Chérif Amrouche 
email: cherif.amrouche@univ-pau.fr
  
Hamid Bouzid 
email: hamidbouzit@yahoo.fr
  
Ulrich Razafison 
email: ulrich.razafison@math.cnrs.fr
  
On the two and three dimensional Oseen potentials

Keywords: Riesz potentials, Oseen potentials, Poisson's equations, weighted spaces AMS Classification: 32A55, 35xx, 35J05

We prove continuity properties for the Oseen potential. As a consequence, we show some new properties on solutions of the Oseen equations. The study relies on weighted Sobolev spaces in order to control the behavior of functions at infinity.

Introduction and Notations

The purpose of this paper is to establish some new continuity properties in weighted Sobolev spaces for the fundamental solution of Oseen in two and three dimensional. We focus on those operators when they act on L p -functions and on distributions that belong to a weighted Sobolev space that will be specified latter. We then use the continuity properties we obtained to find a representation of solutions, to the Oseen equations in R n , n = 2 or 3. It is well known that in unbounded domains, it is important to control the behavior of functions at infinity. This is the mathematical reason for dealing with weighted spaces.

In previous papers (see for instance [START_REF] Amrouche | L p -inequalities for scalar Oseen potential[END_REF], [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF] and [START_REF] Boulmezaoud | On the steady Oseen problem in the whole space[END_REF]), some weighted inequalities for the Oseen potentials are proved under suitable assumptions on the weights. The aim of this work is to improve those results by eventually a modification of the Oseen potentials. The paper is organized as follow. In the next section, we introduce the weighted Sobolev spaces and their main properties for this work. Section 3 is devoted to prove some preliminary results that we will need to establish our main results. Finally in Section 4, we deal with continuity properties of the fundamental solution of Oseen.

We end this section with the Notation that we will use all long this work. We denote by N the set of all positive integer and Z the set of all integers. In what follows, p is a real number in the interval ]1, +∞[ and n is an integer number equal to 2 or 3. The dual exponent of p denoted by p is defined by the relation 1 p + 1 p = 1. We will use bold characters for vector or matrix fields. A point in R n is denoted by x = (x 1 , ..., x n ) and its distance to the origin by

r = |x| = (x 2 1 + ... + x 2 n ) 1/2 .
We denote by [k] the integer part of k. For any ∈ Z, P stands for the space of polynomials of degree less than or equal to and P ∆ the harmonic polynomials of P . If is a negative integer, we set by convention P = {0}. We denote by D(R n ) the space of C ∞ functions with compact support in R n . We recall that D (R n ) is the well known space of distributions and L p (R n ) is the usual Lebesgue space on R n . For m ≥ 1, we recall that W m,p (R n ) is the well-known classical Sobolev spaces. Given a Banach space B with its dual space B and a closed subspace X of B, we denote by B ⊥X the subspace of B orthogonal to X, i.e.,

B ⊥X = {f ∈ B , ∀v ∈ X, f, v = 0} = (B/X) .
Finally, we will use the symbol C for generic positive constant whose value may change at each occurrence even at the same line.

Weighted Sobolev spaces

We introduce the weight function ρ(x) = (1 + r 2 ) 1/2 . For a nonnegative integer m and

α ∈ R, we set k = k(m, n, p, α) =    -1 if n/p + α / ∈ {1, ..., m} m -n/p -α if n/p + α ∈ {1, ..., m}
and we define the weighted Sobolev space

W m,p α (R n ) ={u ∈ D (R n ); ∀λ ∈ N n , 0 ≤ |λ| ≤ k, ρ α-m+|λ| (ln(1 + ρ 2 )) -1 ∂ λ u ∈ L p (R n ), k + 1 ≤ |λ| ≤ m, ρ α-m+|λ| ∂ λ u ∈ L p (R n )},
which is a Banach space equipped with its natural norm given by

u W m,p α (R n ) =   0≤|λ|≤k ρ α-m+|λ| (ln(1 + ρ 2 )) -1 ∂ λ u p L p (R n ) + k+1≤|λ|≤m ρ α-m+|λ| ∂ λ u p L p (R n )   1/p .
We define the semi-norm

|u| W m,p α (R n ) =   |λ|=m ρ α ∂ λ u p L p (R n )   1/p .
Notice that the logarithmic weight function in the definition of W m,p α (R n ) only appears for the critical case n/p + α ∈ {1, ..., m}. We shall now point out some properties of those spaces that will be used all long this paper. For a detailed study we refer to [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] and references therein. All the local properties of the space W m,p α (R n ) coincide with those of the Sobolev space

W m,p (R n ). The space D(R n ) is dense in W m,p α (R n ). As a consequence, its dual space, denoted by W -m,p -α (R n ) is a space of distributions. When n/p + α / ∈ {1, ..., m},
we have the algebraic and topological inclusions

W m,p α (R n ) ⊂ W m-1,p α-1 (R n ) ⊂ ... ⊂ W 0,p α-m (R n ).
Let q be defined as follow:

q = [m -n/p -α] , if n/p + α / ∈ Z - q = m -1 -n/p -α, otherwise. (2.1) 
Then P q is the space of all polynomials included in W m,p α (R n ). Moreover, the following Poincaré-type inequality holds:

∀u ∈ W m,p α (R n ), inf λ∈P q u + λ W m,p α (R n ) ≤ C|u| W m,p α (R n ) , (2.2) 
where q = min(q, 0). From (2.2) and the Sobolev's embedding theorems, we have the algebraic and topological identities

W 1,p 0 (R n ) = {v ∈ L np n-p (R n ), ∇v ∈ L p (R n )}, if 1 < p < n (2.3)
and furthermore for the case n = 3,

W 2,p 0 (R 3 ) = v ∈ L 3p 3-2p (R 3 ), ∇v ∈ L 3p 3-p (R 3 ), ∂ 2 v ∂x i ∂x j ∈ L p (R 3 ) , if 1 < p < 3/2.
(2.4)

Preliminary results

Let us recall that the main goal of this work is to prove some new continuity properties for the Oseen potentials by eventually a slight modification of their definition. To that end, we first need to prove some new results on the fundamental solution of the Laplace operator by eventually a modification of their definition. We recall that if E is the fundamental solution of the Laplace operator, then particularly, for n = 2, we have E(x) = 1 2π ln |x| and for n = 3, E(x) = -1 4π 1 |x| . Next, for any interval I ⊂ R, let 1 I , be the function defined by

1 I (t) =    1 if t ∈ I, 0 if t / ∈ I. Now if f ∈ L p (R n ), we set P i f (x) =          R 3 ∂ ∂x i E(x -y)f (y)dy, if 1 < p < n, R 3 ∂ ∂x i E(x -y) - ∂ ∂x i E(-y) f (y)dy if p ≥ n.
The previous definition will be summarised by the following one:

P i f (x) = R n ∂ ∂x i E(x -y) -1 [n,∞[ (p) ∂ ∂x i E(-y) f (y) dy. (3.5) 
For f ∈ L p (R n ), we also introduce the operator P defined by:

Pf(x) = P i f i (x) (3.6)
where the pair of identical indices implies implicit summation. Observe that, if f ∈ L p (R n ) with p ≥ n, then the Riesz potential of first order I 1 f and also ∂E ∂x i * f are not defined. Indeed, let f be a function defined by

f (x) = 0 if |x| < 1 and f (x) = 1 |x| if |x| > 1.
Then clearly f ∈ L p (R n ) if p > n and, for any |x| < 1 2 , we have

I 1 f (x) = 1 γ(1) |y|>1 1 |x -y| n-1 1 |y| dy ≥ C γ(1) |y|>1 1 |y| n dy = +∞.
This is the reason of introducing the operator P i . Note that the constants belong to

W 1,p 0 (R n ) if and only if p ≥ n (see (2.1)).
Theorem 3.1. The operators

P i : L p (R n ) → W 1,p 0 (R n ) and P : L p (R n ) → W 1,p 0 (R n )
are contiuous for any 1 < p < ∞. Moreover, we have

∆P f = div f in R n .
Proof. i) Assume first p < n. Let (f k ) k∈N ⊂ D(R n ) be a sequence that tends to f in L p (R n ). We have

P i f k (x) = I 2 ( ∂f k ∂x i ),
where I 2 is the Riesz potential of second order. The above equality implies that ∂ ∂x

j P i f k = ∂ ∂x j I 2 ∂f k ∂x i = R i R j f k .
Thanks to the continuity of the Riesz transform from L p (R n ) into itself (see [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]), we have

∂ ∂x j P i f k L p (R n ) ≤ C f k L p (R n ) . (3.7) Since |P i f k (x)| ≤ C|I 1 f k (x)
|, according to the continuity of the operator [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]), then we have the following estimate:

I 1 : L p (R n ) → L q (R n ) (see
P i f k L q (R n ) ≤ C f k L p (R n ) , with 1 q = 1 p - 1 n . (3.8) 
We deduce from (3.7) that

∂ ∂x j P i f L p (R n ) ≤ C f L p (R n ) . (3.9) 
Since the norm of W 1,p 0 (R n ) is equivalent to its semi norm when p < n, the statement is proved.

ii) Assume now p > n. We set

K(x, y) = ∂ ∂x i E(x -y) - ∂ ∂x i E(-y) = C(n)( x i -y i |x -y| n - -y i |y| n ).
Let us show that

R n |K(x, y)| p dy 1 p ≤ C|x| 1-n p . (3.10) 
We have:

R n |K(x, y)| p 1 p ≤ |y|>2|x| |K(x, y)| p dy 1 p + |y|<2|x| |K(x, y)| p dy 1 p
.

We set

K 1 = |y|>2|x| |K(x, y)| p dy 1 p and K 2 = |y|<2|x| |K(x, y)| p dy 1 p
.

For any y such that |y| > 2|x|, we have, by the means values theorem, the inequality

|K(x, y)| ≤ C |x| |y| n+1 .

It follows that

K 1 ≤ |x| |y|>2|x| 1 |y| np dy 1 p ≤ C|x| 1-n p .
(3.11)

For K 2 , we can write

K 2 ≤ |y|<2|x| | x i -y i |x -y| n | p dy 1 p + |y|<2|x| | -y i |y| n | p dy 1 p
.

For any |y| < 2|x| we have |x -y| < 3|x| and

|K(x, y)| ≤ C 1 |y| n-1 . Then K 2 ≤ 2 |y|<2|x| 1 |y| (n-1)p dy 1 p ≤ C|x| 1-n p .
(3.12)

From (3.11) and (3.12) we obtain (3.10). Next from (3.10) and the Hölder's inequality, we

get for any f ∈ L p (R n ) |P i f (x)| ≤ C|x| 1-n p f L p (R n ) . (3.13) Let (f k ) k∈N ⊂ D(R n ) be a sequence that tends to f in L p (R n ).
We have

P i f k (x) = I 2 ∂f k ∂x i -C Supp f k y i |y| n-1 f k (y)dy. This implies that ∂ ∂x j P i f k = ∂ ∂x j I 2 ∂f k ∂x i . As in the first case, ∂ ∂x j P i f k tends to ∂ ∂x j I 2 ∂f ∂x i in L p (R n ). On the other hand, from (3.13), P i f k tends to I 2 ∂f ∂x i in W 0,p -1-ε (R n ), for any ε > 0. Thus we deduce that ∂ ∂x j P i f = ∂ ∂x j I 2 ∂f ∂x i and ∂ ∂x j P i f L p (R n ) ≤ C f L p (R n )
Besides, since P i f (0) = 0, we have (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] Lemma 3.2)

P i f W 0,p -1 (R n ) ≤ ∂ ∂x j P i f L p (R n ) ≤ C f L p (R n ) ,
whith implies that the operator

P i : L p (R n ) → W 1,p 0 (R n ) is continuous. iii) Finally, for p = n, we show that R n |K(x, y)| n n-1 dy ≤ C(1 + Ln(2 + |x|))
and we proceed as previousely to prove the statement.

Next for f ∈ L p (R n ), we introduce the operator

J 2 f (x) = R 3 (E(x -y) -1 [ n 2 ,∞[ (p) E(-y) -1 [n,∞[ (p) x.∇E(-y))f (y)dy. (3.14)
By proceeding as for Theorem 3.1, we prove the following result.

Theorem 3.2. The operator

J 2 : L p (R n ) → W 2,p 0 (R n ) is continuous for any 1 < p < ∞. Moreover, if f ∈ L p (R n ), then the solutions of the Poisson's equation -∆u = f in R n are in the form u = J 2 f + λ, λ ∈ P [2-n/p] .

The two and three dimensional Oseen potentials

In this section, we consider the Oseen problem in R n :

-∆u + k ∂u ∂x 1 + ∇π = f in R n , div u = g in R n , (4.15) 
where k > 0. For the investigation of (4.15) in weighted Sobolev spaces, we refer to [START_REF] Farwig | The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces[END_REF],

[9], [START_REF] Amrouche | The stationary Oseen equations in R 3 . An approach in weighted Sobolev spaces[END_REF], [START_REF] Boulmezaoud | On the steady Oseen problem in the whole space[END_REF], [START_REF] Razafison | Anisotropic weighted L p spaces for the stationary exterior 3D-problem of Oseen[END_REF] and [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF]. Further works can be found in [START_REF] Babenko | On stationary solutions of the problem of flow past a body of a viscous incompressible fluid[END_REF].

We first recall briefly the definition of the fundamental of Oseen by following [START_REF] Oseen | Neuere Methoden und Ergebnisse in der Hydrodynamik[END_REF]. We denote (O, e) the fundamental solution of Oseen defined by

O ij (x, y) = δ ij ∆ - ∂ 2 ∂y i ∂y j Φ(x, y) e j (x, y) = - ∂ ∂y j ∆ + k ∂ ∂y 1 Φ(x, y), (4.16) 
where i, j = 1, ...n and Φ(x, y) is a smooth function for x = y. In order to have (4.16) a singular solution to (4.15), we require that

∆ ∆ + k ∂ ∂y 1 Φ(x, y) = ∆E(|x -y|), (4.17) 
where we recall that E is the fundanental solution to the Laplace equation. We search the solution to (4.17) in the form

Φ(x, y) = 1 k y 1 -x 1 [Φ 2 (τ, y 2 -x 2 , ..., y n -x n ) -Φ 1 (τ, y 2 -x 2 , ..., y n -x n )]dτ, (4.18) 
where Φ 1 and Φ 2 must be selected suitably. From (4.17), we formally get

∆ ∆ + k ∂ ∂y 1 (Φ 2 -Φ 1 ) = k∆ ∂E ∂y 1 . (4.19) Choosing Φ 2 (x, y) = E(|x -y|), it is sufficient to take ∆ + k ∂ ∂y 1 Φ 1 = ∆E.
Moreover, from (4.17) and the second equation of (4.16), we have

e j (x, y) = - ∂ ∂y j E(|x -y|). (4.20)
We take

Φ 1 (x, y) = e -k 2 (y 1 -x 1 ) |x -y| n-2 2 f (λ|x -y|) (4.21)
and we deduce

∆ + k ∂ ∂y 1 Φ 1 (x, y) = e -k 2 (y 1 -x 1 ) |x -y| n+2 2 z 2 f (z) + zf (z) - n -2 2 2 + z 2 f (z) ≡ e -k 2 (y 1 -x 1 ) |x -y| n+,2 2 
L(f ), (4.22) 
where z = k 2 |x -y| and the prime denotes differentiation with respect to z. The equation L(f ) = 0 is the Bessel's modified equation which admits two independent solutions I n-2 2 (z) and K n-2 2 (z) called modified Bessel's functions. We have for z > 0

K 0 (z) = -ln z + ln 2 -γ -ln z 2 ∞ k=1 1 (k!) 2 z 2 2k + ∞ k=1 1 (k!) 2   k j=1 1 j -γ   z 2 2k if n = 2 (4.23) K 1 2 (z) = π 2z 1/2 e -z if n = 3. (4.24) Since K 1 2
has a simpler form than K 0 , we shall only give here the expression of Φ when n = 3. From (4.21) and (4.24), we have

Φ 1 = - 1 2π k 4π|x -y| 1/2 K 1 2 k 2 |x -y| e -k(y 1 -x 1 )/2 . (4.25)
Inserting (4.25) to (4.18), Φ(x -y) = 1 4πk

y 1 -x 1 1 -exp -k 2 τ 2 + (x 2 -y 2 ) 2 + (x 3 -y 3 ) 2 + τ τ 2 + (x 2 -y 2 ) 2 + (x 3 -y 3 ) 2 dτ.
We may now fix the constant up to which Φ is defined by taking Φ(0) = 0. Therefore, when n = 3, the fundamental velocity O can be written in the form:

O ij (x) = δ ij ∆ - ∂ ∂x i ∂ ∂x j Φ(x),
where

Φ(x) = 1 4πk ks(x)/2 0 1 -e -t t dt. Observe that O ij ∈ L p (R 3 ) if 2 < p < 3 and ∇O ij ∈ L p (R 3 ) if 4/3 < p < 3/2 (see for
instance [START_REF] Amrouche | L p -inequalities for scalar Oseen potential[END_REF] and [START_REF] Boulmezaoud | On the steady Oseen problem in the whole space[END_REF]). Next, since in this work, we are really interested in the asymptotic behavior of the fundamental solution of Oseen, we shall give such properties when n = 2.

the behavior of the tensor O for r → 0 is given by:

O ij (x) = 1 4π δ ij ln r + x i x j r 2 + o(1).
Now let r → ∞, then we have:

O 11 (x) = - cos θ 2πr + 1 4 √ πr e -s(x)/2 1 + cos θ + 1 4r (3 cos θ -1) + σ(r) , O 12 (x) = O 21 (x) = - sin θ 2πr + sin θ 4 √ πr e -s(x)/2 1 + 3 4r + σ(r) , O 22 (x) = - cos θ 2πr + 1 4 √ πr e -s(x)/2 - s(x) 2 + 1 4r (1 + 3 cos θ) + σ(r) , where d k σ dr k = O(r -2-k ) as r → ∞, k ≥ 0 and s(x) = r -x 1 .
We have the summability properties (see [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF] )

O 2j ∈ L p (R 2 ) if p > 2 and O 11 ∈ L p (R 2 ) if p > 3.
Note that the fundamental pressure e is given by

e j (x) = - ∂E(x) ∂x j = 1 2(n -1)π x j r n , j = 1, ..., n. (4.26) 
Now it also well known that if the data (f, g) ∈ D(R n ) × D(R n ), then the Oseen problem (4.15) has an explicit solution (u

* , π * ) ∈ C ∞ (R n ) × C ∞ (R n ) defined by u * i = O ij * f j + ∂E ∂x i * g π * = ∂E ∂x j * f j + g - ∂E ∂x 1 * g. (4.27) 
It is now natural to inquire about the validity of (4.27) if f ∈ L p (R n ) and if g belongs to a subspace of W 1,p 0 (R n ) that will be specified in the remaining of the paper. For convenience, we introduce the notation O * f which denotes the vector field defined by O ij * f j , i = 1, ..., n. We first have the following properties.

Proposition 4.1. Let f ∈ L p (R n ). Then ∂ 2 O ∂x i ∂x j * f ∈ L p (R n ) and ∂O ∂x 1 * f ∈ L p (R n ) for any 1 < p < ∞, where ∂ 2 O ∂x i ∂x j * f ∈ L p (R n ) and ∂O ∂x 1 * f ∈ L p (R n
) are defined in the sense of principal value, and we have the estimate

∂ 2 O ∂x i ∂x j * f L p (R n ) + ∂O ∂x 1 * f L p (R n ) ≤ C f L p (R n ) . Moreover, a) let n = 2, then ∇O 2j * f j ∈ L p (R n ) and (i) if 1 < p < 2, then O 2j * f j ∈ L 2p 2-p (R 2 ) ∩ L ∞ (R 2 ), (ii) if 1 < p < 3/2, then O 11 * f 1 ∈ L 3p 3-2p (R 2 ) ∩ L ∞ (R 2 ). b) Let n = 3, then (i) O * f ∈ L 3p 3-2p (R n ) if 1 < p < 3/2 and O * f ∈ L 2p 2-p (R n ) if 1 < p < 2, (ii) ∇O * f ∈ L 3p 3-p (R n ) if 1 < p < 3 and ∇O * f ∈ L 4p 4-p (R n ) if 1 < p < 4.
In all the cases, we have the corresponding estimates.

The proof of the above proposition can be found in [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF] when n = 2. For n = 3 it is proved by combining results proved in [START_REF] Amrouche | L p -inequalities for scalar Oseen potential[END_REF] and [START_REF] Boulmezaoud | On the steady Oseen problem in the whole space[END_REF].

Note that from the previous proposition, for n = 2, the operator

f → O 2j * f j from L p (R 2 ) into L 2p 2-p (R 2 ) ∩ L ∞ (R 2 ) is continuous if 1 < p < 2 and the operator f → O 11 * f 1 from L p (R 2 ) into L 3p 3-2p (R 2 ) ∩ L ∞ (R 2 ) is continuous if 1 < p < 3/2 . For n = 3, the operators f → O * f from L p (R 3 ) into L 2p 2-p (R 3 ) and f → ∇O * f from L p (R 3 ) into L 4p 4-p (R 3 ) are continuous if 1 < p < 2.
Thus we observe that if f ∈ L p (R n ), then the explicit forms (4.27) are not necessarily defined for any 1 < p < ∞. This is the reason of introducing the modified operator O defined by for f ∈ L p (R n ):

• If n = 2, then O = (O 1 , O 2 ),
where

O 1 f(x) = R 2 O 1j (x -y) -1 [3/2,+∞[ (p) O 1j (-y) -1 [3,+∞[ (p) x 2 ∂ ∂x 2 O 1j (-y) f j (x) dy, O 2 f(x) = O 2j (x -y) -1 [2,+∞[ (p) O 2j (-y) f j (x) dy. • If n = 3, then (Of(x)) i = O ij f j (x) = R 3 O ij (x -y) -1 [2,∞[ (p) O ij (-y) -1 [4,∞[ (p) x .∇ O ij (-y) f j (y) dy,
where x = (0, x 2 , x 3 ) and ∇ = (0, ∂ ∂x 2 , ∂ ∂x 3 ).

Let us now introduce the following anisotropically weighted spaces

X p (R n ) = v ∈ L p (R n ), ∂v ∂x 1 ∈ W -2,p 0 (R n ) , Y 1,p 0 (R n ) = v ∈ W 1,p 0 (R n ), ∂v ∂x 1 ∈ W -1,p 0 (R n ) and Z 2,p 0 (R n ) = v ∈ W 2,p 0 (R n ), ∂v ∂x 1 ∈ L p (R n ) .
These are Banach spaces when endowed respectively with the norms

v Xp(R n ) = v L p (R n ) + ∂v ∂x 1 W -2,p 0 (R n ) , v Y 1,p 0 (R n ) = v W 1,p 0 (R n ) + ∂v ∂x 1 W -1,p 0 (R n ) and v Z 2,p 0 (R n ) = v W 2,p 0 (R n ) + ∂v ∂x 1 L p (R n ) .
Proceeding now as in Theorem 3.1, we have the following result.

Theorem 4.2. The operator

O : L p (R n ) → Z 2,p 0 (R n ) is continuous for 1 < p < ∞.
In order to give an explicit form for the solutions of the Oseen problem (4.15), when the data (f, g) do belong to the space L p (R n ) × Y 1,p 0 (R n ), we need the following preliminary lemma.

Lemma 4.3. Assume g ∈ Y 1,p 0 (R n ) and let P j be defined by

(3.5). (i) If 1 < p < n, then ∇P j g ∈ Y 1,p 0 (R n ) ∩ W 1, np n-p 0 (R n ), P j g ∈ Z 2
,p 0 (R n ) and we have the estimate

∇P j g Y 1,p 0 (R n ) + ∇P j g Y 1, np n-p 0 (R n ) + P j g Z 2,p 0 (R n ) ≤ C g Y 1,p 0 (R n ) .
(4.28)

Additionally, if n = 3 and 1 < p < 3/2, then P j g ∈ L 3p

3-2p (R 3 ) and the following estimate holds

P j g L 3p 3-2p (R 3 ) ≤ C g Y 1,p 0 (R 3 ) . (4.29) (ii) If p ≥ n, then J 2 ∂g ∂x j ∈ Z 2,p 0 (R n ),
where the operator J 2 is defined by (3.14), and we have

J 2 ∂g ∂x j Z 2,p 0 (R n ) ≤ C g Y 1,p 0 (R n ) . Proof. (i) If 1 < p < n, then g ∈ Y 1,p 0 (R n ) implies that g ∈ L np n-p (R 3 ) (see (2.3)). Thanks to Theorem 3.1, P j g ∈ W 1, np n-p 0 (R n
) and we have

P j g W 1, np n-p 0 (R n ) ≤ C g Y 1,p 0 (R n ) .
Besides, due to the fact that ∇g ∈ L p (R n ), we also have P j ∇g ∈ W 1,p 0 (R n ). Now, let (g k ) k∈N ∈ D(R n ) be a sequence that tends to g in Y 1,p 0 (R n ). We know that we have

∂ ∂x 1 P j g k = P j ∂g k ∂x 1 .
Moreover, since 1 < p < n, then g k tends to g in L np n-p (R 3 ) which implies that P j g k tends to

P j g in W 1, np n-p 0 (R 3 ), in particular ∂ ∂x 1 P j g k tends to ∂ ∂x 1 P j g in L np n-p (R 3 ). Besides, since ∂g k ∂x 1 tends to ∂g ∂x 1 in W -1,p 0 (R n ), then P j ∂g k ∂x 1 tends to P j ∂g ∂x 1 in L p (R n ). This implies that ∂ ∂x 1 P j g = P j ∂g ∂x 1 .
By the same way, we prove that ∇P j g = P j ∇g. Thus, we deduce that ∇P j g ∈ W 1,p 0 (R n ) and ∂ ∂x 1 P j g ∈ L p (R n ). Thus, we have that P j g ∈ Z 2,p 0 (R 3 ), ∇P j g ∈ Y 1,p 0 (R 3 ) and the estimates (4.28) and (4.29) hold. Additionally if n = 3 and

1 < p < 3/2, then ∇P j g ∈ W 1,p 0 (R 3 ) and ∂ ∂x 1 P j g ∈ L p (R 3 ) implies that P j g ∈ L 3p 3-2p (R 3 )
(see [START_REF] Babenko | On stationary solutions of the problem of flow past a body of a viscous incompressible fluid[END_REF]).

(ii) Since ∂g ∂x j ∈ L p (R n ), from Theorem 3.2, we have J 2 ∂g ∂x j ∈ W 2,p 0 (R n ). Proceeding as in the first part (i), we prove that

∂ ∂x 1 J 2 ∂g ∂x j = ∂ ∂x j J 2 ∂g ∂x 1 . Since ∂g ∂x 1 ∈ W -1,p 0 (R n ) with p ≥ n, then we have J 2 ( ∂g ∂x 1 ) ∈ W 1,p 0 (R n ) and ∂ ∂x j J 2 ∂g ∂x 1 ∈ L p (R n ).
We now introduce the pair (u * , π * ) defined by

u * i = O ij f j + P i g, π * = P j f j + g -E * ∂g ∂x 1 if 1 < p < n, u * i = O ij f j -I 2 ∂g ∂x i , π * = P j (f j + G j ) + g if p ≥ n, (4.30) 
where G ∈ L p (R n ) is a (non unique) vector field such that div G = ∂g ∂x 1 . Next, for the case n = 3, we introduce the notations used in [START_REF] Amrouche | The stationary Oseen equations in R 3 . An approach in weighted Sobolev spaces[END_REF] (see also [START_REF] Amrouche | Weighted estimates for the Oseen problem in R 3[END_REF]) for the resolution of the Oseen problem (4.15

). Let γ, δ ∈ R be such that γ ∈ [3, 4], γ > p, δ ∈ [ 3 2 , 2], δ > p.
we define two real numbers r = r(p, γ), s = s(p, δ) as follow:

1 r = 1 p - 1 γ and 1 s = 1 p - 1 δ .
Finally, we also introduce the space of polynomials

N k = (λ, µ) ∈ P k × P ∆ k-1 , -∆λ + ∂λ ∂x 1 + ∇µ = 0, div λ = 0 .
Combining Theorem 2.6 of , Proposition 4.1, Theorem 4.2 and Lemma 4.3, and results obtained in [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF] for the case n = 2 and in [START_REF] Amrouche | The stationary Oseen equations in R 3 . An approach in weighted Sobolev spaces[END_REF] for the case n = 3, we easily prove the following result which gives an explicit form for the solutions of the Oseen equations for

f ∈ L p (R n ). Theorem 4.4. Let (f, g) ∈ L p (R n ) × Y 1,p 0 (R n ).
Then the Oseen problem (4.15) has at least one solution (u, π) ∈ Z 2,p 0 (R n ) × W 1,p 0 (R n ) defined by

u = u * + λ, p = p * + µ,
where (u * , p * ) is given by (4.30), (λ, µ) ∈ N [2-n/p] and we have the estimate

∂ 2 u ∂x i ∂x j L p (R n ) + ∂u ∂x 1 L p (R n ) + ∇p L p (R n ) ≤ C f L p (R n ) + g Y 1,p 0 (R n ) .
Additionally,

• If n = 2, then we have 1) if 1 < p < 3, then ∂u * ∂x 2 ∈ L 3p 3-p (R 2 ), in particular i) when 1 < p < 2, then ∂u * ∂x 2 ∈ L 2p 2-p (R 2 ) and satisfies ∂u * ∂x 2 L 3p 3-p (R 2 ) + ∂u * ∂x 2 L 2p 2-p (R 2 ) ≤ C( f L p (R 2 ) + g Y 1,p 0 (R 2 ) ).
ii) When p = 2, then ∂u * ∂x 2 ∈ L q (R 2 ), for any q ≥ 6 and

∂u * ∂x 2 L q (R 2 ) ≤ C( f L p (R 2 ) + g Y 1,p 0 (R 2 ) ).
iii) Finally when 2 < p < 3, then ∂u * ∂x 2 ∈ L ∞ (R 2 ) and

∂u * ∂x 2 L 3p 3-p (R 2 ) + ∂u * ∂x 2 L ∞ (R 2 ) ≤ C( f L p (R 2 ) + g Y 1,p 0 (R 2 ) ). 2) If 1 < p < 3 2 , then u * ∈ L 3p 3-2p (R 2 ) ∩ L ∞ (R 2
) and the following estimate holds

u * L 3p 3-2p (R 2 ) + u L ∞ (R 2 ) ≤ C f L p (R 2 ) + g Y 1,p 0 (R 2 ) . • If n = 3, then we have 1) If 1 < p < 3 2 , then u * ∈ L s (R 3 ) and u * L s (R 3 ) ≤ C f L p (R 3 ) + g Y 1,p 0 (R 3 ) .
2) If 3 2 < p < 3, then ∇u * ∈ L r (R 3 ) and satisfies

∇u * L r (R 3 ) ≤ C f L p (R 3 ) + g Y 1,p 0 (R 3 ) .
We now extend the definition of O * f in the case where

f ∈ W -1,p 0 (R n ) by setting ∀ϕ ∈ D(R n ), O * f, ϕ =: f, Ǒ * ϕ W -1,p 0 (R n )×W 1,p 0 (R n )
where Ǒ(x) = O(-x). 

(R 2 )⊥P [1-2/p ] . Then O 2j * f ∈ W 1,p (R 2 )
and the following estimate holds

O 2j * f W 1,p (R 2 ) ≤ C f W -1,p 0 (R 2 ) . Assume now 1 < p < 3, then O 11 * f ∈ L 3p 3-p (R 2 ), ∇O 11 * f ∈ L p (R 2 ), ∂O 11 ∂x 1 * f ∈ W -1,p 0 (R 2 )
and satisfy:

O 11 * f L 3p 3-p (R 2 ) + ∇O 11 * f L p (R 2 ) + ∂O 11 ∂x 1 * f W -1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
The proof this lemma can be found in [START_REF] Amrouche | L p -inequalities for scalar Oseen potential[END_REF].

Lemma 4.6. Assume 1 < p < 4 and f ∈ W -1,p

0 (R 3 )⊥P [1-3/p ] . Then O * f ∈ L 4p 4-p (R 3 ), ∇O ∈ L p (R 3
) and we have

O * f L 4p 4-p (R 3 ) + ∇O * f L p (R n ) ≤ C f W -1,p 0 (R 3 ) .
Moreover, the following assertions hold.

(i) If 1 < p < 3, then O * f ∈ L 3p 3-p (R 3 ) and O * f L 3p 3-p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (ii) If p = 3, then O * f ∈ L q (R 3 ), for any q ≥ 12. (iii) If 3 < p < 4, then O * f ∈ L ∞ (R 3 ).
Proof. The above properties are proved for the fundamental solution O (see [START_REF] Amrouche | L p -inequalities for scalar Oseen potential[END_REF], Theorem 4.9) and the proof is similar for the Oseen fundamental solution O. 

O 11 f (x) = R 2 ∂ ∂x j O 11 (x -y) - ∂ ∂x j O 11 (-y) F j (y) dy, (4.31) 
where F ∈ L p (R 2 ) is a vector field such that f = div F.

Similarly for p ≥ 4 and f ∈ W -1,p 0 (R 3 ), we define the following operator O such for any i, j = 1, 2, 3,

O ij f (x) = R 3 ∂ ∂x k O ij (x -y) - ∂ ∂x k O ij (-y) F k (y) dy, (4.32) 
where F ∈ L p (R n ) is a vector field such that f = div F. Thanks to Theorem 4.2, we have the following result. 

O 11 : W -1,p 0 (R 2 ) → W 1,p 0 (R 2 )
is continuous. In addition, we have

∇O 11 f = ∇ ∂O 11 ∂x j * F j .
ii) Assume n = 3, then the operator

O : W -1,p 0 (R 3 ) → W 1,p 0 (R 3 ) is continuous if p ≥ 4.
Before stating our last result, we need two preliminary lemmas that take into account the second equation of (4.15).

Lemma 4.9.

Assume g ∈ W -2,p 0 (R n )⊥P [2-n/p ] . Then E * g ∈ L p (R n ) and we have E * g L p (R n ) ≤ C g W -2,p 0 (R n ) .
Proof. For any ϕ ∈ D(R n ), we have

E * g, ϕ D (R n )×D(R n ) = g, E * ϕ W -2,p 0 (R n )×W 2,p 0 (R n ) . Next, since g ∈ W -2,p 0 (R n )⊥P [2-n/p ] , for any λ ∈ P [2-n/p ] , we have g, E * ϕ W -2,p 0 (R n )×W 2,p 0 (R n ) = g, E * ϕ + λ W -2,p 0 (R n ) .
It follows that

g, E * ϕ W -2,p 0 (R n )×W 2,p 0 (R n ) ≤ C g W -2,p 0 (R n ) inf λ∈P [2-n/p ] E * ϕ + λ W 2,p 0 (R n ) .
Using now (2.2) and the Calderón-Zygmund inequality we can write

g, E * ϕ D (R n )×D(R n ) ≤ C g W -2,p 0 (R n ) ∂ 2 (E * ϕ) ∂x i ∂x j L p (R n ) ≤ C g W -2,p 0 (R n ) ∆(E * ϕ) L p (R n ) ≤ C g W -2,p 0 (R n ) ϕ L p (R n ) ,
which ends the proof. Then P j g ∈ Y 1,p 0 (R n ) and there exists C > 0 such that

P j g Y 1,p 0 (R n ) ≤ C g Xp(R n ) .
Proof. Since g ∈ X p (R n ), then from Theorem 3.1, P j g ∈ W 1,p 0 (R n ) and we have

P j g W 1,p 0 (R n ) ≤ C g L p (R n ) .
It remains to prove that ∂ ∂x 1 P j g ∈ W -1,p 0 (R n ). For any ϕ ∈ D(R n ), we have

∂ ∂x 1 P j g, ϕ D (R n )×D(R n ) = g, ∂ ∂x 1 ( Pj * ϕ) L p (R n )×L p (R n )
,

where Pj (x) = P j (-x). It follows that

∂ ∂x 1 P j g, ϕ D (R n )×D(R n ) = ∂g ∂x 1 , E * ∂ϕ ∂x j W -2,p 0 (R n )×W 2,p 0 (R n ) = ∂g ∂x 1 * E, ∂ϕ ∂x j L p (R n )×L p (R n )
From Lemma 4.9, we get

∂ ∂x 1 P j g, ϕ D (R n )×D(R n ) ≤ C ∂g ∂x 1 W -2,p 0 (R n ) ϕ W 1,p 0 (R n ) . (4.33) 
Thus we deduce that ∂ ∂x 1 P j g ∈ W -1,p 0 (R 3 ) and Combining results of [START_REF] Amrouche | Two dimensional strong and generalized solutions for the stationary Oseen equations[END_REF] for the case n = 2, [START_REF] Amrouche | The stationary Oseen equations in R 3 . An approach in weighted Sobolev spaces[END_REF] for the case n = 3, Lemma 4.6, Theorem 4.8 and the previous lemmas, we easily prove the following result. 

u + λ Y 1,p 0 (R n ) + p * L p (R n ) ≤ C f W -1,p 0 (R n ) + g Xp(R n ) .
Moreover, if n = 3 and 1 < p < 3, then u * ∈ L r (R 3 ) and we have

u * L r (R 3 ) ≤ C f W -1,p 0 (R 3 ) + g Xp(R 3 ) .

Lemma 4 . 5 .

 45 Assume 1 < p < ∞ and f ∈ W -1,p 0

Remark 4 . 7 .(R 2 ) 0 (R 2 )

 47202 For a given f in W -1,p 0 ⊥P [1-2/p ] , then O 2j * f exists for any 1 < p < ∞, while O 11 * f has no sense for p ≥ 3.For p ≥ 3 and f ∈ W -1,p , we now define the operator O 11 f as follows:

Theorem 4 . 8 .

 48 i) Assume n = 2, then for any p ≥ 3, the operator

Lemma 4 . 10 .

 410 Assume 1 < p < ∞ and g ∈ X p (R n ) such that ∀λ ∈ P [2-n/p ]

.

  For f ∈ W -1,p 0 (R n )⊥P [1-n/p ] and g ∈ X p (R n ), we now define the pair (u * , p * )u * i = O ij * f j + P j g if 1 < p < n, u * i = O ij f j + P j g if p ≥ n, p * = -E * div f + ∂g ∂x 1 + g.

Theorem 4 . 11 .

 411 Let (f, g) ∈ W -1,p 0 (R n ) × X p (R n ) satisfy the following compatibility conditions ∀λ ∈ P [1-n/p ] , f, λ W -1Then the Oseen problem (4.15) has at least a solution (u, p)∈ Y 1,p 0 (R n ) × L p (R n ) defined by u = u * + λ, p = p * ,where the pair (u * , p * ) is given by (4.34) and λ ∈ P [1-n/p] . The following estimate holds inf λ∈P[1-n/p] 
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