≤ C (1 + ‖v‖Ls(Ω))

×
(
‖F0‖Wσ+1,r(Ω) + ‖f1‖W σ,p(Ω) + (1 + ‖v‖Ls(Ω))(‖h‖W σ+1,r(Ω) + ‖g‖Wσ+1−1/p,p(Γ))

)
.

Theorem 4.7 (Regularity for Oseen equations). Let σ be a real number such
that 1

p < σ ≤ 2. Let f, h and g satisfy the compatibility condition (11) with

f ∈ Wσ−2,p(Ω), h ∈ W σ−1,p(Ω), g ∈ Wσ−1/p,p(Γ).

Let v ∈ Hs(Ω) satisfy (42). Then, the Oseen problem (O) has exactly one solution
(u, q) ∈ Wσ,p(Ω)×W σ−1,p(Ω)/R satisfying the estimate

‖u‖Wσ,p(Ω) + ‖q‖W σ−1,p(Ω)/R ≤ C (‖f‖Wσ−2,p(Ω)) + ‖h‖W σ−1,p(Ω) + ‖g‖Wσ−1/p,p(Ω)).

Proof. The proof is similar to proof of Theorem 3.4. It suffices to study the new
term containing the function v .

Remark 5. i) When f ∈ W1/p−2,p(Ω), we can conjecture that u /∈ W1/p,p(Ω).
ii) If 1/p < σ < 1, f ∈ W σ−2,p(Ω), g ∈ W σ−1/p,p(Γ), then the solution (u , q)

of (O) belongs to Wσ,p(Ω) ×W σ−1,p(Ω). This assumptions are weaker than
those of Corollary 6 point i). Moreover, they are optimal for this case.

iii) If 0 ≤ σ ≤ 1/p, Theorem 4.7 cannot be applied. Indeed, the trace mapping
is not continuous (and not surjective) from Wσ,p(Ω) into Wσ−1/p,p(Γ). If
we like to solve Problem (O) with boundary condition g ∈ Wσ−1/p,p(Γ), it is
necessary to suppose that f and h are more regular, precisely we must assume
f = ∇ · F0 + ∇f1 with F0 ∈ Wσ,r(Ω), f1 ∈ W σ−1,p(Ω), and h ∈ W σ,r(Ω),
where 1

r ≤ 1
p + 1

3 and r ≤ p. The solution is then obtained by Corollary 6
point i).

5. The Navier-Stokes problem. First of all, we give the definition of a very
weak solution for the Navier-Stokes equations.

Definition 5.1 (Very weak solution for the Navier-Stokes problem). Let
f ∈ (Xr′,p′(Ω))′, h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ) satisfy the compatibility condition
(11). We say that (u , q) ∈ Lp(Ω)×W−1,p(Ω) is a very weak solution of (NS) if
the following equalities hold: For any ϕ ∈ Yp′(Ω) and π ∈ W 1,p′(Ω),∫

Ω

u · (−∆ϕ− u · ∇ϕ) dx − 〈q,∇ ·ϕ〉
W−1,p(Ω)×W 1,p′

0 (Ω)

= 〈f ,ϕ〉Ω − 〈gτ ,
∂ϕ

∂n
〉Γ,∫

Ω

u · ∇π dx = −
∫

Ω

h π dx + 〈(g · n), π〉Γ,

(45)

where the dualities on Ω and Γ are defined in (16).
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In the stationary Navier-Stokes equations, the data h and g play an special role,
making possible or not the existence of a very weak solution. If h and g are small
enough, then the result is true. Until we now, we think that it is not possible to
eliminate this latest condition.

Therefore, we present first three results related to the existence of very weak
solution: the two first for the small external forces case (following the scheme used
by Marusič-Paloka [20]) and the third one for the general Navier-Stokes case, always
supposing that h and g are small enough in their respective norms. Last result
involves the regularity for the Navier-Stokes equations.

Theorem 5.2 (Very weak solution for Navier-Stokes, small data case). Let
us consider f ∈ (X3,3/2(Ω))′, h ∈ L3/2(Ω) and g ∈ W−1/3,3(Γ) be given verifying
(11).

i) There exists a constant α1 > 0 such that, if

‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ) ≤ α1, (46)

then, there exists a very weak solution (u, q) ∈ L3(Ω) × W−1,3(Ω) to the
problem (NS) verifying the following estimates:

‖ u ‖L3(Ω) ≤ C
(
‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ)

)
(47)

‖ q ‖W−1,3/R ≤ C1‖ f ‖[X3,3/2)]′

+ 2(1 + C2)C
(
‖ f ‖[X3,3/2]′ + ‖ h ‖L3/2 + ‖ g ‖W−1/3,3

) (48)

where C > 0 is the constant given by (43), α1 = min
{
(2C)−1, (2C2)−1

}
, C1

and C2 are constants of Sobolev embeddings.

ii) Moreover there exists a constant α2 ∈ ]0, α1] such that this solution is unique,
up to an additive constant for q, if

‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ) ≤ α2. (49)

Proof. i) Existence. The existence of a very weak solution is made through the
application of the Banach’s fixed point theorem. We do this fixed point over the
Oseen equations, written in an adequate manner. We are searching for a fixed point
for the application T , {

T : H3(Ω) → H3(Ω)
v 7→ Tv = u

(50)

where given v ∈ H3(Ω), Tv = u is the unique solution of (O) given by Theorem
4.6. We also need to define a neighborhood Br, in the form:

Br = {v ∈ H3(Ω); ‖v‖L3(Ω) ≤ r}. (51)

In order to prove the contraction of the operator, we must prove that: there
exists θ ∈ ]0, 1[ such that

‖Tv1 − Tv2‖L3(Ω) = ‖u1 − u2‖L3(Ω) ≤ θ‖v1 − v2‖L3(Ω). (52)



ON THE VERY WEAK SOLUTION FOR OSEEN AND NAVIER-STOKES EQS 21

Searching for an estimate of ‖u1 − u2‖L3(Ω), we observe that for each i = 1, 2, we
have

−∆u i + v i · ∇u i +∇qi = f in Ω,
∇ · u i = h in Ω,

u i = g on Γ,

with the estimates

‖u i‖L3(Ω) ≤ C
(
1 + ‖v i‖L3(Ω)

)
×
(
‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ)

)
,

(53)

where C > 0 is the constant given by (43). Moreover, for estimating the difference
u1 − u2, we look for the problem verified by (u , q) = (u1 − u2, q1 − q2), which is:

−∆u + v1 · ∇u +∇q = −v · ∇u2 and ∇ · u = 0 in Ω, u = 0 on Γ,

where u1 = Tv1, u2 = Tv2 and v = v1 − v2. Using the very weak estimates (43)
made for the Oseen problem successively for u and for u2, we obtain that:

‖u‖L3(Ω) ≤ C
(
1 + ‖v1‖L3(Ω)

)
‖(v · ∇)u2‖[X3,3/2(Ω)]′

≤ C2β
(
1 + ‖v1‖L3(Ω)

) (
1 + ‖v2‖L3(Ω)

)
‖v‖L3(Ω),

where β = ‖ f ‖[X3,3/2(Ω)]′ +‖ h ‖L3/2(Ω)+‖ g ‖W−1/3,3(Γ). Thus, we obtain estimate
(52) considering C2 β (1 + r)2 < 1 which is verified, for example, taking:

r =
(
2 C2 β

)−1/2 − 1 with β < (2 C2)−1. (54)

Therefore, if (54) is verified, using again estimate (43) we conclude that the fixed

point ū ∈ L3(Ω) verifies:

‖ū‖L3(Ω) ≤ Cβ
(
1 + ‖ū‖L3(Ω)

)
.

If we also choose β such that β < (2 C)−1, then:

‖ū‖L3(Ω) ≤ Cβ(1− Cβ)−1 ≤ 2 C β < 1.

Setting α1 = min
{
(2C)−1, (2C2)−1

}
, then estimate (47) is satisfied. For the esti-

mate of the associated pressure, we deduce from the equations ∇q̄ = ∆ū−ū ·∇ū+f
and (47) that:

‖ ˙̄q‖W−1,3(Ω)/R ≤ ‖∇q̄‖W−2,3(Ω)

≤ ‖∆ū‖W−2,3(Ω) + C2‖ū‖2
L3(Ω) + C1‖f ‖[X3,3/2(Ω)]′

≤ C1‖f ‖[X3,3/2(Ω)]′ + 2(1 + C2)C β,

where C1 is the continuity constant of the Sobolev embedding [X3,3/2(Ω)]′ ↪→
W−2,3(Ω) and C2 is the continuity constant of the Sobolev embedding W1,3/2

0 (Ω) ↪→
L3(Ω), which is (48) and the proof of existence is completed.

ii) Uniqueness. We shall next prove uniqueness. Let us denote by (u1, q1) the so-
lution obtained in step i) and by (u2, q2) any other very weak solution corresponding
to the same data. Setting u = u1 − u2 and q = q1 − q2. We find that

−∆u + u2 · ∇u +∇q = −u · ∇u1 and div u = 0 in Ω, u = 0 on Γ.
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As u · ∇u1 belongs to W−1,3/2(Ω), using uniqueness argument and Proposition 3,
the function u belongs to W1,3/2(Ω) and we have the estimate

‖u‖W1,3/2(Ω) ≤ C1 ‖u‖L3(Ω)‖u1‖L3(Ω)

(
1 + ‖u2‖L3(Ω)

)
,

where C1 > 0 is given by (39). Thanks to Theorem 4.6, we have also:

‖u2‖L3(Ω) ≤ C(1 + ‖u2‖L3(Ω))(‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ)),

where C > 0 is the constant given in (43). We deduce then

‖u2‖L3(Ω) ≤
C(‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ))

1− C(‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ))
≤ 2 βC,

provided that β ≤ α1. Using finally the embedding W 1,3/2(Ω) ↪→ L3(Ω), we obtain
the estimate

‖u‖W1,3/2(Ω) ≤ 2CC1C2β(1 + 2Cβ)‖u‖W1,3/2(Ω),

where C2 is the continuity constant of the above embedding. Consequently

‖u‖W1,3/2(Ω) ≤ 0,

provided that

β <
−C1C2 +

√
C1C2(4 + C1C2)

4CC1C2
.

We deduce that u = 0 and the proof of uniqueness is completed.

Corollary 7. Let f, h, g satisfy (11), (46) and

f ∈ (Xr′,p′(Ω))′, h ∈ Lr(Ω), g ∈ W−1/p,p(Γ), with
1
r
≤ 1

p
+

1
s

, (55)

where max{r, 3} ≤ p and s is defined by (42) . Then, the solution (u, q) given by
Theorem 5.2 point i) belongs to Lp(Ω) × W−1,p(Ω). If moreover f, h and g satisfy
the condition (49), then this solution is unique, up to a constant for q.

Sketch of the proof. First, we observe that the assumptions (55) imply that the
assumptions of Theorem 5.2 are verified. Let (u , q) ∈ L3(Ω) ×W−1,3(Ω) then the
solution given by Theorem 5.2 and satisfying the estimate

‖ u ‖L3(Ω) ≤ C
(
‖ f ‖[X3,3/2(Ω)]′ + ‖ h ‖L3/2(Ω) + ‖ g ‖W−1/3,3(Γ)

)
.

Observe then that (Xr′,p′(Ω))′ ↪→ (Xr′0,p′(Ω))′ and Lr(Ω) ↪→ Lr0(Ω) where 1/r0 =
1/p + 1/3. Using Theorem 4.6, there exist a unique (w , π) ∈ Lp(Ω)×W−1,p(Ω)/R
satisfying −∆w + u · ∇w +∇π = f = −∆u + u · ∇u +∇q, div w = h in Ω and
w = g on Γ. Setting z = w − u and θ = π − q, that means that

−∆z + u · ∇z +∇θ = 0, div z = 0 in Ω and z = 0 on Γ,

and thanks to Theorem 4.6 and uniqueness argument, we deduce that z = 0,
∇π = ∇q and then w = u . The uniqueness of (u , q), up to a constant for q, is
immediate.
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Theorem 5.3 (Very weak solution of Navier-Stokes equations, arbitrary
external forces). Let f ∈ (X3,3/2(Ω))′, h ∈ L3/2(Ω) and g ∈ W−1/3,3(Γ) satisfy
the compatibility condition (11). There exists a constant δ > 0 depending only on
Ω such that if

‖h‖L3/2(Ω) +
i=I∑
i=0

|〈g · n, 1〉Γi
| ≤ δ, (56)

then the problem (NS) has a very weak solution (u, q) ∈ L3(Ω)×W−1,3(Ω).

Sketch of the proof. We decompose the problem into two parts. First, we are look-
ing to find a pair (vε, q

1
ε) solution of the problem:

(NS1)


−∆vε + vε · ∇vε +∇q1

ε = f − f ε in Ω,

∇ · vε = h− hε in Ω,

vε = g − gε on Γ,

and then to find (z ε, q
2
ε) solution of the problem:

(NS2)


−∆z ε + z ε · ∇z ε + z ε · ∇vε + vε · ∇z ε +∇q2

ε = f ε in Ω,

∇ · z ε = hε in Ω,

z ε = gε on Γ,

where f ε ∈ H−1(Ω), hε ∈ L2(Ω) and gε ∈ H1/2(Γ) satisfy

‖f − f ε‖[X3,3/2(Ω)]′ + ‖h− hε‖L3/2(Ω) + ‖g − gε‖W−1/3,3(Γ) ≤ ε

and

‖hε‖L3/2(Ω) +
i=I∑
i=0

|〈gε · n , 1〉Γj
| ≤ 2δ

(see Lemma 2.7 and Lemma 2.12). The pair (u , q) = (vε + z ε, q
1
ε + q2

ε) is then
solution to problem (NS).

The existence of solution for (NS1) follows from Theorem 5.2 and solution of
(NS2) is based on the classical theory and the use of Hopf’s Lemma (see [13],
Remark VIII.4.4 for instance).

Theorem 5.4 (Regularity for Navier-Stokes equations). Let (u, q) ∈ L3(Ω)×
W−1,3(Ω) be the solution given by Theorem 5.3. Then, the following regularity
results hold:
i) Suppose that

f ∈ (Xr′,p′(Ω))′, h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ)

with 1
r ≤

1
p + 1

3 and max{r, 3} ≤ p. Then (u, q) ∈ Lp(Ω)×W−1,p(Ω).
ii) Let r ≥ 3/2 and suppose that

f ∈ W−1,r(Ω), h ∈ Lr(Ω) and g ∈ W1−1/r,r(Γ). (57)

Then (u, q) ∈ W1,r(Ω)× Lr(Ω).
iii) Let 1 < r < ∞ and suppose that

f ∈ Lr(Ω), h ∈ W 1,r(Ω) and g ∈ W2−1/r,r(Γ). (58)

Then (u, q) ∈ W2,r(Ω)×W 1,r(Ω).
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iv) Suppose that 3/2 ≤ p ≤ 3, f = ∇ · F0 +∇f1 and

F0 ∈ Wσ,r(Ω), f1 ∈ W σ−1,p(Ω), h ∈ W σ,r(Ω), g ∈ Wσ−1/p,p(Γ),

with σ = 3
p − 1, 1

r ≤
1
p + 1

3 and r ≤ p. Then (u, q) ∈ Wσ,p(Ω)×W σ−1,p(Ω).
v) Let σ such that 1/p < σ ≤ 1 and σ ≥ 3/p− 1. Suppose that

f ∈ Wσ−2,p(Ω), h ∈ W σ−1,p(Ω), g ∈ Wσ−1/p,p(Γ).

Then (u, q) ∈ Wσ,p(Ω)×W σ−1,p(Ω).

Sketch of the proof. First, we remark that under the assumptions in i) ii) and iii),
we have that f ∈ (X3,3/2(Ω))′, h ∈ L3/2(Ω) and g ∈ W−1/3,3(Γ).
i) Let (u , q) ∈ L3(Ω) × W−1,3(Ω) be the solution given by Theorem 5.3. Using
Theorem 4.6, there exist a unique (w , π) ∈ Lp(Ω)×W−1,p(Ω)/R satisfying −∆w +
u · ∇w +∇π = f = −∆u +u · ∇u +∇q, div w = h in Ω and w = g on Γ. Setting
z = w − u and θ = π − q, that means that

−∆z + u · ∇z +∇θ = 0, div z = 0 in Ω and z = 0 on Γ,

and thanks to Theorem 4.6 and uniqueness argument, we deduce that z = ∇θ = 0
and then w = u and π = q + c, with c constant. The point i) is proved.
ii) Let r ≥ 3/2 and f , h, g be given satisfy (57). Let p ≥ 3 be defined by 1/p = 1/r−
1/3. Then W1−1/r,r(Γ) ↪→ W−1/p,p(Γ) and W−1,r(Ω) ↪→ (Xr′,p′(Ω))′. If r ≤ 3,
by point i), we deduce that (u , q) ∈ Lp(Ω) × W−1,p(Ω) and then u ⊗ u ∈ Lr(Ω).
But −∆u +∇q = f − div (u ⊗u) ∈ W−1,r(Ω) and by Stokes regularity, we obtain
that (u , q) ∈ W1,r(Ω) × Lr(Ω). If now r > 3, we know that u ∈ W1,3(Ω) and
thanks to Sobolev embeddings, u ⊗ u ∈ Lr(Ω) and again as above, we deduce that
(u , q) ∈ W1,r(Ω)× Lr(Ω).
iii) Let 1 < r < ∞ and f , h, g satisfy (58). We observe first that Lr(Ω) ↪→
W−1,3/2(Ω), W 1,r(Ω) ↪→ L3/2(Ω) and W2−1/r,r(Γ) ↪→ W1/3,3/2(Γ) and then by
step ii), we obtain that (u , q) ∈ W1,3/2(Ω) × L3/2(Ω). If r < 3, we deduce thanks
to Theorem 4.4 that (u , q) ∈ W2,r(Ω) ×W 1,r(Ω). If now r ≥ 3, then u ∈ L∞(Ω)
and using again Theorem 4.4, we obtain the same conclusion.
iv) Follows from Corollary 6 point i).
v) Is consequence of Theorem 4.3 (for σ = 1) and Theorem 4.7 (for σ < 1).

Remark 6. i) In particular, when p = 2 and r = 6/5, if

f ∈ W−1/2,6/5(Ω), h ∈ W 1/2,6/5(Ω), g ∈ L2(Γ),

then the solution given by the previous theorem point iv) satisfies (u , q) ∈
H1/2(Ω)×H−1/2(Ω).

ii) Point i) shows in particular that for any p ≥ 3, if

f ∈ W−1,r(Ω) and g ∈ W1−1/r,r(Γ), with
3p

3 + p
≤ r ≤ p,

and
∫
Γi

g · n = 0 for any i = 1, . . . , I and h = 0, then Problem (NS) has
a solution (u , q) ∈ Lp(Ω) × W−1,p(Ω). In [25], D. Serre proves that for any
3/2 < r < 2 (and then for any r > 3/2), if

f ∈ W−1,r(Ω) and g ∈ W1−1/r,r(Γ),

with
∫
Γi

g · n = 0 for any i = 0, . . . , I and h = 0, then (NS) has a solution
(u , q) ∈ W1,r(Ω)×Lr(Ω). Our point ii) proves that this result holds if r = 3/2
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without supposing h or the flux g through Γi to be equal to 0, more precisely
it suffices to assume the condition of smallness:

‖h‖L3/2(Ω) +
i=I∑
i=0

|〈g · n , 1〉Γi
| ≤ δ.

iii) Because of the relation (11), the condition (56) is automatically fullfiled when
the norm ‖h‖L3/2(Ω) is sufficiently small and I = 0, that means that the
boundary Γ is connected, which is the case considered by Kim [17].

iv) Marusic-Paloka in [20] proves Theorem 5.3 with f ∈ H−1(Ω) (which is in-
cluded in the dual space (X3,3/2(Ω))′), h = 0 and g ∈ L2(Γ) (which is
included in W−1/3,3(Γ)) with ‖g‖L2(Γ) small. Moreover, the domain Ω is
assumed simply-connected. In fact, the solution u ∈ L3(Ω) is more regular
and belongs to H1/2(Ω) as pointed in the point i) of this remark.

v) Galdi et al. in [14] prove Theorem 5.3 and Theorem 5.4 point i) with f =
div F0, where F0 ∈ Lr(Ω), h ∈ Lp(Ω) and g ∈ W−1/p,p(Γ) with 1

r ≤
1
p + 1

3

and max{2r, 3} ≤ p. They assume the domain Ω is of class C2,1. Moreover
they suppose f , h and g sufficiently small with respect to their norms. The
small condition on the external forces is in fact unnecessary.
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Numérique de l’Université Pierre et Marie Curie. Rapport 90025, 1990.
[3] C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes

problem in arbitrary dimension, Czechoslovak Mathematical Journal, 44, 119 (1994), 109–
140.

[4] C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary
Oseen equations in R3, J. Math. Fluid Mech., 9 (2007), 181–210.
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