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Abstract

Oversampled filter banks, interpreted as error correction codes, were recently introduced in the literature. We here

present an efficient calculation and implementation of the parity-check polynomial matrices for oversampled DFT

filter banks. If desired, the calculation of the partity-check polynomials can be performed as part of the prototype

filter design procedure. We compare our method to those previously presented in the literature.

EDICS Category: DSP-FILT, DSP-FAST

T. Karp is with the Department of Electrical and Computer Engineering, Texas Tech University P.O. Box 43102, Lubbock, TX, 79409, USA,

e-mail: tanja.karp@ttu.edu.

M. Kieffer and P. Duhamel are with the Laboratoire des Signaux et Systèmes, CNRS - SUPELEC - Univ. de Paris-Sud, 91192 Gif-sur Yvette,
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Parity-Check Matrix Calculation for

Paraunitary Oversampled DFT Filter Banks

I. INTRODUCTION

During the last years, oversampled filter banks were proposed as an alternative to critically sampled ones since

they provide a series of desirable properties, such as an improved robustness to quantization errors [1]–[3], an

increased design flexibility [2], [4], [5], and the ability to recover signal erasures and transmission errors [6]–[9].

More recently, oversampled filter banks were also used in the context of joint source-channel coding and error-

correction coding [8], [10]–[12]. In [10] the design of a parity-check polynomial matrix, which is implemented in

parallel to the synthesis filter bank, is introduced. Its output, the so-called syndrom, is non-zero only in presence of

subband signal errors, i.e. when the input of the synthesis filter bank differs from the output of the analysis filter

bank, either due to quantization or due to transmission errors. The original subband signals can then be recovered

using hypothesis testing [10], [11]. Oversampled filter banks can thus be interpreted as convolutive error-correction

codes working in the real or complex domain. They provide an extension of redundant block transforms which had

already been interpreted as error correction block codes [13]–[15] in the real or complex domain. The capability to

correct impulse errors in the subbands despite the presence of Gaussian background noise based upon the received

syndroms was demonstrated in [10], [11] and applied to robust image and video transmission in [8], [11], [16],

[17].

Although the parity-check polynomial matrix design was derived for general oversampled filter banks in [8], [10],

modulated filter banks [12], [18]–[22] were used in the applications presented since they have a reduced design

complexity and can be implemented cost-efficiently exploiting fast transforms and sparse polyphase matrices [18],

[23]–[25].

We here present the calculation of a sparse parity-check polynomial matrix for oversampled DFT filter banks that

exploits the efficient polyphase structure of these filter banks and results in a significantly reduced implementation

cost for the partity check polynomial matrix when being compared to the general case. We show how our imple-

mentation relates to the general framework presented in [10], [11], such that the same hypothesis testing can be

applied to detect impulse errors in Gaussian background noise. We further derive how the new sparse partity-check

polynomial matrix is obtained either from a given prototype filter or directly calculated as part of the prototype

filter design procedure.

Notations: Time domain signals are denoted by small letters and their z transform by capital letters, Z{x[n]} =

X(z)1. Bold face letters are used for vectors and matrices, xT is the transpose of x, and xH is the Hermitian of x,

1For the sake of a more compact desciption in the z domain, the existance of the z transform of all signals is assumed, however, their

existence is not a required.
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i.e its transpose with complex conjugate entries. IM and JM denote the identity matrix and counter identity matrix

of size M×M , respectively. 0M×N is an all zero matrix of size M×N . A matrix U(z) containing FIR polynomials

is called unimodular if it has an inverse matrix U−1(z) which is also FIR. Ẽ(z) is the para-conjugate of E(z),

W the M ×M orthonormal DFT modulation matrix with entries [W]i,j = W ij
M/
√
M , and WM = exp(−j2π/M)

being a complex rotation factor.

II. OVERSAMPLED DFT FILTER BANKS

We consider oversampled DFT filter banks with M subbands and a decimation factor of N ≤M , see Figure 1. The

greatest common divider of M and N is denoted by b =gcd(M,N ), the least common multiple by K =lcm(M,N ),

and J = M/b. The causal FIR analysis filters Hk(z) of length L are obtained through complex modulation with a

modulation phase offset na from a lowpass prototype filter e[n]:

hk[n] =
1√
M

e[n] exp
(
j

2πk(n− na)
M

)
(1)

HM−1(z)

H0(z)

H1(z)

FM−1(z)

F1(z)

F0(z)↓ N

↓ N

↓ N

↑ N

↑ N

y0[n]

y1[n]

yM−1[n]

ŷ0[n]

↑ N
ŷ1[n]

ŷM−1[n]

x[n]

x̂[n]

Fig. 1. Oversampled Filter Bank

The M ×N polyphase matrix Hp(z), with [Hp(z)]k,λ being the λ-th type-I polyphase component of Hk(z), has

the following efficient realization [18], [23], [25], [26]:

Hp(z) = diag(1,Wna

M , . . . ,W
na(M−1)
M )WH

ME(z) (2)

where E(z) is a sparse matrix with the following entries:

[E(z)]i,j =


z−lEj+lN (zJ) if (i− j) mod b = 0

0 otherwise
(3)

i = 0, . . . ,M − 1, j = 0, . . . N − 1, (j + lN) mod M = i
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and Ek(z) is the kth of K type-I polyphase components of the analysis lowpass prototype filter E(z).

For the filter bank to provide perfect reconstruction, i.e. x̂[n] = x[n] in Figure 1, the N ×M synthesis polyphase

matrix Fp(z) has to be the left inverse of the analysis polyphase matrix Hp(z) and can be expressed as [2]:

Fp(z) = F̂p(z) + U(z)[IM −Hp(z)F̂p(z)] with F̂p(z) = [H̃p(z)Hp(z)]−1H̃p(z) (4)

where F̂p(z) is the para-pseudoinverse of Hp(z). It was further shown in [3] that if the output of the analysis filter

bank is corrupted by quantization noise which can be modelled as white uncorrelated noise with constant variance

in all subbands, the synthesis filter bank with the lowest mean squared error (MSE) of the reconstructed signal is

given by F̂p(z). The filter bank is paraunitary, if H̃p(z)Hp(z) = IN [24], thus if

F̂p(z) = H̃p(z) = Ẽ(z)WM diag(1,W−na

M , . . . ,W
−na(M−1)
M ) (5)

yielding in anti-causal FIR synthesis filters Fk(z), k = 0, . . . ,M − 1, with impulse responses

fk[−n] = hk[n] =
1√
M

e[n] exp
(
j
2πk(n− na)

M

)
(6)

The PR constraints for paraunitary oversampled DFT filter banks can now be expressed as [4], [21]

H̃p(z)Hp(z) = Ẽ(z)E(z) = IN (7)

and thanks to the sparse structure of E(z) they can be written as b independent sets of PR constraints

Ẽ`(z)E`(z) = IN/b with [E`(z)]k,j = [E(z)]`+kb,`+jb, (8)

` = 0, . . . , b− 1, k = 0, . . . , J − 1, j = 0, . . . , N/b− 1

Since E`(z) contains delayed J-fold upsampled polyphase components of the prototype filter with the same

delay on each diagonal it can be expressed as [18], [21]

E`(z) = Λ1(z)E`↓(zJ)Λ2(z) (9)

with appropriate paraunitary diagonal matrices Λ1(z) and Λ2(z) containing monomials in z. The J times down-

sampled version of the PR constraints now write

Ẽ`↓(z)E`↓(z) = IN/b (10)

Note that the number of constraints in (10) equals Leb(N/b)2 = N2/b, where Le denotes the length of the

polyphase filters E`(z), and is thus reduced by Jb when compared to (7).

Example: M = 8, N = 6

For a filter bank with M = 8 subbands and a decimation factor of N = 6 we have b = gcd(M,N) = 2,

K = lcm(M,N) = 24, and J = M/b = 4. The polyphase matrix E(z) can thus be split into E0(z) and E1(z)
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and using Λ1(z) =diag(1, z−1, z−2, z−3) and Λ2(z) =diag(1, z, z2) they can be factorized as:

E0(z) =



E0(z4) z−1E8(z4) z−2E16(z4)

z−3E18(z4) E2(z4) z−1E10(z4)

z−2E12(z4) z−3E20(z4) E4(z4)

z−1E6(z4) z−2E14(z4) z−3E22(z4)


= Λ1(z)



E0(z4) E8(z4) E16(z4)

z−4E18(z4) E2(z4) E10(z4)

z−4E12(z4) z−4E20(z4) E4(z4)

z−4E6(z4) z−4E14(z4) z−4E22(z4)


︸ ︷︷ ︸

E0↓(z4)

Λ2(z)

(11)

E1(z) =



E1(z4) z−1E9(z4) z−2E17(z4)

z−3E19(z4) E3(z4) z−1E11(z4)

z−2E13(z4) z−3E21(z4) E5(z4)

z−1E7(z4) z−2E15(z4) z−3E23(z4)


= Λ1(z)



E1(z4) E9(z4) E17(z4)

z−4E19(z4) E3(z4) E11(z4)

z−4E13(z4) z−4E21(z4) E5(z4)

z−4E7(z4) z−4E15(z4) z−4E23(z4)


︸ ︷︷ ︸

E1↓(z4)

Λ2(z)

(12)

Figure 2 shows the efficient polyphase realization of the paraunitary oversampled DFT filter bank where the

vectorized input signal is denoted by x[n] = (x[nN ], x[nN − 1], . . . , x[nN −N + 1])T and the subband signals

are given by y[n] = (y0[n], y1[n], . . . , yM−1[n])T . At the synthesis filter bank, the subband signals ŷ[n] =

(ŷ0[n], ŷ1[n], . . . , ŷM−1[n])T are received. In absence of subband signal processing and transmission errors, ŷ[n] =

y[n] holds true, otherwise ŷ[n] is a corrupted version of y[n] caused by subband coding and / or transmission errors.

↓ N ↑ N

↑ N

↑ N

W

z−1

z−1

z−1

z−1

↓ N

↓ N
E(z)

x[n]

WH

v[n] y[n]

Ẽ(z)

W−na
M

W
−na(M−1)
M

W−2na
M

W na
M

W 2na
M

W
na(M−1)
M

ŷ[n] v̂[n] x̂[n]

Fig. 2. Polyphase Realization of Oversampled DFT-Modulated Filter Bank

Remarks:

• There are a few minor differences between (2) and (5) and the form derived in [18], [26]:

– The DFT and IDFT modulation matrices at the analysis and synthesis filter bank are swapped due to a

difference in modulation. The filters Hk(z) in [18], [26] correspond to HM−k(z) in (1). Our scheme is

identical to the one derived in [23], [24].
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– The additional diagonal matrices diag(1,Wna

M , . . . ,W
na(M−1)
M ) and diag(1,W−na

M , . . . ,W
−na(M−1)
M ) are

due to the phase offset na in our modulation which is required for the implementation of causal linear-phase

analysis filters of arbitrary length L when being be chosen as (L− 1) mod M .

• To obtain causal synthesis filters, the synthesis filter impulse responses can be delayed by integer multiples of

N until causality is obtained. Depending on the length L of the prototype filter, the introduction of leading

zeros might be neccessary.

• An alternative implementation of the polyphase filters is described in [25].

III. SPARSE PARITY CHECK POLYNOMIALS FOR PARAUNITARY OVERSAMPLED DFT FILTER BANKS

The interpretation of oversampled filter banks as convolutive error correction codes was already presented in [8],

[10]. A parity-check polynomial matrix CSB(z) is implemented at the synthesis filter bank and calculates M −N

syndrom signals from the M received subband signals ŷ[n]. Since CSB(z) satisfies

CSB(z)Hp(z) = 0 (13)

the syndrom signals are identical to zero if ŷ[n] = y[n], i.e. if neither subband signal processing such as quantization

is performed nor transmission errors occur.

For the special case of paraunitary oversampled DFT filter banks, we here present an implementation of the

parity-check polynimial matrix that extends the efficient polyphase realization of the filter bank to the parity-check

polynomial matrix. Due to our assumption of causal analysis filters and anti-causal synthesis filters, we here assume

that our parity check polynomial matrix also contains anti-causal filters. We factorize the parity check matrix in

the same way as the synthesis polyphase matrix:

CSB(z) = C̃(z)WHdiag(1,W−na

M , . . . ,W
−na(M−1)
M ) (14)

Note that the complex rotations and the DFT are also performed by the synthesis filter bank and therefore present

no additional implementation cost. The only additional implementation cost is the convolution of the DFT output

signals v̂[n] with the filters in C̃(z). Expressing Hp(z) according to (2), (13) simplifies to

C̃(z)E(z) = 0(M−N)×N (15)

Since E(z) is sparse, see (3), the above constraints can again be expressed as b sets of equations, yielding

C̃(1)
` (z)E`(z) = 0(M−N)×N/b, with [C̃(1)

` (z)]i,j = [C̃(z)]i,`+jb, (16)

` = 0, . . . , b− 1, i = 0, . . . , (M −N)− 1, j = 0, . . . , J − 1

Since all E`(z) have to be of rank N/b to sarisfy (8), their null space is of dimentionality (M −N)/b, and thus

only (M −N)/b of the M −N rows of C̃(1)
` (z) can be linearly independent. Without loss of generality, we choose

them as

C̃`(z)E`(z) = 0(M−N)/b×N/b, with [C̃`(z)]i,j = [C̃(z)]`+ib,`+jb, (17)

` = 0, . . . , b− 1, i = 0, . . . , (M −N)/b− 1, j = 0, . . . , J − 1

March 11, 2008 DRAFT
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resulting in parity-check polynomial matrices C̃`(z) of size (M −N)/b× J . Expressing C̃`(z) as

C̃`(z) = C̃`↓(zJ)Λ̃1(z) (18)

and using (9) we finally obtain a downsampled version of (17) as

C̃`↓(z)E`↓(z) = 0(M−N)/b×N/b, (19)

Example: M = 8, N = 6

For our example with M = 8 subbands and a decimation factor of N = 6, (19) writes:

C̃0↓(z)E0↓(z) =
[
C̃0,0(z) C̃2,0(z) C̃4,0(z) C̃6,0(z)

]


E0(z) E8(z) E16(z)

z−1E18(z) E2(z) E10(z)

z−1E12(z) z−1E20(z) E4(z)

z−1E6(z) z−1E14(z) z−1E22(z)


= 01×3 (20)

C̃1↓(z)E1↓(z) =
[
C̃1,1(z) C̃3,1(z) C̃5,1(z) C̃7,1(z)

]


E1(z) E9(z) E17(z)

z−1E19(z) E3(z) E11(z)

z−1E13(z) z−1E21(z) E5(z)

z−1E7(z) z−1E15(z) z−1E23(z)


= 01×3 (21)

Note that we have split the calculation of the M−N syndroms into the parallel implementation of b parity-check

polynomial matrices C̃l(z) of size (M−N)/b×J that take the vectors v̂`[n] = [v̂`[n], v̂`+b[n], . . . , v̂`+(J−1)b[n]]T

as input signals to calculate the syndrom vectors s`[n] = [s`[n], s`+b[n], . . . , s`+M−N−b[n]]T . The resulting scheme

is shown in Figure 3. Since in addition all C̃l(z) contain shifted polynomials in zJ , the implementation cost is

further reduced.

0
1

M − 1

2

0

M −N − 1

1

s[n]ŷ[n]

CSB(z)

0
1
2

0

1

J − 1

M−N
b
− 1

v̂`[n]

C̃`(z)

s`[n]

Fig. 3. General parity-check polynomial matrix and new sparse parity-check polynomial submatrices for modulated DFT filter banks

Since the here described sparse parity check polynomial matrices relate to the ones proposed in [8], [10] through

(14), the hypothesis tests described therein to detect impulse errors in Gaussian background noise can be applied

in the same way.
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IV. COMPUTATION OF PARITY-CHECK POLYNOMIAL MATRIX

For the case of general oversampled filter banks, it was proposed in [10], [27] to obtain the parity-check polynomial

matrix CSB(z) from (14) via Smith-McMillan decomposition [24] of the analysis polyphase matrix Hp(z):

Hp(z) = U(z)

 Λ(z)

0(M−N)×N

W(z), CSB(z) =
[
0M−N,N IM−N

]
U−1(z) (22)

where U(z) and W(z) are unimodular M ×M and N ×N matrices, respectively, and Λ(z) is an N ×N diagonal

matrix. While we could apply this approach to solve (19), which is of reduced dimention and contains lower order

polynomials, it is well known that it suffers from numerical stability problems [10], [28]. Also, U(z) and W(z)

are not unique and the polynomial degrees can become unnessarily high, resulting in an increased complexity

of the hypothesis tests described in [10], [11] to detect and correct impulse errors. To overcome this problem,

it was suggested in [10] to calculate the coefficients of CSB(z) in the time domain from a numerically stable

QR decomposition [29] of a column-permuted Sylvester matrix obtained from Hp(z). For oversampled DFT filter

banks, this approach can be directly applied to (19), which in the time domain writes:

[
CLc−1
`↓ CLc−2

`↓ . . . C0
`↓

]


ELe−1
`↓ ELe−2

`↓ . . . E0
`↓ 0J×N/b . . . 0J×N/b

0J×N/b ELe−1
`↓ ELe−2

`↓ . . . E0
`↓

. . .
...

...
. . . . . . . . . 0J×N/b

0J×N/b . . . 0J×N/b ELe−1
`↓ ELe−2

`↓ . . . E0
`↓


︸ ︷︷ ︸

SB`

=



0(M−N)/b×N/b

...

...

0(M−N)/b×N/b



(23)

with C`↓(z) =
∑Lc−1
i=0 Ci

`↓z
−i and E`↓(z) =

∑Le−1
i=0 Ei

`↓z
−i and Le = dL/Ke. A solution to the upper equation

only exists if the LcM × (Le − 1 + q)N Sylvester matrix SB`
has a rank that is at least (M −N)/b smaller than

its number of rows. A sufficient condition herefore is that SB`
is tall with at least (M − N)/b more rows than

columns, i.e. if Lc − 1 ≥ (Le − 1) N
M−N . We perform a QR decomposition of SB`

= Q`Fp` and the coefficients

of
[
CLc−1
`↓ CLc−2

`↓ . . . C0
`↓

]
are obtained as the last (M −N)/b rows of Q`. Numerical stabilization can be

improved by performing column permutations of SB`
as described in [29].

So far, we have assumed that the parity-check polynomial matrices C̃`(z) are calculated for an existing prototype

filter E(z). If, however, the prototype filter still needs to be designed, then the calculation of the partity-check

polynomials can be easily included into the design procedure. For this purpose, we combine (10) and (19) toẼ`↓(z)

C̃`↓(z)

[E`↓(z) C`↓(z)
]

= IJ , ` = 0, . . . , b− 1 (24)

such that we obtain square matrices. Note that we have introduced ((M − N)/b)2 additional constraints through

C̃`↓(z)C`↓(z) = I(M−N)/b×(M−N)/b. These constraints ensure that pairwise uncorrelated white noise in the

March 11, 2008 DRAFT
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subband signals with constant variance, as it is often assumed as a model for quantization noise, causes syndroms

which are also pairwise uncorrelated, white and have the same variance. Thus, for the detection of impulse noise

in Gaussian background noise, they provide additional information on the statistical properties of the syndroms in

absense of impulse errors. (24) was actually already proposed in [21] to facilitate the prototype design procedure

for oversampled modulated filter banks. There, the authors factorize
[
E`↓(z) C`↓(z)

]
into paraunitary lattices

[
E`↓(z) C`↓(z)

]
=
Le−1∏
i=0

V`,i(z)
J−1∏
j=1

U`,j , (25)

V`,i(z) = IJ − v`,ivT`,i + z−1v`,ivT`,i, U`,j = IJ − 2u`,juT`,j , (26)

and then optimize the entries of v`,i and u`,j according to some cost function, such as the stopband energy of

the prototype filter. The resulting parity-check polynomial matrices are of the same order Le − 1 as the polyphase

filters. However, the authors did not realize the significance of C`,↓(z) and once the unconstrained optimization is

completed, they discard these coefficients. The reader is referred to [21] for more details on the design procedure

and optimization.

The propotype filter and parity-check polynomial matrices can also be designed by extending the quadratic-

constrained least-squares (QCLS) optimization proposed in [30] to oversampled filter banks with perfect reconstruc-

tion. With e = [e0, e1, . . . , eL−1]T being the vector of the prototype filter coefficients and c = [c0, c1, . . . , cLc−1]

a vector gathering all coefficients of the parity-check polynomial matrices, one then optimizes

arg min
e

(
eT P e

)
subject to (27)

(ELe−1
`↓ )H (ELe−2

`↓ )H . . . (E0
`↓)

H

(CLe−1
`↓ )H (CLe−2

`↓ )H . . . (C0
`↓)

H

Qk
`



E0
`↓ C0

`↓

...

ELe−2
`↓ CLe−2

`↓

ELe−1
`↓ CLe−1

`↓


=


IJ if k = 0

0J×J if k = 1, 2, . . . , Le − 1

(28)

where P is a real, symmetric, and positive-definite matrix, depending on the stopband cutoff frequency and the

filter length L, see [31], and

[Qk
` ]i,j =


1 if (j − i) = kJ

0 otherwise
, i, j = 0, . . . , (Le − 1)J − 1 (29)

V. DESIGN EXAMPLES

VI. CONCLUSION

The conclusion goes here.
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