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ABSTRACT

The robustness of the coding scheme against variations of the
side information quality is determinant to the performance of dis-
tributed source coding applications. Relatively few works, how-
ever, investigate this issue by an information theoretic perspective.
Wyner-Ziv coding with uncertain side information quality is de-
fined here introducing a Gaussian-mixture model for the correlation
noise. The analysis of the theoretical rate-distortion performance is
presented, along with a coding solution not relying on the presence
of a feedback channel. The attainable performance of the coding
scheme is derived, and a brief discussion on implementation issues
concludes the paper.

1. INTRODUCTION

The major interest Wyner-Ziv coding has raised in recent years is
due to its suitability to emerging applications such as wireless sen-
sor networks [1] and distributed video coding [2]. Investigation on
practical solutions began with the contribution of DISCUS [3], and
spread in the last decade producing innumerable works (see [4] for
a survey). The main issue in practical design is, as emphasized
in [5], the robustness of the scheme against the variations in time of
the side information quality, which are usually not captured by the
underlying theoretical model, but strongly affect the performance.
The classical approach to the problem is the attempt to track the
instantaneous quality of the correlation channel: either introducing
a feed-back link, thus enabling rate adaptation [6], or allowing the
encoder to access previously transmitted data to facilitate the esti-
mation of the correlation noise level [7].

Relatively few works investigate the information theoretical
consequences of distributed compression with uncertain side in-
formation quality. Heegard and Berger [8] and Kaspi [9] consid-
ered the event that the side information might be absent at the de-
coder, without the encoder being aware. Recent works by Verdú and
Weissman [10] and Perron et al. [11] address the evaluation of the
Wyner-Ziv rate-distortion function when the side information either
is a noiseless copy of the source or is erased. The authors in [12,13]
introduced a different correlation model, where the side information
is a copy of the source affected by background noise and, occasion-
ally, by additive noise impulses. The decoder is uninformed of the
state of the correlation channel, whereas in the Wyner-Ziv setup for
possibly erased side information [10–12] the receiver is assumed
capable of detecting the occurred erasure.

This work generalizes the correlation model presented in [12,
13] and outlines a theoretical framework for the analysis of Wyner-
Ziv coding with uncertain side information quality. The instanta-
neous state of the correlation channel is described by means of a
hidden random variable; the probability density function of the cor-
relation noise results in a Gaussian mixture, with weighting coeffi-
cients determined by the state probability distribution.

After derivation of lower and upper bounds to the Wyner-Ziv
rate-distortion function a coding architecture not relying on the
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presence of a feedback channel is proposed. Its attainable perfor-
mance is characterized, and implementation details are discussed in
the concluding section.

2. MODEL AND THEORETICAL BOUNDS

The standard Gaussian Wyner-Ziv setup [14] considers the com-
pression of a memoryless source X ∼ N (0, σ2

X), when the side

information Y ∼ N (0, σ2
Y ) is available at the decoder. The corre-

lation of the jointly Gaussian pair (X, Y ) is modeled by a virtual

channel Y = X + Z, where Z ∼ N (0, σ2
Z) is independent addi-

tive noise. The model can be generalized by assuming the variance
σ2

Z as varying with time. The instantaneous state of the correlation
channel is described by a random variable S, taking values in the
alphabet S = {0, 1, . . . , T − 1}. The set S is mapped one-to-one

onto R = {σ2
0 , σ2

1 , . . . , σ2
T−1}, where σ2

s < σ2
s+1, so that the real-

ization S = s represents the event of correlation noise with variance
σ2

s . Let ps = Pr(S = s). The probability density function fZ(z)
of the correlation noise Z is the Gaussian mixture

fZ(z) =

T−1∑

s=0

ps fZ|S=s(z) =

T−1∑

s=0

ps√
2πσ2

s

exp

(
− z2

2σ2
s

)
. (1)

Gaussian-mixture models are a widely deployed technique for the
estimation of the probability density function of real random signals
[15]. A wide range of correlation channels can be approximated by
a suitable choice of the number of components, of their variances,
and of their mixing weights ps. Without loss of generality exam-
ples and coding schemes will be discussed in detail only for a two-
component mixture, introduced in [12] as the Gaussian-Bernoulli-
Gaussian (GBG) model, given by S = {0, 1}, R = {σ2

0 , σ2
1},

p1 = p and p0 = (1 − p). Section 2.1 explores quantization with
decoder side information; a limit-achieving quantizer is derived, for
future use in Section 2.2.

2.1 High-rate quantization with decoder side information

Wyner-Ziv coding can be understood as a quantization problem.
The decoder side information helps in the reconstruction of the
source, and allows to compress the quantization alphabet through
Slepian-Wolf coding, which plays the same role as entropy cod-
ing in the standard quantization problem. Necessary conditions for
the existence of limit-achieving Wyner-Ziv quantizers are derived
in [4, 16]. We provide here the following result, along with a brief
sketch of the proof. A system composed by a dithered lattice quan-
tizer [17] followed by an ideal Slepian-Wolf chain satisfies the con-
ditions in [4, 16], and hence is Wyner-Ziv optimal, as the length n
of the source sequence X grows towards infinity. The rate of the
dithered lattice quantizer with side information at the decoder is de-
rived mirroring the proof for standard quantization in [17], and is
expressed, in bits per sample, as

Rq =
1

n
h(X |Y ) − 1

n
log2

(
V (Λ)

)
, (2)



where V (Λ) is the volume of the fundamental Voronoi cell of Λ.
As n → ∞ the shape of the best tessellation associated with Λ
approaches an Euclidean ball, and the second moment approaches

σ2(Λ) = V (Λ)
2
n /2πe. Substitution into (2) yields

Rq = Rq

(
σ2(Λ)

)
= h(X|Y ) − 1

2
log2

(
2πeσ2(Λ)

)
. (3)

The second moment σ2(Λ) represents the quantization noise vari-

ance per sample. Under high-hate assumption σ2(Λ)/σ2
s → 0, so

that the optimal source reconstruction X̂ is the quantized value of
the source. Under the Mean Square Error (MSE) distortion con-

straint D ≤ E
[
(X − X̂)2

]
the scheme yields per sample distortion

D = σ2(Λ). Substitution in (3) completes the proof.

2.2 Rate-distortion bounds

The Wyner-Ziv rate-distortion function is defined as

RWZ

X|Y (D) = min
(fU|X ,FD)∈M(D)

(
I(X; U) − I(Y ; U)

)
(4)

where U is the auxiliary random variable, and M(D) is the set of
all probability density functions fU|X and matched reconstruction

functions FD : U × Y → X̂ satisfying the distortion constraint

E[(X − X̂)2] ≤ D. The Wyner-Ziv rate-distortion function is
known in closed form only in very few cases: for binary source with
binary symmetric correlation channel and for Gaussian source with
Gaussian additive correlation channel [14], and for discrete sources
with erasure correlation channel [10, 11]. In order to characterize
the analytical form of (4) for uncertain side information quality we
introduce the bounds

RWZ

X|Y
(D) ≤ RWZ

X|Y (D) ≤ R
WZ

X|Y (D). (5)

The lower bound RWZ

X|Y (D) is determined as the best performance

achievable by a genie-aided system, where the genie informs both
the encoder and the decoder of the realization of S. The genie-aided
system works in time-division regime, matching the best achievable
performance associated with the event S = s, given by the Gaussian
Wyner-Ziv rate-distortion function for correlation noise of variance
σ2

s . Like for the compression of parallel Gaussian sources [18],
the system has to satisfy the same distortion constraint D for each
transmission instant, under the high-rate assumption

D <
σ2

x σ2
0

(σ2
x + σ2

0 )
. (6)

If (6) holds it is

RWZ

X|Y (D) =

T−1∑

s=0

ps

1

2
log2

(
σ2

x σ2
s

(σ2
x + σ2

s )D

)
. (7)

The upper bound R
WZ

X|Y (D) under the assumption (6) is deter-
mined as the achievable performance of a system composed by a
lattice dithered quantizer Λ followed by an ideal Slepian-Wolf cod-
ing chain. Under the hypothesis n → ∞ the rate Rq of the lattice
quantizer with side information at the decoder is obtained from (3)

Rq = h(X|Y ) − 1

n
log2

(
2πeσ2(Λ)

)

≤ h(X|Y, S) − 1

2
log2

(
2πeσ2(Λ)

)
+ H(S), (8)

where (8) is obtained developing I(X; S|Y ). Expressing the dif-

ferential entropy in (8) as h(X|Y, S) =
∑T−1

s=0
ps h(X|Y, S = s)

and replacing σ2(Λ) with D finally yields the upper bound

R
WZ

X|Y (D) =

T−1∑

s=0

ps

1

2
log2

(
σ2

x σ2
s

(σ2
x + σ2

s )D

)
+ H(S). (9)

3. THEORETICAL CODING SCHEME

The blindness of both the encoder and the decoder to the realiza-
tion of S prevents, in the uncertain side information quality setup,
any attempt to perform rate-adaptation: the system is forced to ope-
rate at constant rate. The simplest solution is obtained employing a
standard Gaussian Wyner-Ziv coding scheme, dimensioned for the
worst-case quality over the correlation channel, i.e. S = T − 1.
The system is clearly suboptimal, since rate loss is experienced for
any event S 6= T − 1. The loss becomes smaller as the variances of
the components in (1) tend to be similar, vanishing as σ2

s → σ2
s+1,

∀s ∈ S, while it dramatically impacts the performance when the
correlation noise presents occasional high-variance impulses, so
that σ2

T−1 ≫ σ2
s and pT−1 < ps, ∀s ∈ S .

The alternative coding solution proposed here still relies on
fundamental coding blocks optimized for the Gaussian correlation
model, but allows to restrain the rate loss also in the most penalizing
case. The coding architecture is based on two layers, where subopti-
mality is confined on Layer 1. The Layer 1 coding chain is exploited
to produce a first, rough estimate of the source, regarded as Gaus-
sian side information for the optimal (in the Wyner-Ziv sense) trans-
mission on Layer 2. The two-layer coding approach has been first
proposed in [12] for the case of possibly erased side information.
In [12] Layer 1 conveys the syndrome of a real-field code, used to
correct the degraded side information sequence; the decoding pro-
cess relies on the availability of the erasure pattern at the receiver
side. The same solution cannot be employed here, due to the blind-
ness of the decoder to S: an alternative coding scheme (depicted
in Figure 1) needs to be designed. The remainder of this section
derives its asymptotically achievable rate-distortion performance.

3.1 Encoding

The coding scheme works on the sequence X of n source symbols.
Let L be an [n × n] orthonormal matrix. The rank m matrix Φ
consists of a selection of m ≤ n rows of L; similarly, the rank

(n−m) matrix Φ is obtained from the remaining (n−m) rows, so
that

L = P

(
Φ
Φ

)
(10)

with P a permutation matrix. The source X is multiplied at the

encoder side by Φ and Φ, generating the Layer 1 sequence ΦX

and the Layer 2 sequence ΦX . Since X is i.i.d. Gaussian, it has
a spherically symmetric distribution, which is not affected by the

rotation through L. The sequences ΦX and ΦX are selections of m
and (n−m) components of LX respectively, hence the distribution

of their symbols can be modeled as Gaussian with variance σ2
x.

The encoder performs vector quantization of the Layer 1 and
Layer 2 sequences by means of the dithered lattice quantizers Λ1 ∈
R

m and Λ2 ∈ R
(n−m), generating ΦX + N 1 and ΦX + N 2.

The quantization indexes are ideally Slepian-Wolf compressed and
sent to the receiver. The per source sample rates R1 and R2 are
evaluated, using (2), as

R1 =
1

n
h(ΦX |ΦY ) − 1

n
log2

(
V (Λ1)

)
(11)

R2 =
1

n
h(ΦX |ΦX̃) − 1

n
log2

(
V (Λ2)

)
, (12)

where X̃ is the output of the Layer 1 decoder, and ΦY and ΦX̃
are the Slepian-Wolf side information sequences for Layer 1 and

Layer 2, respectively. Since the sequences ΦX and ΦX have cor-
related components, in general it is h(ΦX |Y ) ≤ h(ΦX |ΦY ) and

h(ΦX |X̃) ≤ h(ΦX |ΦX̃). It can be proved, however, that equal-

ity holds if the pair (X , X̃) is jointly Gaussian, hence no loss is in-

troduced on Layer 2 employing ΦX̃ as Slepian-Wolf side informa-

tion (see [19]). Assuming Layer 1 decoder output X̃ as composed
by identically distributed Gaussian symbols of variance σ2

X − D′,



Figure 1: Two-layer coding scheme for Wyner-Ziv coding with uncertain side information quality.

and (X , X̃) a jointly Gaussian pair, (12) yields the Layer 2 trans-
mission rate as

R2 =
(n − m)

2n
log2

(
σ2

X D′

(σ2
X + D′)σ2(Λ2)

)
. (13)

In order to determine R1 characterization of the noise ΦZ =
ΦY − ΦX is needed. The sequence ζ = ΦZ is composed of
m statistically dependent symbols

ζj = φj Z =

n∑

i=1

φj,i zi, ∀j ∈ {1, 2, . . . , m}. (14)

Denote πs = Pr(S = s) =
∏n

i=1
psi

. The marginal probability

density function fj(ζj) is given by

fj(ζj) =
∑

s

πs f(ζj |s) (15)

=
∑

s

πs

(
f(φj,1z1|s1) ∗ . . . ∗ f(φj,nzn|sn)

)
,

where the convolution product is possible because the random vari-
ables (φj,izi|si) are independent. Since (φj,izi|si) is normally dis-
tributed, (15) results in

fj(ζj) =
∑

s

πs

1√
2πσ2

s

exp

(
− ζ2

j

2σ2
s

)
, (16)

where the variance σ2
s is given by

σ2
s =

n∑

i=1

φ2
ji σ2

Zi|s
. (17)

The j-th element of the noise sequence ΦZ is marginally dis-
tributed as a Gaussian mixture, where the variances of the com-
ponents depend on the associated rows φj of Φ. This implies that
some rate loss is induced by the use of ΦY as the Slepian-Wolf side
information at the Layer 1 decoder. Assuming the linear transform
matrix L in (10) to be a Discrete Cosine Transform (DCT) matrix,
it is

φi,j =

√
2

n
cos

(
(2j − 1)(i − 1)

n

π

2

)
≤
√

2

n
, ∀(j, i). (18)

Define σ2
z =

∑T−1

s=0
ps σ2

s . As n → ∞ the properties of typical
sequences assure that S contains close to n ps elements S = s,

∀s ∈ {0, 1, . . . , T − 1}. Using (18) in (17) allows to bound σ2
s

with

σ2
s ≤ 2

n

n∑

i=1

σ2
Zi|s

=
2

n

T−1∑

s=0

n ps σ2
s = 2σ2

Z . (19)

The ideal Slepian-Wolf chain in Layer 1 is designed to guarantee
vanishing probability of error in the worst-case scenario, that is
when the variance of the correlation noise between ΦX and ΦY
equals 2σ2

Z . Thus (11) becomes

R1 =
m

2n
log2

(
σ2

X 2σ2
Z

(σ2
X + 2σ2

Z) σ2(Λ1)

)
. (20)

The rate loss induced on Layer 1 transmission chain is thus due
to the worst-case policy in protection against Slepian-Wolf decod-
ing errors, and to the choice of ΦY as Slepian-Wolf side informa-
tion sequence. The penalty ascribable to the former, however, is
restrained by the effect of the linear transformation Φ, which de-
termines similar probability density function (16) for each ζj , with
mixtures made of components with comparable variances.

3.2 Decoding

The decoder operates in two steps. The Layer 1 Slepian-Wolf index
is decoded to recover the quantized sequence ΦX+N 1, where N 1

is the quantization noise composed, under the assumption n → ∞,
by independent Gaussian symbols with variance σ2(Λ1). The Layer

1 decoder outputs the estimate X̃ of the source, to be employed in
the second step to decode the Layer 2 Slepian-Wolf index. The

estimate X̂ output of the overall system is derived from the joint

observation of ΦX + N 1, ΦX + N 2 and Y .
The Layer 1 estimator operates on the observed sequences

ΦX + N 1 and Y . The system is described as

Ω =
(

Φ
In

)
X +

(
N 1

Z

)
= AX + W . (21)

The MMSE estimator of X from the observation Ω = ω is

x̃(ω) = E
[
X |ω

]
=

∫

Rn

x fX|ω(x) dx, (22)

where the conditional density fX |ω can be developed as

fX|ω =
∑

s

Pr(S = s|ω) fX|s,ω. (23)

Using (23) in (22) yields the expression of the estimate as

x̃(ω) =
∑

s

Pr(S = s|ω) x̃s(ω, s), (24)



where x̃s(ω, s) is, by definition, the MMSE estimate of the source
sequence obtained from the observation vector Ω = ω, when the
realization of the state sequence S = s is available at the decoder.
Since (X ,Ω|S = s) are, by construction, jointly Gaussian, the
MMSE estimate x̃s(ω, s) has linear form

x̃s(ω, s) =
(
K−1

X + AT K−1
W |sA

)−1
AT K−1

W |s ω, (25)

where KW |s is the covariance matrix of the observation noise when
s is available. The estimate x̃(ω), although expressed as a combi-
nation of the linear estimates x̃s(ω, s), is not linear with ω, since
the weighting coefficients in (24) have expression

Pr (S = s|ω) =
fΩ|s(Ω = ω|s) Pr(S = s)∑
s
fΩ|s(Ω = ω|s) Pr(S = s)

. (26)

The MSE vector M at the output of Layer 1 estimator is defined by

M = diag
(
Cov

[
X − x̃(Ω)

])

= diag
(
KX − EΩ

[
x̃(Ω) x̃(Ω)T

])
, (27)

whose analytical expression cannot be evaluated. The performance
of the Layer 1 estimator is upper bounded by the performance of
the suboptimal LMMSE estimator, whose expression is

M L = diag
(
KX − KXΩ K−1

Ω
KΩX

)

= diag

(
σ2

x σ2
z

σ2
x + σ2

z

(
In − σ2

x σ2
z

∆1
ΦT Φ

))
,

(28)

with ∆1 = σ2
x

(
σ2

z + σ2(Λ1)
)

+ σ2
zσ2 (Λ1). Consider, as before,

the linear transform matrix L to be a DCT matrix, and assume n
odd; the rows (n − 1)/2 − j and (n + 1)/2 + 1 + j of L are
symmetric. Proper choice of the pairs of rows for the construction
of Φ guarantees that ΦT Φ has equal diagonal elements, of value
m/n. The expression of the per sample distortion D′ on the output
of the Layer 1 decoder is, from (28),

D′ =
σ2

x σ2
z

σ2
x + σ2

z

(
1 − m

n

σ2
x σ2

z

∆1

)
, (29)

and depends on the length n only through the ratio m/n.
The Layer 2 estimator operates on the observed sequences

ΦX + N 1, ΦX + N 2 and Y . The system is described as

Ω
′ =

(
Φ
Φ
In

)
X +

(
N 1

N 2

Z

)
= A′

X + W
′. (30)

As for the Layer 1 estimator the optimal reconstruction is the
weighted sum of the MMSE estimates x̂s(ω

′, s), obtained from
the observation Ω

′ = ω′ when the realization S = s is available at
the decoder side

x̂(ω′) =
∑

s

Pr(S = s|ω′) x̂s(ω
′, s), (31)

with x̂s(ω
′, s) linear function of ω′, since (X ,Ω′|S = s) are

jointly Gaussian. The MSE vector M ′ is obtained as

M
′ = diag

(
Cov

[
X − x̂(Ω′)

])
(32)

and can be upper bounded by the performance of the suboptimal
LMMSE estimator

M L
′ = diag

(
KX − KXΩ′ K−1

Ω′ KΩ′X

)

= diag

(
σ2

x σ2
z

σ2
x + σ2

z

(
In − σ2

x σ2
z

∆1
ΦT Φ − σ2

x σ2
z

∆2
Φ

T
Φ

))
,

(33)
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where ∆2 = σ2
x

(
σ2

z + σ2(Λ2)
)

+ σ2
zσ2 (Λ2). The per sample

distortion D at the output of the system is evaluated as

D =
σ2

x σ2
z

σ2
x + σ2

z

(
1 − m

n

σ2
x σ2

z

∆1
− (n − m)

n

σ2
x σ2

z

∆2

)
, (34)

and depends only on the ratio m/n.
Remark that (29) and (34) express only upper bounds to the

minimum distortions D′ and D achievable by the scheme. They
allow, however, to describe the operational rate-distortion perfor-
mance (R1 + R2, D) as a function of the design parameters m/n,

σ2(Λ1) and σ2(Λ2), thus enabling design parameter optimization.
The key feature of the two-layer architecture is the shift of (nearly)
all suboptimality arising from the uncertainty of the side informa-
tion quality over Layer 1. Transmission over the Layer 1 is expen-
sive, so that it is convenient to restrain the ratio m/n. On the other
hand the quality of the Layer 1 estimate, which provides consistent
rate savings on Layer 2, increases with m/n as well: a trade off be-
tween the two conflicting requirements exists, which determines the
optimum performance. Figure 2 shows, in red, the asymptotic (for
n → ∞) achievable performance of the coding scheme, evaluated
for the GBG correlation model of parameters σ2

X = 1, p = 0.1,
σ2

0 = 0.04, σ2
1 = 1. The optimum value of the ratio m/n is, in

high rate regime, constant, and equals m/n = 0.216. The achiev-
able performance is compared with the lower (solid line) and upper
(dashed line) bounds to RWZ

X|Y (D), and with the performance of the
standard Wyner-Ziv coding scheme, dimensioned for the worst cor-
relation noise (yellow line).

4. TOWARDS PRACTICAL IMPLEMENTATION

The two-layer coding architecture here proposed can be understood
as a theoretical tool for the design of Wyner-Ziv coding schemes
for uncertain side information quality. Remark that the fundamen-
tal components of the coding scheme are represented by quantizers,
and Slepian-Wolf coding chains for constant side information qual-
ity. Highly efficient Slepian-Wolf coding implementations are by
now available, as the result of the extensive research effort of the
last decade (a state-of-the-art survey can be found in [4]). The pur-
pose of this section is to focus on the implementation issues related
to Layer 1 and Layer 2 estimators only.

The optimum Layer 1 (24) and Layer 2 (31) estimators are
defined, as detailed in the previous section, as weighted sums of
the marginal (with respect to the realization of S) estimates. This
clearly represents an obstacle to implementation, since the number
of marginal estimates x̃s and x̂s to be evaluated grows exponen-
tially with the size n of the source block. The weighting coef-
ficients Pr(S = s|ω) and Pr(S = s|ω′) associated with each
marginal estimate pair x̃s and x̂s represent the likelihoods of the
state sequence realization s, given the observation vectors ω and
ω′: among them, only a small fraction have a significant value, and
concentrates (almost) the totality of the a posteriori probability. A
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reliable approximation of the estimates x̃ (24) and x̂ (31) can thus
be obtained by identifying the set W∗ of the sequences S|ω such
as ∑

s∈W∗

Pr(S = s|ω) −→ 1 (35)

and performing the sums in (24) and (31) over the subspace W∗,
instead that over the entire vector space where S lives.

The solution adopted to evaluate the set W∗ is derived adapting
the Bayesian Matching Pursuit algorithm [20], originally proposed
to solve the problem of compressed sensing of sparse sources. The
algorithm performs a tree search in order to identify the elements
s∗ ∈ W∗; on each exploration level the surviving leaves (the state
sequences s∗) are selected as the ones maximizing Pr(S = s|ω).
The root of the tree is represented by the sequence s composed by
all zero elements. The descent to the following level of the tree
is performed activating one impulse position at a time. The M(d)
elements surviving at depth d and are employed to generate the fol-
lowing level.

The algorithm has been implemented and tested for the GBG
correlation model, for the same mixture parameters considered be-
fore. Figure 3 presents the simulation results obtained on Layer 1
estimator, where the choice of the design parameters m/n, σ2(Λ1)
and σ2(Λ2) results from the performance optimization procedure
for n → ∞. The black line in Figure 3 represents the value of
the distortion D′ at the output of Layer 1 estimator obtained with
the optimization procedure. The light-blue and blue lines depict the
distortions obtained using the Bayesian Matching Pursuit algorithm,
for block lengths (n = 14, m = 3) and (n = 28, m = 6) respec-
tively: they consistently improve the theoretical distortion value D′.
This should not surprise: the analytical expression (29), in fact, rep-
resent the attainable, but non minimum, distortion D′. The simula-
tion results enable the conclusion that the optimization of the design
parameters obtained for n → ∞ is to be considered effective for
finite-length design as well.

5. CONCLUSIONS

This paper outlines a theoretical framework for Wyner-Ziv cod-
ing with uncertain side information quality. The proposed cod-
ing scheme inherits the two-layer approach presented in [12] for
the case of possibly erased side information. The blindness of the
decoder to the actual state over the correlation channel, however,
makes impossible to adopt the coding strategy devised in [12]. The
Bayesian approach proposed here allows to account for all the pos-
sible realizations of the hidden state variable, thus overcoming the
problem. The attainable performance of the scheme can be analyt-
ically characterized and compared to the theoretical bounds, show-
ing that the coding solution is effective.
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