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Propagation of elastic waves is studied in a 1D medium containing two cracks. The
latter are modeled by smooth nonlinear jump conditions accounting for the finite, non-
null compressibility of real cracks. The evolution equations are written in the form of
a system of two nonlinear neutral delay differential equations, leading to a well-posed
Cauchy problem. Perturbation analysis indicates that, under periodic excitation, the
periodic solutions oscillate around positive mean values, which increase with the forcing
level. This typically nonlinear phenomenon offers non-destructive means to evaluate the
cracks. Existence, uniqueness and attractivity of periodic solutions is then examined. At
some particular values of the ratio between the wave travel time and the period of the
source, results are obtained whatever the forcing level. With a much larger set of ratios
but at small forcing levels, results are obtained under a Diophantine condition. Lastly,
numerical experiments are proposed to illustrate the behavior of the periodic diffracted
waves.
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1. Introduction

1.1. Physical motivation

Studies on the interactions between ultrasonic waves and contact defects have cru-

cial applications in the field of mechanics, especially as far as the nondestructive

testing of materials is concerned. When the cracks are much smaller than the wave-

lengths, they are usually replaced by interfaces with appropriate jump conditions.

Linear models for contact have been widely developed.30 However, there is a cur-
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rent tendency to develop nonlinear model in order to characterize the cracks more

closely.

From the physical point of view, the simplest nonlinear model for crack is that

involving unilateral contact.31,36 In this non-smooth model, it is assumed that the

region of imperfect contact cannot be compressed. A similar approach with a simpli-

fied piecewise linear model is studied in Ref. 20. More sophisticated smooth models,

involving finite non-null crack compressibility, have been developed for applications

to engineering2 and geomechanical problems.5

The interaction of elastic waves with a contact nonlinearity has been addressed

numerically and theoretically by various authors.31,8,23,24 In Ref. 19, a detailed

analysis was performed in the case of a single crack. It was established that a

periodic excitation generates periodic diffracted waves; in addition, the jump in the

elastic displacement across the crack has a positive mean value, contrary to what

occurs in the case of linear models for contact, where the mean value is null. This

jump, which increases strictly with the forcing level, amounts to a mean dilatation

of the crack. It was quantified in terms of the parameters involved in the problem,

which leads to potential acoustical means of determining the nonlinear properties

of the crack.

The physical motivation of the present article is to examine whether the prop-

erties found to exist in the case of a single crack also apply to cases involving two

cracks. Is there a couple of periodic solution with positive mean values ? As we will

see, this is true under suitable conditions, but how to estimate these quantities ? It

is a first step in the direction of a larger number of cracks, which frequently occurs

in practical situations.

1.2. Mathematical motivation

Even under this simple generalization, the mathematical analysis is much more in-

tricate than in Ref. 19, where one tackled with a ordinary differential equation. The

successive reflections of waves between the cracks are described mathematically by

a system of two nonlinear neutral-delay differential equation (NDDE) with periodic

forcing.15 The main features of this system are already contained in the following

scalar NDDE:

x
′

(t) + a x
′

(t − 1) + b f (x(t)) = s(t), (1.1)

where f is a smooth increasing nonlinear function, f(0) = 0, f
′

(0) = 1, |a| ≤ 1, b > 0

and s is a periodic excitation. The existence and uniqueness of periodic solutions

to (1.1) is not a trivial question when |a| = 1, which is the case encountered here.

To our knowledge, articles and reference books dealing with forced NDDE and

oscillation theory of delay equations, such as Refs. 25, 11, 9, 29, 13, 12, always

consider the case |a| < 1. In the critical case |a| = 1 indeed, the difficulties follow

from the very weak stability of periodic solutions: if we consider a null forcing s = 0

and a linear function f(x) = x, then elementary calculations show that the null

solution is asymptotically stable but not exponentially stable.
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The mathematical motivation of the present article is to analyze the existence

and uniqueness of periodic solutions in this critical case, where the standard tech-

niques cannot be applied.7,10,25 We prove that periodic solutions of the linearized

NDDE always exist, but also that they lose one order of regularity in some cases

described by a Diophantine condition. In these cases, the existence and uniqueness

of solutions to the original nonlinear NDDE may be lost. The results obtained here

are relevant in other situations, where coupled systems are described by boundary

conditions with finite-velocity traveling waves.15

1.3. Sketch of the study

The present paper is organized as follows:

• In section 2, the physical problem is stated in terms of linear hyperbolic

partial differential equations and nonlinear jump conditions. It is trans-

formed into a system of neutral delay differential equations which can be

studied more easily;

• In section 3, the neutral Cauchy problem is adimensionalized. Existence

and uniqueness of global solutions is proved. A qualitative result is given

about the mean values of periodic solutions, or equivalently about the mean

dilatations of the cracks;

• In section 4, perturbation analysis is performed. Analytic expressions are

obtained for the mean dilatations of each cracks, which makes it possible

to use an acoustic approach to estimate the nonlinear parameters of the

cracks. The quantitative findings obtained on a single crack in Ref. 19 are

thus extended to two cracks;

• In section 5, the existence and uniqueness of periodic solutions are proved

whatever the amplitude of the source, but only at specific values of the ratio

between the wave propagation time and the period of the source. Upper

bounds of the solution are determined, and the geometrical properties of

the configuration space are analyzed;

• In section 6, existence and uniqueness of periodic solutions are proved for

a larger set of periods, by assuming a small source and a Diophantine

condition on the ratio travel time / period of the source. Contrary to what

occurs with a single crack, the periodic solutions are not exponentially

stable in this case. The focus is put on the spectrum of the linearized

system and on the localization of the small divisors.18 The results obtained

are then transferred to the nonlinear system;

• In section 7, numerical methods are introduced. Numerical simulations il-

lustrate the qualitative properties of the scattered waves;

• In section 8, future lines of research are suggested: in one hand, the gen-

eral case of N cracks could be investigated, and on the other hand, other

strategies could be developed for proving the existence and uniqueness of

global solutions for a full set of periods and large forcing levels.
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2. Problem statement

2.1. Physical modeling

Ω

α
−+ +

Ω Ω 1 20

−
xxs

1 2α

Fig. 1. Cracks at α1 and α2 in elastic media Ωi; source at xs < α1.

Let us take two cracks at α1 and α2 in the linearly elastic media Ω0, Ω1 and

Ω2 (figure 1). The density ρ and the elastic speed of the compressional waves c are

positive, piecewise constant, and they may be discontinuous across the cracks.

Elastic compressional waves are emitted by a source at x = xs < α1 in Ω0, and

then they are diffracted by the cracks. Wave propagation is modeled by the 1-D

linear elastodynamics1

ρ
∂ v

∂ t
=

∂ σ

∂ x
,

∂ σ

∂ t
= ρ c2 ∂ v

∂ x
+ S(t) δ(x − xs), (2.1)

where v = ∂ u
∂ t

is the elastic velocity, u is the elastic displacement, and σ is the elastic

stress. The source S(t) is causal, T -periodic, and it oscillates around a null mean

value: otherwise, the incident elastic displacement would increase linearly with t,

which is physically meaningless. The magnitude of the source is described by the

amplitude v0 of the elastic velocity.

σ

0 [u]

K d

− d

K

* σ

0 [u]− d

K

*

Fig. 2. Sketch of the nonlinear relation between the stress and the jump of the elastic displacement
(2.5). Left row: model 1 (2.7), right row: model 2 (2.8).
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Two independent jump conditions are required around each crack αk (k = 1, 2)

to obtain a well-posed problem. First, the stress is assumed to be continuous across

each crack30:

[σ(αk, t)] = 0 ⇒ σ(α+
k , t) = σ(α−

k , t) = σ∗
k(t). (2.2)

Secondly, experimental and theoretical studies have yielded the following conclu-

sions:

• the elastic displacement can be discontinuous across the cracks, depending

on the stress applied;

• at small stress levels, a linear model is relevant

σ∗
k(t) = Kk [u(αk, t)] , (2.3)

where Kk > 0 is the interfacial stiffness30,33;

• the jump in elastic displacement satisfies the inequality

[u(αk, t)] ≥ −dk, (2.4)

where dk > 0 is the maximum allowable closure.5 As the loading increases,

the crack tends to become completely closed: [u(αk, t)] → −d+
k when σ∗

k →

−∞;

• concave stress-closure laws are measured.26

The relation

σ∗
k(t) = Kk dk Fk ([u(αk, t)]/dk) (2.5)

satisfies these requirements, where Fk is a smoothly increasing concave function

Fk : ] − 1, +∞[→] −∞, Fk max[, lim
X→−1

Fk(X) = −∞, 0 < Fk max ≤ +∞,

Fk(0) = 0, F
′

k(0) = 1, F
′′

k < 0 < F
′

k.
(2.6)

Two models illustrate the nonlinear relation (2.5): the model 1 proposed in Refs. 2,

5 writes

σ∗
k(t) =

Kk [u(αk, t)]

1 + [u(αk, t)] /dk

⇔ Fk(X) =
X

1 + X
, Fk max = 1, (2.7)

and the model 2 proposed in Ref. 26 writes

σ∗
k(t) = Kk dk ln (1 + [u(αk, t)]/dk) ⇔ Fk(X) = ln(1+X), Fk max = +∞. (2.8)

These two models are sketched in figure 2. The straight line with a slope K tan-

gential to the curves at the origin gives the linear jump conditions (2.3).
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2.2. Reduction of the model

We want to study the solution of the boundary-value problem stated in section

2.1. For this purpose, we focus on the jumps in the elastic displacements across the

cracks Yk(t) = [u(αk, t)], where k = 1, 2: based on the method of characteristics, all

the scattered fields can be deduced from the known 1-D Green’s function and from

these Yk(t). Moreover, it is simpler to study two functions of t than the solution of

partial differential equations.

In the next proposition, the problem stated in section 2.1 is reduced to a system

of nonlinear neutral delay differential equations (NDDE), i.e. differential equations

where the delay is included in the derivatives.15

Proposition 2.1. Let us define the travel time τ > 0 and the constants βk > 0

and |γk| < βk (k = 1, 2)

τ =
α2 − α1

c1
,

β1 = K1

(
1

ρ0 c0
+

1

ρ1 c1

)
, β2 = K2

(
1

ρ2 c2
+

1

ρ1 c1

)
,

γ1 = K1

(
1

ρ0 c0
−

1

ρ1 c1

)
, γ2 = K2

(
1

ρ2 c2
−

1

ρ1 c1

)
.

(2.9)

Then the jumps Yk(t) = [u(αk, t)] satisfy the system of NDDE





d Y1

d t
(t) +

d Y2

d t
(t − τ) = −β1 d1 F1

(
Y1(t)

d1

)
− γ2 d2 F2

(
Y2(t − τ)

d2

)
+

1

ρ0 c2
0

S(t),

d Y2

d t
(t) +

d Y1

d t
(t − τ) = −β2 d2 F2

(
Y2(t)

d2

)
− γ1 d1 F1

(
Y1(t − τ)

d1

)
+

1

ρ0 c2
0

S(t − τ),

Y1(t) = Y2(t) = 0 for − τ ≤ t ≤ 0.
(2.10)

Proof. The proof is mainly based on the method of characteristics. In the first part,

we collect results based on elastodynamics1 and on the jump conditions (2.2) and

(2.5). In each subdomain Ωk, the elastic displacement can be split into rightward

moving (R) and leftward moving (L) waves

u(x, t) = uRk

(
t −

x

ck

)
+ uLk

(
t +

x

ck

)
,

where uL2 = 0: no leftward moving wave comes from +∞. It follows that

∂ u

∂ t
(x, t) =





+ck

∂ u

∂ x
(x, t) + 2 u

′

Rk

(
t −

x

ck

)
,

−ck

∂ u

∂ x
(x, t) + 2 u

′

Lk

(
t +

x

ck

)
,

(2.11)
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where u
′

L2 = 0. The elastic stresses are

σ(x, t) = ρk c2
k

∂ u

∂ x
(x, t). (2.12)

The first jump condition (2.2) and the equation (2.12) yield

ρk−1 c2
k−1

∂ u

∂ x
(α−

k , t) = ρk c2
k

∂ u

∂ x
(α+

k , t) = σ∗
k(t). (2.13)

The second jump condition (2.5) and the equation (2.13) yield




∂ u

∂ x
(α−

k , t) =
Kk dk

ρk−1 c2
k−1

Fk

(
Yk(t)

dk

)
,

∂ u

∂ x
(α+

k , t) =
Kk dk

ρk c2
k

Fk

(
Yk(t)

dk

)
.

(2.14)

The rightward moving wave emitted by the source (2.1), which impacts the first

crack at α1, is

u
′

R0

(
t −

x

c0

)
= −

1

2 ρ0 c2
0

S (t − ts) , (2.15)

where ts = (α1 − xs)/c0. From (2.11), (2.14) and (2.15), the traces of ∂ u
∂ t

can be

deduced:

∂ u

∂ t
(α−

1 , t) =
K1 d1

ρ0 c0
F1

(
Y1(t)

d1

)
−

1

ρ0 c2
0

S (t − ts) ,

∂ u

∂ t
(α+

1 , t) =
d Y1

d t
(t) +

K1 d1

ρ0 c0
F1

(
Y1(t)

d1

)
−

1

ρ0 c2
0

S (t − ts) ,

∂ u

∂ t
(α−

2 , t) = −
d Y2

d t
(t) −

K2 d2

ρ2 c2
F2

(
Y2(t)

d2

)
.

(2.16)

In the second part of the proof, we write the traces of rightward and leftward moving

waves at α+
1 and α−

2 . From (2.9), (2.11), (2.14) and (2.16), it follows

2 u
′

R1

(
t −

α1

c1

)
=

d Y1

d t
(t) + γ1 d1 F1

(
Y1(t)

d1

)
−

1

ρ0 c2
0

S (t − ts) (2.17)

and

2 u
′

R1

(
t −

α2

c1

)
= −

d Y2

d t
(t) − β2 d2 F2

(
Y2(t)

d2

)
. (2.18)

The equality u
′

R1(t−α1/c1) = u
′

R1(t+τ −α2/c1) along with (2.17) and (2.18) yields

d Y1

d t
(t)+

d Y2

d t
(t+τ) = −γ1 d1 F1

(
Y1(t)

d1

)
−β2 d2 F2

(
Y2(t + τ)

d2

)
+

1

ρ0 c2
0

S (t − ts) .

(2.19)

Likewise, it follows from (2.9), (2.11), (2.14) and (2.16)

2 u
′

L1

(
t +

α1

c1

)
=

d Y1

d t
(t) + β1 d1 F1

(
Y1(t)

d1

)
−

1

ρ0 c2
0

S

(
t −

α1 − xs

c0

)
(2.20)
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and

2 u
′

L1

(
t +

α2

c1

)
= −

d Y2

d t
(t) − γ2 d2 F2

(
Y2(t)

d2

)
. (2.21)

The equality u
′

L1(t+α1/c1) = u
′

L1(t−τ +α2/c1) along with (2.20) and (2.21) yields

d Y1

d t
(t)+

d Y2

d t
(t−τ) = −β1 d1 F1

(
Y1(t)

d1

)
−γ2 d2 F2

(
Y2(t − τ)

d2

)
+

1

ρ0 c2
0

S (t − ts) .

(2.22)

Constants (2.9) are injected into (2.19) and (2.22); the time is shifted: t− ts → t; a

time shift t + τ → t is also applied to (2.19), which results in the system of NDDE

(2.10). Lastly, the initial conditions follow from the causality of the source and from

the finite propagation time between xs and α1. �

3. Neutral delay differential equations

3.1. Cauchy problem

Setting

y1(t) =
Y1(t)

d1
=

[u(α1, t)]

d1
, y2(t) =

Y2(t)

d1
=

[u(α2, t)]

d1
, r =

d2

d1
> 0,

v0 =
1

2 ρ0 c2
0

max
[0, T ]

S(t), S(t) = 2 v0 ρ0 c2
0

+∞∑

n=−∞

sn ei n ω t, s0 = 0, s(t) =
1

d1 ρ0 c2
0

S(t),

f1(y) = −F1(y), f2(y) = −rF2

(y

r

)
, fk min = −Fk max < 0, y1min = −1, y2min = −r,

(3.1)

the system (2.9)-(2.10) leads to the Cauchy problem





y
′

1(t) + y
′

2(t − τ) = β1 f1(y1(t)) + γ2 f2(y2(t − τ)) + s(t), t > 0,

y
′

2(t) + y
′

1(t − τ) = β2 f2(y2(t)) + γ1 f1(y1(t − τ)) + s(t − τ), t > 0,

yk(t) = φk(t) ∈ C1 ([−τ, 0], ]yk min, +∞[) , −τ ≤ t ≤ 0.

(3.2)

Contrary to what occurred in (2.10), the initial data φk may differ from 0. Assump-

tions and new notations are defined as follows (k = 1, 2):

βk > 0, 0 ≤ |γk| < βk, yk min < 0,

fk ∈ C2 (]yk min, +∞[→]fk min, +∞[) , lim
y→yk min

fk(y) = +∞, −∞ ≤ fk min < 0,

fk(0) = 0, f
′

k(0) = −1, qk =
f

′′

k (0)

2
> 0, f

′

k(y) < 0 < f
′′

k (y),

s ∈ C0(R), s(t + T ) = s(t), t > 0, T > 0, ω = 2 π / T, ϕ = ω τ.
(3.3)
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The inequality 0 ≤ |γk| < βk in (3.3) follows from (2.9) and is of crucial importance

in following analysis. The reciprocal functions f−1
k satisfy

f−1
k ∈ C2 (]fk min, +∞[→]yk min, +∞[) , lim

y→+∞
f−1

k (y) = yk min,

f−1
k (0) = 0, (f−1

k )
′

< 0 < (f−1
k )

′′

.
(3.4)

In the case of model 1 (2.7), we obtain

fk(y) = f−1
k (y) = −

y

1 −
y

yk min

, fk min = yk min. (3.5)

In the case of model 2 (2.8), we obtain

fk(y) = yk min ln

(
1 −

y

yk min

)
, f−1

k (y) = −yk min

(
exp

(
y

yk min

)
− 1

)
, fk min = −∞.

(3.6)

The causal source is often taken to be monochromatic: s±1 = ∓i / 2 and si6=±1 = 0

in (3.1), and thus

S(t) = 2 v0 ρ0 c2
0 sinω t, t ≥ 0. (3.7)

Lastly, the ratio between the travel time and the period of the source is introduced

θ =
τ

T
=

α2 − α1

c1 T
=

α2 − α1

λ1
> 0, (3.8)

where λ1 is the wavelength in medium Ω1.

3.2. Global solutions

In this section, we prove the existence and uniqueness of solutions to the Cauchy

problem (3.2)-(3.3). We begin with an elementary result about global solutions for

ODE.

Lemma 3.1. Let τ > 0, g ∈ C0 ([0, τ ], R), and the scalar non-autonomous ODE




y
′

(t) = f(y(t)) + g(t),

y(0) = y0,
(3.9)

where f ∈ C1 (]ymin, +∞[, ]fmin, +∞[), f(0) = 0, f
′

< 0 and y0 >

ymin. The unique maximal solution is therefore also a global solution: y ∈

C1 ([0, τ ], ]ymin, +∞[).

Proof. Two cases are distinguished.

Case 1: 0 ≤ sup g < |fmin|. The constants a < b are taken to be such that

f(a) = − inf g, f(b) = − sup g.

If ymin < y < a, then f(y) > − inf g and thus y
′

> 0; on the contrary, y > b means

that y
′

< 0. Consequently, [a, b] is a funnel17: if y0 belongs to this compact set, then

y remains trapped inside. Otherwise, the solution will be found in [a, b] in finite
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time. In both configurations, the solution remains bounded, therefore it is a global

solution.

Case 2: sup g ≥ |fmin|. If y > 0, then y
′

< g(t) and

y(t) < y0 +

∫ t

0

g(ξ) dξ < y0 + t sup g.

In [0, τ ], y is thus bounded by the upper solution y0 + τ sup g, which concludes the

proof. �

Now, we prove the existence of global solutions y1 and y2 to (3.2)-(3.3) that

satisfy yk > yk min. This inequality was required by the model of contact: see (2.4)

and (3.1).

Proposition 3.1. There exists a unique solution y = (y1, y2)
T to (3.2)-(3.3),

with yk ∈ C1 ([0, +∞[, ]yk min, +∞[), except at instants t = k τ , k ∈ N, where the

derivatives may be discontinuous.

Proof. The proof is performed by induction, according to the step method: see for

instance the proof of theorems 2-1 or 7-1 in Ref. 15. Intervals Ik = [k τ, (k + 1) τ ],

k = −1, 0, 1, ... are defined. In I(−1), the following explicit solutions exist: yk(t) =

φk(t) > yk min. The couple of solutions is therefore assumed to be known in Ik,

k ≥ 0, and to satisfy the statements made in proposition 3.1. In Ik+1, the system

(3.2) is written




y
′

1(t) = β1 f1(y1(t)) − y
′

2(t − τ) + γ2 f2(y2(t − τ)) + s(t), t ∈ Ik+1,

y
′

2(t) = β2 f2(y2(t)) − y
′

1(t − τ) + γ1 f1(y1(t − τ)) + s(t − τ), t ∈ Ik+1.

In the latter system, the right-hand terms βk f(yk(t)) satisfy the assumptions made

in lemma 3.1. Since y
′

k(t − τ) in Ik+1 are equal to y
′

k(t) on Ik, the other terms on

the right-hand side are continuous, which concludes the proof. �

3.3. Mean values of periodic solutions

No general proof of the existence and uniqueness of periodic solutions to (3.2)-(3.3)

have been obtained whatever the amplitude of the periodic source s and the ratio

θ in (3.8). In section 5, we give results valid for any source but for particular values

of θ. In section 6, a larger set of θ is studied, but the source is small.

Remark 3.1. If there exists a T -periodic solution y = (y1, y2)
T , then replacing τ

by τ + T , i.e. θ by θ + 1, does not affect the system (3.2). The study of periodic

solutions can therefore be restricted to θ ∈]0, 1].

Assuming that a T -periodic regime has been reached, the solution can be written

as Fourier series

yk(t) =

+∞∑

n=−∞

y
(n)
k ei n ω t, k = 1, 2. (3.10)
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Since the source is real, the coefficients satisfy y
(−n)
k = ŷ

(n)
k , where the hat refers to

the conjugate. The following proposition concerns the mean value of the solution

during one period, which is denoted by an overline

yk = y
(0)
k =

1

T

∫ T

0

yk(t) dt, k = 1, 2. (3.11)

Proposition 3.2. The mean values of periodic solution y = (y1, y2)
T to (3.2)-(3.3)

are strictly positive:

yk > 0, k = 1, 2. (3.12)

Proof. T -periodicity of the solution and of the source in (3.2) yields




β1 f1(y1(t)) + γ2 f2(y2(t − τ)) = 0,

γ1 f1(y1(t − τ)) + β2 f2(y2(t)) = 0.

The mean value of a periodic function is invariant by a time shift of the function,

thus




β1 f1(y1(t)) + γ2 f2(y2(t)) = 0,

γ1 f1(y1(t)) + β2 f2(y2(t)) = 0.

The bounds in (3.3) mean that the determinant of the linear system is non-null:

∆ = β1 β2 − γ1 γ2 > 0. Therefore, one obtains

f1(y1(t)) = 0, f2(y2(t)) = 0.

Jensen’s inequality applied to the convex functions f1 and f2 yields

f1(y1) < 0, f2(y2) < 0.

The properties of fk in (3.3) are used to conclude the proof. �

Proposition 3.2 means that the jump of elastic displacement across each crack

Yk = [u(αk, t)] = d1 yk has a positive mean value Yk > 0. In other words, there is

a mean dilatation of each crack when a periodic source is excited, as in the case of

a single crack.19 This property has been observed both experimentally,21 and it is

illustrated numerically in section 7.2. Quantitative analysis is proposed in section

4; physical implications are addressed in section 8.1.

Remark 3.2. Numerical simulations indicate that θ → yk(θ) is 0.5-periodic, i.e.

that it shows half of the periodicity of the solution yk (see remark 3.1). No rigorous

proof of this statement have been obtained so far, however, except in the case of

small forcing levels: see section 4.2 and figure 8.
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4. Perturbation analysis

Throughout this section, it will be assumed that there exists a unique periodic

solution y = (y1, y2)
T to (3.2)-(3.3), which depends smoothly on the forcing level,

and especially on the ratio v0 / d1. This assumption will be validated in section 6

for a dense set of ratio θ, as stated in theorem 6.1 and proposition 6.1.

In the case of small solutions, a second-order Taylor expansion of the NDDE

system gives





y
′

1(t) + y
′

2(t − τ) + β1 y1(t) − β1 q1 y2
1(t) + γ2 y2(t − τ) − γ2 q2 y2

2(t − τ)

+O
(
y3
1(t) + y3

2(t − τ)
)

=
2 v0

d1

+∞∑

n=−∞

sn ei n ω t,

y
′

2(t) + y
′

1(t − τ) + β2 y2(t) − β2 q2 y2
2(t) + γ1 y1(t − τ) − γ1 q1 y2

1(t − τ)

+O
(
y3
1(t − τ) + y3

2(t)
)

=
2 v0

d1

+∞∑

n=−∞

sn ei n ω t e−i n ϕ.

(4.1)

The previous uniqueness assumption ensures that the solution can be sought in the

form

yk = yk(1) + yk(2) + O

((
v0

d1 ω

)3
)

, |yk(2)| � |yk(1)| � 1. (4.2)

Injecting (4.2) into (4.1) provides a set of recursive linear NDDE systems which are

easy to solve. Before detailing the resolution in sections 4.1 and 4.2, an elementary

technical result is introduced.

Lemma 4.1. Let us take the notations defined in section 3.1. Then, for all n ∈ N∗,

∆n =

(
1 − i

β1

n ω

) (
1 − i

β2

n ω

)
−
(
1 − i

γ1

n ω

) (
1 − i

γ2

n ω

)
e−2 i n ϕ 6= 0. (4.3)

Proof. Since βk > |γk| in (3.3), we obtain

∣∣∣∣1 − i
β1

n ω

∣∣∣∣
∣∣∣∣1 − i

β2

n ω

∣∣∣∣ >
∣∣∣1 − i

γ1

n ω

∣∣∣
∣∣∣1 − i

γ2

n ω

∣∣∣ ,

and thus

∣∣∣∣
(

1 − i
β1

n ω

) (
1 − i

β2

n ω

)∣∣∣∣ >
∣∣∣
(
1 − i

γ1

n ω

) (
1 − i

γ2

n ω

)
e−2 i n ϕ

∣∣∣ ,

which concludes the proof. �
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4.1. First-order solution

The first-order terms in (4.1)-(4.2) are collected, resulting in




y
′

1(1)(t) + y
′

2(1)(t − τ) + β1 y1(1)(t) + γ2 y2(1)(t − τ) =
2 v0

d1

+∞∑

n=−∞

sn ei n ω t,

y
′

2(1)(t) + y
′

1(1)(t − τ) + β2 y2(1)(t) + γ1 y1(1)(t − τ) =
2 v0

d1

+∞∑

n=−∞

sn ei n ω t e−i n ϕ.

(4.4)

Fourier series

yk(1) =

+∞∑

n=−∞

y
(n)
k(1) ei n ω t, k = 1, 2, (4.5)

are injected into (4.4), and similar trigonometric arguments are then put together.

The constant terms satisfy the linear system




β1 y
(0)
1(1) + γ2 y

(0)
2(1) = 0,

γ1 y
(0)
1(1) + β2 y

(0)
2(1) = 0,

(4.6)

which involves a non-null determinant β1 β2 − γ1 γ2 > 0, and thus

y
(0)
1(1) = y

(0)
2(1) = 0. (4.7)

The first-order solution therefore oscillates around a null-mean value. Collecting the

ei n ω t terms gives the linear system




(
1 − i

β1

n ω

)
y
(n)
1(1) +

(
1 − i

γ2

n ω

)
e−i n ϕ y

(n)
2(1) = −i

2 v0

d1 ω

sn

n
,

(
1 − i

γ1

n ω

)
e−i n ϕ y

(n)
1(1) +

(
1 − i

β2

n ω

)
y
(n)
2(1) = −i

2 v0

d1 ω

sn

n
e−i n ϕ,

(4.8)

the determinant of which is ∆n 6= 0 (see (4.3)). Setting

X
(n)
1(1) =

(
1 − i

γ2

n ω

)
e−2 i n ϕ −

(
1 − i

β2

n ω

)

(
1 − i

β1

n ω

) (
1 − i

β2

n ω

)
−
(
1 − i

γ1

n ω

) (
1 − i

γ2

n ω

)
e−2 i n ϕ

,

X
(n)
2(1) =

i
β1 + γ1

n ω
e−i n ϕ

(
1 − i

β1

n ω

) (
1 − i

β2

n ω

)
−
(
1 − i

γ1

n ω

) (
1 − i

γ2

n ω
,
)

e−2 i n ϕ

,

(4.9)

the non-constant first-order solutions are

y
(n)
1(1) = i

2 v0

d1 ω
X

(n)
1(1)

sn

n
, y

(n)
2(1) = i

2 v0

d1 ω
X

(n)
2(1)

sn

n
, n 6= 0. (4.10)
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4.2. Second-order solution

The second-order terms in (4.1)-(4.2) are collected, resulting in




y
′

1(2)(t) + y
′

2(2)(t − τ) + β1 y1(2)(t) + γ2 y2(2)(t − τ) = β1 q1 y2
1(1)(t) + γ2 q2 y2

2(1)(t − τ),

y
′

2(2)(t) + y
′

1(2)(t − τ) + β2 y2(2)(t) + γ1 y1(2)(t − τ) = β2 q2 y2
2(1)(t) + γ1 q1 y2

1(1)(t − τ).

(4.11)

Fourier series

yk(2) =
+∞∑

n=−∞

y
(n)
k(2) ei n ω t, k = 1, 2, (4.12)

are injected into (4.11), and similar trigonometric arguments are then put together.

From (4.7), the following linear system satisfied by the constant terms




β1 y
(0)
1(2) + γ2 y

(0)
2(2) = 2 β1 q1

+∞∑

n=1

∣∣∣y(n)
1(1)

∣∣∣
2

+ 2 γ2 q2

+∞∑

n=1

∣∣∣y(n)
2(1)

∣∣∣
2

,

γ1 y
(0)
1(2) + β2 y

(0)
2(2) = 2 γ1 q1

+∞∑

n=1

∣∣∣y(n)
1(1)

∣∣∣
2

+ 2 β2 q2

+∞∑

n=1

∣∣∣y(n)
2(1)

∣∣∣
2

(4.13)

is obtained, the determinant of which is β1 β2 − γ1 γ2 > 0. The system is solved by

using first-order solutions (4.10), which gives the constant second-order terms

y
(0)
k(2) = 8 qk

(
v0

d1 ω

)2 +∞∑

n=1

∣∣∣X(n)
k(1)

∣∣∣
2 ∣∣∣sn

n

∣∣∣
2

, k = 1, 2. (4.14)

Unlike first-order solutions, second-order solutions oscillate around non-null mean

values. The consequence on the jumps of elastic displacements Yk = [u(αk, t)] =

d1 yk is stated in the next proposition.

Proposition 4.1. At small forcing level, and using X
(n)
k(1) defined in (4.9), the mean

values of the T -periodic jumps Yk are

Yk =

∣∣∣F ′′

k (0)
∣∣∣

dk

(v0

ω

)2 +∞∑

n=1

∣∣∣X(n)
k(1)

∣∣∣
2 ∣∣∣sn

n

∣∣∣
2

+ O

(
v3
0

d2
1 ω3

)
, k = 1, 2. (4.15)

Proof. From (3.1) and (3.3), it follows

q1 =
f

′′

1 (0)

2
=

|F
′′

1 (0)|

2
, q2 =

f
′′

2 (0)

2
=

d1

d2

|F
′′

2 (0)|

2
. (4.16)

Putting together (3.1), (4.2), (4.5) and (4.12) yields second-order estimates of Yk

Yk = d1

(
y
(0)
k(1) + y

(0)
k(2) + O

((
v0

d1 ω

)3
))

, k = 1, 2. (4.17)

Injecting (4.7), (4.14) and (4.16) into (4.17) gives an estimate value of Yk. �
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To conclude the perturbation analysis, higher-order expansions than (4.2) could

be investigated. However, the contributions of third-order and higher-order might

yield divergent estimates of Yk in the case of large forcing levels.23 In practice, the

second-order expansion suffices for this purpose. As shown in section 7.3, equation

(4.2) yields highly accurate estimates of the mean dilatations Yk. The physical

relevance of these quantities is discussed in section 8.1.

5. Periodic solutions: special cases

5.1. Existence and uniqueness

In this section, the analytical results will be expressed successively in terms of the

coefficients of the model problem (3.2), and in terms of the physical parameters

(preceded by the sign ≡).

To begin with, we assume that τ is a period of s: τ = n T , and thus θ = n ∈ N∗

in (3.8). This amounts to saying that Ω1 contains n wavelengths of the source.

Theorem 5.1. If θ = n ∈ N∗, then there exists a unique periodic solution y =

(y1, y2)
T to (3.2)-(3.3) having the same period T as the source. In addition, the

increasing diffeomorphism

G(y) = f−1
2

(
β1 − γ1

β2 − γ2
f1(y)

)
≡ f−1

2

(
K1

K2
f1(y)

)
, G

′

> 0, G(0) = 0,

(5.1)

ensures that

y2(t) = G (y1(t)) . (5.2)

Lastly, y1 and y2 satisfy a scalar non autonomous ODE without any delay.

Proof. Injecting τ -periodic solutions yk into (3.2) yields a system of ODE




y
′

1(t) + y
′

2(t) = β1 f1(y1(t)) + γ2 f2(y2(t)) + s(t),

y
′

2(t) + y
′

1(t) = β2 f2(y2(t)) + γ1 f1(y1(t)) + s(t),
(5.3)

and therefore

(β2 − γ2) f2(y2(t)) = (β1 − γ1) f1(y1(t)).

From (2.9), we obtain

f2(y2(t)) =
β1 − γ1

β2 − γ2
f1(y1(t)) ≡

K1

K2
f1(y1(t)), (5.4)

which gives (5.2). The ranges of the left-hand and right-hand sides in (5.4) may

be different. To obtain the bijective relation (5.2), the domain of definition of G in

(5.1) has to be examined carefully, as done further in the corollary 5.1. Equation

(5.2) is then injected into (5.3), which gives the ODE

H(y1)
′

= K(y1) + s(t), (5.5)
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where H is an increasing diffeomorphism

H(y) = y + G(y), H(0) = 0, H
′

> 0,

and K is a decreasing diffeomorphism (see (3.3), (2.9)):

K(y) = k f1(y),

k = β1 + γ2
β1 − γ1

β2 − γ2
= γ1 + β2

β1 − γ1

β2 − γ2
≡ K1

(
1

ρ0 c0
+

1

ρ2 c2

)
> 0.

Taking z1 = H(y1) and (5.5), we obtain the non autonomous ODE

z
′

1 = L(z1) + s(t), (5.6)

where L is a decreasing diffeomorphism

L = K ◦ H−1, L(0) = 0.

The existence and uniqueness of a T -periodic solution to (5.6) follows from the

global asymptotic stability of the solution z1 = 0 at null forcing level, which is

induced by the properties of L. A similar case has been investigated in propositions

4-1 and 6-1 of Ref. 19. By construction, y1 = H−1(z1) and y2 = G ◦ H−1(z1) are

also T -periodic solutions to (3.2). �

The case where 2 τ is an odd period of s can be treated in a similar way:

2 τ = (2 n + 1)T , n ∈ N. This amounts to saying that Ω1 contains n and a half

wavelengths of the source.

Theorem 5.2. If θ = n + 1/2 with n ∈ N, then there exists a unique periodic

solution y = (y1, y2)
T to (3.2)-(3.3) having the same period T as the source. In

addition, the diffeomorphism (5.1) ensures that

y2(t) = G (y1(t − T/2)) . (5.7)

Lastly, y1 and y2 satisfy a scalar non autonomous ODE without any delay.

Proof. A time shift t → t + τ is applied to the first equation of (3.2)





y
′

1(t + τ) + y
′

2(t) = β1 f1(y1(t + τ)) + γ2 f2(y2(t)) + s(t + τ),

y
′

2(t) + y
′

1(t − τ) = β2 f2(y2(t)) + γ1 f1(y1(t − τ)) + s(t − τ).

The 2 τ -periodic solutions to (3.2) therefore satisfy

(β2 − γ2) f2(y2(t)) = (β1 − γ1) f1(y1(t − τ)),

hence

y2(t) = G (y1(t − τ)) . (5.8)
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The rest of the proof follows on exactly the same lines as the proof of theorem 5.1,

proving the existence and uniqueness of T -periodic solutions (y1, y2). We therefore

obtain

y1(t − τ) = y1(t − (n + 1/2)T ),

= y1(t − T/2),

which simplifies (5.8) into (5.7). �

Some comments are required about theorems 5.1 and 5.2:

• The relations (5.2) and (5.7) can be expressed in a single formula: if θ = n/2

and n ∈ N, then

y2(t) = G (y1(t − t0)) , (5.9)

where t0 = 0 if n is even, t0 = T/2 otherwise.

• With model 1 (3.5) and model 2 (3.6), G can be determined exactly

model 1: G(y) =
β1 − γ1

β2 − γ2

y

1 +

(
1 −

1

r

β1 − γ1

β2 − γ2

)
y

≡
K1

K2

y

1 +

(
1 −

K1 d1

K2 d2

)
y

,

model 2: G(y) = r


(1 + y)

1

r

β1 − γ1

β2 − γ2 − 1


 ≡

d2

d1


(1 + y)

K1 d1

K2 d2 − 1


 .

(5.10)

• G has a crucial effect on the qualitative properties of (y1, y2), which makes

it necessary to analyze this function more closely. This is the goal of the

next proposition.

Proposition 5.1. The diffeomorphism G (5.1) is the identity I if and only if the

cracks are identical:

G = I ⇔ β1 − γ1 = β2 − γ2, r = 1, f1 = f2,

⇔ K1 = K2, d1 = d2, F1 = F2.
(5.11)

Proof. Assuming G = I amounts to

(β1 − γ1) f1(y) = (β2 − γ2) f2(y),

for all y in the domain in which G is valid. By differentiation, we obtain

(β1 − γ1) f
′

1(y) = (β2 − γ2) f
′

2(y) ⇒ (β1 − γ1) f
′

1(0) = (β2 − γ2) f
′

2(0).

Since f
′

k(0) = −1, it follows that β1 − γ1 = β2 − γ2, or equivalently K1 = K2. The

injectivity of f1 and f2 means that f1 = f2, and thus (3.1) yields

F1(y) = rF1

(y

r

)
.
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The latter equation is differentiated twice, and then it is evaluated at 0:

F
′′

1 (0) =
1

r
F

′′

1 (0).

Since the concavity of the contact laws are non null at the origin (2.6), r = d2/d1 =

1. The reciprocal of the proof is trivial. �

5.2. Upper bounds

At some values of fk min in (3.3), upper bounds yk ≤ yk max can be deduced from

(5.9), as stated in the following corollary.

Corollary 5.1. Let θ = n/2 with n ∈ N, and

ξ =
β2 − γ2

β1 − γ1

∣∣∣∣
f2min

f1min

∣∣∣∣ ≡
K2

K1

∣∣∣∣
f2min

f1min

∣∣∣∣ .

Four cases are distinguished:

(1) f1min > −∞, f2min > −∞: one solution may be bounded

∗ ξ < 1 ⇒ y1max = f−1
1

(
−

β2 − γ2

β1 − γ1
|f2min|

)
≡ f−1

1

(
−

K2

K1
|f2min|

)
, y2max = +∞,

∗ ξ = 1 ⇒ y1max = y2max = +∞,

∗ ξ > 1 ⇒ y2max = f−1
2

(
−

β1 − γ1

β2 − γ2
|f1min|

)
≡ f−1

2

(
−

K1

K2
|f1min|

)
, y1max = +∞,

(2) f1min > −∞, f2min = −∞: one upper bound exists

y2max = f−1
2

(
−

β1 − γ1

β2 − γ2
|f1 min|

)
≡ f−1

2

(
−

K1

K2
|f1min|

)
, y1max = +∞,

(3) f1min = −∞, f2min > −∞: one upper bound exists

y1max = f−1
1

(
−

β2 − γ2

β1 − γ1
|f2 min|

)
≡ f−1

1

(
−

K2

K1
|f2min|

)
, y2max = +∞,

(4) f1min = −∞, f2min > −∞: no upper bound exists.

y1 max = y2max = +∞.

Proof. In (5.9), the diffeomorphism G :]y1min, y2max[→]y2min, y2max[ satisfies

β1 − γ1

β2 − γ2
f1(y1max) = f2(y2max) = max

(
β1 − γ1

β2 − γ2
f1min, f2min

)
,

= −min

(
β1 − γ1

β2 − γ2
|f1min| , |f2min|

)
.

(5.12)

Knowing whether (5.12) can be solved or not leads to the four cases distinguished

in corollary 5.1. Here, we deal only with case 1: the proof of the other cases follows

exactly the same lines. Solving (5.12) requires to solve

f1(y1max) = − |f1min| min

(
1,

β2 − γ2

β1 − γ1

∣∣∣∣
f2min

f1min

∣∣∣∣
)

= ∆1. (5.13)
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If ∆1 < f1min, then (5.13) cannot be solved, and y1max = +∞. On the contrary,

∆1 > f1min ⇔
β2 − γ2

β1 − γ1

∣∣∣∣
f2min

f1min

∣∣∣∣ < 1

leads to the bounded value y1max given in case 1. �

Model 2 (3.6) corresponds to case 4, where no upper bound exists, whereas

model 1 (3.5) corresponds to case 1, where an upper bounds may exist. From (3.1),

we obtain

ξ = r
β2 − γ2

β1 − γ1
≡

K2 d2

K1 d1
,

∗ ξ < 1 ⇒ y1max =
1

1/ξ − 1
, y2max = +∞,

∗ ξ = 1 ⇒ y1max = y2max = +∞

∗ ξ > 1 ⇒ y2max =
r

ξ − 1
, y1max = +∞.

5.3. Configuration space

Lastly, we deal with the geometrical features of the configuration space. Taking any

increasing diffeomorphism f , we define the closed curve

Γf :

∣∣∣∣∣∣

[0, T ] → R2

t 7→ (f(y1(t)), y2(t)) .
(5.14)

Proposition 5.2. Let us consider the increasing diffeomorphism G in (5.1). If

θ = n + 1/2, n ∈ N, then

• ΓG (5.14) is symmetrical with respect to the first bisecting line;

• if the source is monochromatic (3.7), then ΓG contains a unique double point

on this bisecting line.

If θ = n ∈ N∗, then ΓG is a segment on the first bisecting line.

Proof. The case θ = n is a straightforward consequence of (5.2) and (5.14). In the

case θ = n + 1/2, theorem 5.2 yields




G(y1(t + T/2)) = G(y1(t − T/2)) = y2(t),

y2(t + T/2) = G(y1(t)).

The study of ΓG can therefore be restricted to [0, T/2]. On [T/2, T ], ΓG is obtained

by permuting G(y1) and y2, which amounts to performing a symmetry with respect

to the line y2 = G(y1), i.e. the first bisecting line.

On the other hand, the phase portrait of the solution to (5.6) in the case of

a monochromatic source has been studied extensively in section 4 of Ref. 19: the
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solution behaves like a distorted sinus. Since H and G ◦ H−1 are diffeomorphisms,

y1 and y2 show the same pattern of evolution. Theorem 5.2 ensures that G(y1(t))

and y2(t) are T -periodic and equal, with a time shift T/2. They therefore cross

twice at the same value, which concludes the proof. �

6. Periodic solution: small forcing

6.1. Main result

We take Hp
T to denote the Sobolev space of T -periodic functions of square integrable

on a period, with their derivatives up to order p; in particular, H0
T = L2

T .

Unlike the special cases investigated in section 5, the main result obtained in

this section involves a much larger set of values of ratios θ = τ / T , where τ is the

travel time between the cracks and T is the period of the source. To quantify this

set, the following definition is introduced.

Definition 6.1 (Diophantine condition D). Let

ζ =
β1 − γ1 + β2 − γ2

4 π2 τ > 0. (6.1)

A real number w ∈ R+ does not satisfy the condition D if and only if there exists

an infinite number of integers (n, k) such that

2 w =
n

k
+

ζ

w

1

k2 + o

(
1

k2

)
. (6.2)

Condition D in definition 6.1 is stated as a negative statement. An equivalent

positive statement is given by condition P in proposition 6.3 stated further. Condi-

tion D is optimal to avoid a small divisor problem.28,18 Assuming that D is true and

considering a small source s, the following local existence and uniqueness results

are obtained.

Theorem 6.1. Let θ = τ / T satisfy the Diophantine condition D. Then there exists

a neighborhood Vs × V1 × V2 of the origin in
(
H1

T

)3
such that for any s in Vs, there

exists a unique periodic solution y = (y1, y2)
T = Ψ(s) to (3.2)-(3.3) on V1 × V2.

This solution has the same period T as the source, and Ψ ∈ C1 (Vs, V1 × V2).

Theorem 6.1 is proved in section 6.5. An example of a dense set satisfying D is

given in the next proposition, proved in section 6.4.

Proposition 6.1. If θ is rational, then D is satisfied. As a consequence, the con-

clusions of theorem 6.1 hold.
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6.2. Spectrum of the linearized system

In the case of small solutions, the system (3.2)-(3.3) is linearized, which leads to




y
′

1(t) + y
′

2(t − τ) + β1 y1(t) + γ2 y2(t − τ) = s(t),

y
′

2(t) + y
′

1(t − τ) + β2 y2(t) + γ1 y1(t − τ) = s(t − τ).
(6.3)

Taking

y(t) =

(
y1

y2

)
, s(t) =

(
s(t)

s(t − τ)

)
,

A =

(
0 1

1 0

)
, B =

(
β1 0

0 β2

)
, C =

(
0 γ2

γ1 0

)
,

(6.4)

the system (6.3) can be written in the following matrix form:

Ly(t) = y
′

(t) + Ay
′

(t − τ) + By(t) + Cy(t − τ) = s(t). (6.5)

We are looking for solutions of the homogeneous system obtained by taking s = 0 in

(6.5). Injecting y(t) = y0 eΛ t where y0 is a constant vector, it follows H(Λ)y0 = 0,

where H is the matrix

H(Λ) =




Λ + β1 e−Λ τ (Λ + γ2)

e−Λ τ (Λ + γ1) Λ + β2


 . (6.6)

Nontrivial solutions are obtained iff detH = 0, and thus Λ is a root of the charac-

teristic equation

h(Λ) = (Λ + β1) (Λ + β2) − e−2Λ τ (Λ + γ1) (Λ + γ2) = 0. (6.7)

The position of characteristic roots of (6.7) plays a decisive role on the stability of

the neutral system. As shown in the next proposition, the neutral system (6.5) with

coefficients (6.4) is a critical case not investigated in Refs. 7, 15.

Proposition 6.2. The following results hold for the characteristic roots of (6.7):

(1) the roots are located in a vertical strip Λinf < <e Λ < 0 in the complex plane;

(2) a real negative root Λ0 exists;

(3) the set of roots of h is countable infinite;

(4) the roots Λ tend towards the imaginary axis: <e Λ → 0 as |Λ| → +∞.

The neutral system (6.5) is therefore stable but not exponentially stable.

Proof. Part 1. As <e Λ → +∞, h(Λ) ∼ Λ2 which does not vanish. Likewise,

<e Λ → −∞ means that e2Λ τ h(Λ) ∼ −Λ2, and h(Λ) therefore does not vanish,

and we obtain

−∞ < Λinf < <e Λ < Λsup < +∞.

In addition, the characteristic roots Λ satisfy

|Λ + β1||Λ + β2| = e−2<e Λ |Λ + γ1||Λ + γ2|. (6.8)
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If <e Λ ≥ 0, then e−2<e Λ ≤ 1, thus

|Λ + β1||Λ + β2| ≤ |Λ + γ1||Λ + γ2|,

which is impossible, because of (3.3): and therefore <e Λ < 0.

Part 2. The properties

h(0) = β1 β2 − γ1 γ2 > 0, lim
x→−∞

h(x) = −∞

ensure the existence of a negative real solution Λ0.

Part 3. Let z = 1 / (2 Λ τ). Since h(0) 6= 0, h(Λ) = 0 is equivalent to g(z) = 0, where

g(z) = e
1

z r(z) − 1, r(z) =
(1 + 2 τ β1 z) (1 + 2 τ β2 z)

(1 + 2 τ γ1 z) (1 + 2 τ γ2 z)
.

Based on part 2, z0 = 1 / (2 Λ0 τ) is a root of g: 0 belongs to the image of g. Lastly,

g is holomorphic on C, except at the essential singularity 0. The Great Picard the-

orem therefore states that g takes the value 0 infinitely often.

Part 4. Since h is holomorphic, it has a finite number of roots on each compact.

Points 1 and 3 therefore mean that |=m Λ| → +∞. On the other hand, it fol-

lows from (6.8) that e−2<e Λ ∼ 1 when |=m Λ| → +∞, and hence <e Λ → 0:

Λsup = 0 is an accumulation point, and the system (6.5) is stable but not exponen-

tially stable.37 �

Based on proposition 6.2 (first part), there exists a unique periodic solution to

the linear system of NDDE (6.3) whatever the ratio θ = τ / T . A finer analysis

of the characteristic roots Λ of (6.7) is now needed to determine the smoothness

of this solution. It is crucial indeed for obtaining existence and uniqueness results

about the original nonlinear NDDE (3.2), as seen in section 6.5. The next lemma

constitutes a first step in this direction.

Lemma 6.1. For large values of |Λ|, there exists n ∈ Z∗ such that Λ is close to

i n π
τ

. More precisely, this characteristic roots denoted by Λn satisfies the following

asymptotic expansion:

Λn = i

(
n π

τ
+

β1 − γ1 + β2 − γ2

2 n π

)
−

τ

(2 n π)2
(
β2

1 − γ2
1 + β2

2 − γ2
2

)
+ O

(
1

n3

)
.

(6.9)

At sufficiently large values of n > 0, the real and imaginary parts of Λn increase

strictly with n (if n < 0, the imaginary parts of Λn decrease strictly with n).

Proof. If Λ is a root of (6.7), and if |Λ| → +∞, then

e2Λ τ =
(Λ + γ1) (Λ + γ2)

(Λ + β1) (Λ + β2)
∼ 1. (6.10)
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Consequently, there exists zn tending towards 0 as n increases and such that

Λ ≡ Λn = i
n π

τ
+ zn. (6.11)

To estimate zn, (6.11) is injected into the characteristic equation (6.7), which gives

e2 zn τ
(
i +

τ

n π
(zn + β1)

)(
i +

τ

n π
(zn + β2)

)

−
(
i +

τ

n π
(zn + γ1)

)(
i +

τ

n π
(zn + γ2)

)
= 0.

(6.12)

The equation (6.12) is satisfied with the discrete variable n; it is now extended to

the continuous variable u = τ / (n π), and we take z := zn. This yields F (z, u) = 0,

where F : C × C → C is given by

F (z, u) = e2 z τ (i + u z + u β1) (i + u z + u β2) − (i + u z + u γ1) (i + u z + u γ2) .

(6.13)

A second-order Taylor expansion of F provides

F (0, 0) = 0,
∂ F

∂ z
(0, 0) = −2 τ,

∂ F

∂ u
(0, 0) = i (β1 − γ1 + β2 − γ2) ,

∂2 F

∂ z2 (0, 0) = − (2 τ)2 ,
∂2 F

∂ z ∂ u
(0, 0) = 2 i τ (β1 + β2) ,

∂2 F

∂ u2 (0, 0) = 2 (β1 β2 − γ1 γ2) .

(6.14)

Since ∂ F
∂ z

(0, 0) 6= 0, the implicit function theorem states that (u, z(u)) is a graph

in a neighborhood of the origin, where u → z(u) is a holomorphic function. Differ-

entiating F (z(u), u) = 0 yields

∂ F

∂ z
z

′

+
∂ F

∂ u
= 0, (6.15)

and thus

z
′

(0) = i
β1 − γ1 + β2 − γ2

2 τ
. (6.16)

Since z
′

(0) is purely imaginary, one still cannot reach any conclusions about the

monotonicity of <e (z). We therefore differentiate (6.15), which yields

∂2 F

∂ z2

(
z

′

)2

+ 2
∂2 F

∂ z ∂ u
z

′

+
∂2 F

∂ u2 +
∂ F

∂ z
z

′′

= 0. (6.17)

Taking (6.14), (6.16) and (6.17), we obtain

z
′′

(0) = −
β2

1 − γ2
1 + β2

2 − γ2
2

2 τ
< 0. (6.18)

Derivatives (6.16) and (6.18) are injected into the second-order Taylor series of z:

z(u) = i
β1 − γ1 + β2 − γ2

2 τ
u −

1

2

β2
1 − γ2

1 + β2
2 − γ2

2

2 τ
u2 + O(u3). (6.19)

Based on u = τ / (n π), (6.11) and (6.19), the asymptotic expansion (6.9) is proved.

To prove the monotonicity of the real part of the asymptotic roots, we take

z = x + i y. Taylor series (6.19) yields x(0) = 0, x
′

(0) = 0 and x
′′

(0) = z
′′

(0) < 0.
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24 Stéphane Junca and Bruno Lombard

As a result, <e (z) decreases with u and <e (Λn) = <e (zn) increases with n when

1 / n → 0. Lastly, the monotonicity of =m (Λn) follows from (6.9). �
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Fig. 3. Characteristic roots of (6.7): real parts (a) and imaginary parts (b). Blue circles and red
crosses denote exact values and asymptotic values (6.9), respectively.

Two remarks about lemma 6.1:

• The holomorphic implicit function theorem used in the proof confirm that zn =

Λn − i n π
τ

can be expressed in terms of arbitrary powers of τ
n π

.

• The monotonic behavior of characteristic roots (6.7) is valid only when suffi-

ciently high values of n are considered. No theoretical result is known in the

case of small values of n. However, the results of numerical experiments have

indicated that the monotonicity property is satisfied whatever the value of n.

In figure 3, asymptotic values (6.9) for n = 1, · · · , 10 are compared with the charac-

teristic roots in the upper part of the complex plane. The roots of (6.7) are computed

numerically. The parameters are those used in further numerical experiments: (7.2)

and α2 − α1 = 30 m. The predicted convergence properties are obtained. It is also

worth noting that the first characteristic root (on the real line) and the second

characteristic root are not included in the asymptotic expansion.

6.3. Inverse linear operator

Let us consider a monochromatic source s(t) = s1 ei ω t in the linearized system

(6.3). The source in (6.4) becomes

s(t) = s1

(
1

e−i ω τ

)
ei ω t = s1 ei ω t. (6.20)
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The solution of (6.5) with the source (6.20) is sought in the form of y(t) = y1 ei ω t,

where y1 is a constant vector. Straightforward calculations give y1 = L−1(s(t)) =

H−1(i ω) s1, where L−1 is the inverse operator of L in (6.5),

H−1(i ω) =
1

h(i ω)




i ω + β2 −e−i ω τ (i ω + γ2)

−e−i ω τ (i ω + γ1) i ω + β1


 , (6.21)

and h is the characteristic function in (6.7). The continuity of L−1 from H1
T into

H1
T is a key step to study the nonlinear NDDE (3.2). Based on (6.21), the effect of

L−1 on general sources in Hp
T with an infinite number of harmonics is characterized

in the next lemma.

Lemma 6.2. The linear application L−1 is continuous from Hp
T into Hp

T if and

only if

inf

∣∣∣∣
h(i k ω)

k

∣∣∣∣ > 0, k ∈ Z, k 6= 0. (6.22)

Proof. The continuity of L−1 is proved in L2
T : since L−1 is a Fourier multiplier, con-

tinuity in L2
T entrains continuity in Hp

T . It remains to prove that sup |||H−1(i k ω)|||

is bounded. The matrix norm induced by the maximum norm in C2 is used. The

notations λ = i k ω, βmax = max(β1, β2), and γmin = min(|γ1|, |γ2|) are introduced.

The property βk > |γk|, along with (6.21), yields

|||H−1(λ)||| =
1

|h(λ)|
max (|λ + β1| + |λ + γ1|, |λ + β2| + |λ + γ2|) ,

≤
2

|h(λ)|
max (|λ + β1|, |λ + β2|) ,

≤
2

|h(λ)|
max (|λ| + βmax) ,

≤ 2

(
1 +

βmax

|λ|

)
/

∣∣∣∣
h(λ)

λ

∣∣∣∣ .

(6.23)

Likewise, we obtain

|||H−1(λ)||| ≥ 2

(
1 +

γmin

|λ|

)
/

∣∣∣∣
h(λ)

λ

∣∣∣∣ , (6.24)

and hence |||H−1(λ)||| ∼ 2
∣∣∣h(λ)

λ

∣∣∣ at high values of |λ|. Proving the continuity of

L−1 therefore amounts to satisfying (6.22). �

Instead of studying the condition (6.22) directly, we first examine the lower

bounds of |h(λ)/λ2|, λ ∈ i R, λ 6= 0. Based on (6.9), |h(λ)/λ2| is expected to be

very close to zero near the projection λn of the characteristic roots Λn onto the

imaginary axis, as seen in figure 4-(a). Using the asymptotic expansions given in



April 13, 2011 16:24 WSPC/INSTRUCTION FILE M3asV2
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lemma 6.1, we obtain λn = i
(

n π
τ

+ β1−γ1+β2−γ2

2 n π

)
. A careful analysis of |h(λ)/λ2|

along the imaginary axis and especially near λn is therefore required, as investigated

in the next lemma.

Lemma 6.3. Some notations are introduced (n ∈ Z):

λ = i (m + r) , m =
n π

τ
, r ∈

[
−

π

2 τ
, +

π

2 τ

]
,

λn = i (m + rn) , rn =
β1 − γ1 + β2 − γ2

2 n π
,

(6.25)

and we assume |λ| � 1 (i.e. |n| � 1). The following estimates hold:

• for all ε > 0, there exists C0 > 0 such that

|λ − λn| >
ε

|m|
⇒

∣∣∣∣
h(λ)

λ2

∣∣∣∣ >
C0

|m|
. (6.26)

• if λ = λn, then there exists C1 > 0 such that
∣∣∣∣
h(λn)

λ2
n

∣∣∣∣ =
β2

1 − γ2
1 + β2

2 − γ2
2

2 m2 + O

(
1

m3

)
∼

C1

m2 . (6.27)

Proof. We take positive values of m, i.e. positive imaginary values of λ; the case

m < 0 can be treated in a similar way. Based on (6.25), it follows

1

λ
= −

i

m
+

i r

m2 + O

(
1

m3

)
,

1

λ2 = −
1

m2 + O

(
1

m3

)
. (6.28)

From (6.7) and (6.28), we obtain Taylor series of increasing order

h(λ)

λ2 = 1 +
β1 + β2

λ
+

β1 β2

λ2 − e−2 i τ r

(
1 +

γ1 + γ2

λ
+

γ1 γ2

λ2

)
,

= 1 − e−2 i τ r + O

(
1

m

)
,

= 1 − e−2 i τ r − i
β1 + β2 − e−2 i τ r (γ1 + γ2)

m
+ O

(
1

m2

)
,

= 1 − i
β1 + β2

m
−

β1 β2

m2 + i
(β1 + β2) r

m2

−e−2 i τ r

(
1 − i

γ1 + γ2

m
−

γ1 γ2

m2 + i
(γ1 + γ2) r

m2

)
+ O

(
1

m3

)
.

(6.29)

Three cases are distinguished.

Case 1: δ < |r| ≤ π
2 τ

, where δ is an arbitrary positive real number. The O(1 / m)

series in (6.29); using the concave inequality of sinus function yields
∣∣∣∣
h(λ)

λ2

∣∣∣∣ >
∣∣1 − e2 i τ r

∣∣ > 2 d τ |r|,
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where d = 2 / π > 0. This gives the lower bound

inf

∣∣∣∣
h(λ)

λ2

∣∣∣∣ > 0, (6.30)

independently of m.

Case 2: κ
m

≤ |r| ≤ δ, where κ is sufficiently large, for instance κ = 3
2

β1+|γ1|+β2+|γ2|
d τ

.

Triangle inequality gives
∣∣∣∣i

β1 + β2 − e−2 i τ r (γ1 + γ2)

m

∣∣∣∣ ≤
β1 + |γ1| + β2 + |γ2|

m
. (6.31)

Using successively the concave inequality on sinus function, the assumption about

|r|, the value of κ, and the inequality (6.31), results in
∣∣1 − e−2 i τ r

∣∣ > 2 d τ |r|,

>
2 d τ κ

m
,

> 3
β1 + |γ1| + β2 + |γ2|

m
,

≥ 2
β1 + |γ1| + β2 + |γ2|

m
+

∣∣∣∣i
β1 + β2 − e−2 i τ r (γ1 + γ2)

m

∣∣∣∣ .

(6.32)

Equation (6.32) is then injected into the O(1 / m2) series of (6.29), which gives
∣∣∣∣
h(λ)

λ2

∣∣∣∣ >
β1 + |γ1| + β2 + |γ2|

m
. (6.33)

Case 3: |r| < κ
m

. Noting that r = O(1 / m), it follows from (6.29) that

h(λ)

λ2 = i

(
2 τ r −

β1 − γ1 + β2 − γ2

m

)

+

(
2 τ2 r2 −

β1 β2 − γ1 γ2

m2 + 2 τ r
γ1 + γ2

m

)
+ O

(
1

m3

)
,

= i

(
2 τ r −

β1 − γ1 + β2 − γ2

m

)
+ O

(
1

m2

)
.

(6.34)

Based on (6.34), we deduce that the value of |h(λ) / λ2| is minimum at λn defined

in (6.25). Injecting λn into the O(1 / m3) series of (6.34) proves the estimate (6.27).

On the other hand, let us take an arbitrarily small ε > 0, smaller than κ. The

O(1 / m2) series given in (6.34) and the definition of rm given in (6.25) show that

h(λ)

λ2 = 2 i τ (r − rm) + O

(
1

m2

)
. (6.35)

We therefore obtain

|r − rn| >
ε

m
⇒

∣∣∣∣
h(λ)

λ2

∣∣∣∣ >
2 τ ε

m
, (6.36)
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which proves (6.26). �
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Fig. 4. (a): graph of |h(λ)/λ2| along the imaginary axis, where h is the characteristic function
(6.7); the dotted vertical lines denote the imaginary part λn of the asymptotic expansion of Λn:
see (6.9) and (6.25). (b): |h(λn)/λ2

n|, where n = 3, . . . , 13; the straight red line denotes the slope
- 2 deduced from (6.27). In both (a) and (b), the physical parameters are based on (7.2), where
α2 − α1 = 30 m.

The estimate (6.27) is illustrated in figure 4-(b). A log-log scale is used to see

the O(1 / m2) behavior. As expected, the linear regression curve fitting |h(λn) / λ2
n|

has a slope of - 2.

We can now address the main question of section 6: is the solution to the linear

system of NDDE (6.3) as smooth as the source ? In the affirmative case, the existence

and uniqueness of periodic solutions to the nonlinear system of NDDE (3.2) can be

proved by applying standard tools, such as the implicit function theorem or a fixed

point method; see section 6.5 for this topic. The following proposition shows that

the answer is yes, under a suitable condition.

Proposition 6.3 (Condition P). Let us take the source (6.20), m and rn defined

in (6.25), and the interval

Eε =
⋃

n∈Z

]
m + rn −

ε

m
, m + rn +

ε

m

[
, ε > 0. (6.37)

The condition P is introduced: there exists ε > 0 such that for k ∈ Z, k ω 6∈ Eε

except for a finite set of integers. The condition P is true if and only if L−1 is

continuous from Hp
T into Hp

T , whatever p. If P is false, then L−1 is continuous

from Hp
T into Hp−1

T .

Proof. It is noticed that |h(λ) / λ| ∼ |h(λ) / λ2| |m| when λ is large. If P is true,

then there exists ε > 0 such that |λ−λn| > ε
|m| , where λ = i k ω. In this case, (6.26)
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implies that |h(λ) / λ| ∼ C1. The bound (6.22) is therefore satisfied, which proves

the case P true. If P is false, then it follows from (6.27) that |h(λ) / λ| ∼ C0 / m.

In this case, L−1 is not bounded in Hp
T and one degree of regularity is lost: a small

divisor problem arises here.16,18
�

6.4. Diophantine condition

In the following lemma, the condition P used in proposition 6.3 is expressed differ-

ently. This new formulation will be easier to check.

Lemma 6.4. Condition P is equivalent to the condition D in definition 6.1.

Proof. The notations (2.9), (3.8), (6.25) and (6.37) are used. Condition P is untrue

iff there exists infinite sequences of integers (n, k) satisfying
∣∣∣∣k ω −

(
n π

τ
+

β1 − γ1 + β2 − γ2

2 n π

)∣∣∣∣ <
ε τ

|n|π
. (6.38)

Taking δ =
(

τ
π

)2
ε, equation (6.38) yields

∣∣∣∣2 θ −

(
n

k
+

2 ζ

n k

)∣∣∣∣ <
δ

|n k|
. (6.39)

It follows that 1
n

= 1
2 θ k

+ o( 1
k
), which is injected into (6.39). Since the inequality

thus-obtained holds true with all δ > 0, we obtain
∣∣∣∣2 θ −

(
n

k
+

ζ

θ

1

k2

)∣∣∣∣ = o

(
1

k2

)
, (6.40)

which is in line with (6.2) and proves the lemma. �

We now prove the proposition 6.1, where it was stated that if θ = τ / T ∈ Q,

then condition D is true.

Proof of proposition 6.1. Let us assume that D is untrue. Since τ and T are

commensurable, there exist integers p and q such that θ = p / q. Injecting this ratio

into (6.2) proves that an infinite number of (n, k) satisfy

2 k p − n q =
ζ q2

k p
+ o

(
1

k

)
. (6.41)

The left-hand side of (6.41) is a sequence of integers, whereas the right-hand side

tends towards 0. Therefore there exists k0 such that if |k| > k0, then 2 k p−n q = 0.

In this case,

ζ q2

k p
+ o

(
1

k

)
= 0 ⇐⇒

ζ q2

p
+ o (1) = 0, (6.42)

and thus ζ q2

p
= 0, which is impossible. Consequently, D is true. �
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Proposition 6.1 suffices to show that D is true, and thus to prove the existence

and uniqueness of a T -periodic solution in H1
T to (6.5): see proposition 6.3 and

lemma 6.4. However, θ = τ / T ∈ Q is not necessary. The possible existence of a

larger set of admissible θ is discussed in section 8.2.

6.5. Nonlinear problem

In section 6.4, theorem 6.1 was proved in the linear case (6.3). The aim of this

section is to extend the proof to include the original nonlinear delay system (3.2),

under the assumption that the source is small. Standard nonlinear analysis tools

are used for this purpose.4 Note that proposition 6.1, which was proved in section

6.4, is valid regardless of the size of the source.

Proof of theorem 6.1. With notations (6.4), the nonlinear NDDE system (3.2)

is written

f (y(t)) = s(t), (6.43)

where the nonlinear function f depends on f1 and f2. Equation (6.43) is put in the

form

Ly(t) = g (y(t)) + s(t), (6.44)

where L is the linearized operator (6.5), and g is the Taylor remainder that satisfies

g
′

(0) = 0. It follows that H(y, s) = 0, where

H(y, s) = y(t) − L−1 (g(y(t) + s(t)) . (6.45)

Under the Diophantine condition D, proposition 6.3 and lemma 6.4 show that L−1 is

continuous. Since ∂ H
∂ y

(0, 0) = I 6= 0, the implicit function theorem can be applied,

which concludes the proof. �

7. Numerical experiments

7.1. Numerical methods

Time-domain method. Two methods are developed for solving the linear elas-

todynamics models (2.1) with the jump conditions (2.2) and (2.5). The first one

relies on direct numerical simulations, in the time-domain. A fourth-order finite-

difference ADER scheme is used to integrate the conservation laws. The nonlinear

jump conditions are discretized and injected in the scheme by an immersed inter-

face method.23 At each time step, the scheme gives v, σ, and Yk(t) = [u(αk, t)];

numerical integration of v also gives u on the whole domain.

Numerical dispersion and numerical diffusion can be estimated by usual tech-

niques of numerical analysis.22 A sufficiently fine mesh is used to ensure that the

numerical solutions can be taken to be the exact values. In counterpart, the time-

domain simulations are not an efficient way to capture the periodic solutions, espe-

cially in the case of multiple cracks. As proved in section 6, indeed, the attractivity
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of periodic solutions is small, and hence long-time integration is required to reach

the periodic regime.

Harmonic balance method. When transient solutions are ignored, the har-

monic balance method (HBM) is a very efficient numerical strategy. Infinite series

(3.10) are truncated to |n| ≤ N , and then they are injected into (3.2) and (3.5). It

yields a (4 N + 2) × (4 N + 2) nonlinear system

F(X) = 0, (7.1)

where X is the vector of 4 N + 2 Fourier coefficients.

In the limit case of an infinitesimal forcing level, (7.1) becomes a linear system

the solution of which is known analytically: see section 4.1. In the general nonlinear

case, no exact solution of (7.1) is known and numerical methods are required. We

have therefore developed computer algebra tools for exactly determining F and its

Jacobian J. With these programs, high orders (such as N = 40) can be reached in

a few seconds on a Pentium IV (3 GHz).

Once F and J are formally determined, a Newton-Raphson method is applied.

Some care must be taken about the initial guess: at large forcing levels, numerical

experiments have shown that multiple roots of (7.1) can occur. To prevent spurious

solutions from occurring, a basic continuation method is adopted27:

• a uniform forcing scale is used, ranging from a small v
(0)
0 up to the forcing level

of interest;

• the exact solution X(0) is computed for v
(0)
0 ;

• the forcing level is incremented, and X(0) is then used as the initial value in the

Newton-Raphson algorithm to compute X(1), and so on.

In each of the simulations obtained by HBM, preliminary convergence studies are

performed to ensure that a sufficiently large number of Fourier modes are present.

Model 1 of contact (3.5) is used, and the source is monochromatic (3.7).

7.2. Scattered waves

In a first series of numerical experiments, we focus on the dynamical behavior of

the scattered waves. A 400 m domain is considered, with two cracks at α1 = 170.1

m and α2 = 270.1 m. The physical parameters are
{

ρ0 = ρ1 = ρ2 = 1200 kg.m−3, K1 = K2 = 1.3 109 kg.m−1.s−2,

c0 = c1 = c2 = 2800 m.s−1, d1 = d2 = 6.1 10−6 m.
(7.2)

A source at xs = 50 m emits a purely sinusoidal wave with a frequency of 50 Hz and

an amplitude of elastic velocity v0. Values of v0 are considered from 10−4 m/s to

5 10−3 m/s. The latter value corresponds to a maximum strain ε = v0/c0 ≈ 10−6,

so that the linear elastodynamics models (2.1) is still valid.1

Figure 5 shows snapshots of u at tf = 0.34 s, obtained by time-domain methods.

The mean spatial values uk of the displacements in each of the subdomains are

denoted by horizontal dotted lines. Three observations are done:
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Fig. 5. Snapshots of the elastic displacement u obtained with model 1 (2.7) and various amplitudes

v0 of the incident elastic velocity in (3.7): 10−4 m/s (a), 10−3 m/s (b), 2 10−3 m/s (c) and 5 10−3

m/s (d). The vertical solid lines denote the locations of the cracks. The red, green and navy dotted
horizontal lines denote the mean spatial value u of the elastic displacement in each subdomain.

• a periodic solution is found to be reached in each subdomain;

• the scattered displacements are distorted when the forcing level increases;

• null or positive jumps in uk occur across the cracks; null jumps occur at small

forcing levels v0 (a), whereas the jumps increase with the forcing level (b,c,d).

The positive jumps in uk mentioned above are equal to the mean temporal value of

Yk, and they amount to a mean dilatation of the crack at αk.

The time histories of Yk are presented in the left row of figure 6. Logically, Yk

are null until the wave emitted by the source has reached the first crack at α1, and

subsequently, at α2. At small forcing levels (a), Yk are sinusoids centered around a

null mean value. As v0 increases, Yk are distorted and centered around an increasing

positive mean value. The periodic regime also takes longer to be established. Lastly,
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it is observed that the minimum values of Yk decrease and are bounded below by

−d1 = −d2, as shown in (e); this property was required by the model (2.4).

The configuration space (Y1, Y2) is shown in the right row of figure 6. The data

between [tf − T, tf ] have been extracted and presented in the form of a continuous

red line: at the forcing levels tested, this line is closed, which indicates that a periodic

limit cycle has been reached. At small forcing levels (b), a centered elliptic limit

cycle is observed, as predicted by the linear theory of oscillators. As v0 increases,

the limit cycle becomes more complex, and even crosses itself (f).

7.3. Mean dilatations of the cracks

In a second series of numerical experiments, we focus on the mean dilatation of the

cracks. This phenomenon was observed numerically in figure 5, and it was analyzed

quantitatively in section 4 by a perturbation method.

Figures 7 and 8 illustrate the proposition 4.1. The parameters are the same

here as in (7.2). The reference solutions are obtained using the harmonic balance

method (section 7.1), with N = 20 Fourier modes. In figure 7, the forcing level

varies from v0 = 10−4 m/s to v0 = 2 10−3 m/s, where strong nonlinear effects exist.

The parameters are the same than in the previous section, giving θ = τ / T ≈ 0.535.

The approximate solution (4.15) corresponds to a straight line with slope +2, and

it provides an excellent estimate of Yk at small forcing levels. At higher values of v0,

a slight shift between Yk and (4.15) occurs, but good agreement is still observed.

In figure 8, the parametric study is performed in terms of θ, with ϕ = 2 π θ in

(4.9) and θ ∈]0, 1]. At small forcing level (a), the approximate solution (4.15) pro-

vides an excellent estimate of Yk. At large forcing levels, the agreement is naturally

less accurate. In both cases, it is observed that Yk are 0.5-periodic in θ, as stated

in remark 3.2. This does not mean that Yk are 0.5-periodic: in practice, the Yk are

only 1-periodic, as stated in remark 3.1.

This property can be proved at small forcing levels. From (4.15) and (4.9), it

follows that only 2 n ϕ is involved in Yk, and not n ϕ: the perturbation analysis

therefore confirms the 0.5-periodicity of Yk in terms of θ. This property seems to

also hold at large forcing levels, as indicated by many other simulations; however,

no rigorous proof of this assumption has been obtained so far.

A final (erroneous) property might seem to be suggested by figure 8: it can be

observed that Y1 and Y2 intersect at θ = 0.5 and θ = 1. In general, this property is

untrue. It is satisfied iff the media are identical (ρ0 = ρ1 = ρ2, c0 = c1 = c2) and

if the cracks are identical (K1 = K2, d1 = d2). This can easily be checked, taking

theorem 5.1, theorem 5.2 and proposition 5.1 proposed in section 5.

7.4. Special case θ = n / 2

In this section, we illustrate numerically the special case investigated in section 5,

where Ω1 contains n / 2 wavelengths (n ∈ N).
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34 Stéphane Junca and Bruno Lombard

(a) (b)

0 0.05 0.1 0.15 0.2 0.25 0.3

−3E−7 

−2E−7 

−1E−7 

0 

1E−7 

2E−7 

3E−7 

t (s)

[u
] 

(m
)

Y1

Y2

−3E−7 −1.5E−7 0 1.5E−7 3E−7

−2E−7 

−1E−7 

0 

1E−7 

2E−7 

Y1 (m)

Y
2
 (

m
)

configuration space

limit cycle

(c) (d)

0 0.05 0.1 0.15 0.2 0.25 0.3

−4E−6 

0 

4E−6 

8E−6 

1.2E−5 

1.6E−5 

t (s)

[u
] 

(m
)

Y1

Y2

−5E−6 0 5E−6 1E−5 1.5E−5

−2E−6 

0 

2E−6 

4E−6 

6E−6 

8E−6 

Y1 (m)

Y
2

 (
m

)

configuration space

limit cycle

(e) (f)

0 0.05 0.1 0.15 0.2 0.25 0.3

0 

1E−5 

2E−5 

3E−5 

4E−5 

5E−5 

t (s)

[u
] 

(m
)

Y1

Y2

0 1E−5 2E−5 3E−5 4E−5 5E−5

−5E−6 

0 

5E−6 

1E−5 

1.5E−5 

Y1 (m)

Y
2

 (
m

)

configuration space

limit cycle

Fig. 6. Time histories of Yk = [u(αk , t)] (left row) and configuration space (Y1, Y2) (right row)
in the case of model 1 (2.7) and various amplitudes v0 of the incident elastic velocity: 10−4 m/s
(a-b), 2 10−3 m/s (c-d) and 5 10−3 m/s (e-f). In (e-f), the dotted lines denotes −d1 = −d2.
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Fig. 7. Log-log evolution of Yk in terms of the forcing amplitude v0. Circle: harmonic balance
method (HBM). Solid line: perturbation analysis (PA), Eq. (4.17).
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Fig. 8. Evolution of Yk in terms of the ratio θ = τ / T . (a): v0 = 10−4 m/s; (b): v0 = 10−3 m/s.
Circle: harmonic balance method (HBM). Solid line: perturbation analysis (PA), Eq. (4.17).

Theorems 5.1 and 5.2 are illustrated in figure 9. The simulations are performed

by the harmonic balance method (section 7.1). The densities and celerities are the

same as in (7.2); the parameters of the cracks are

K1 = 109 kg.m−1.s−2, d1 = 6 10−6 m,

K2 = 2 109 kg.m−1.s−2, d2 = 3 10−6 m.
(7.3)

Since the cracks are not identical, proposition 5.1 implies that G 6= I: the shapes

of y2 and y1 are therefore not the same. If θ = 1 (b), the respective minima and

maxima of y1 and y2 are located at the same places, whereas a time shift T/2 occurs

if θ = 0.5 (a).
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Fig. 9. Time history of Y1 and Y2 during one period, with θ = 0.5 (a) and θ = 1 (b): see theorems 5.1
and 5.2. Parameters: model 1 (3.5), sinusoidal forcing (3.7) with v0 = 510−3 m/s. The horizontal
blue and red dotted lines denote the lower bounds −d1 and −d2, respectively.
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Fig. 10. Upper bounds if θ = 0.5: see corollary 5.1. (a): K2 d2 < K1 d1 ⇒ y1 max < +∞; (b):
K2 d2 > K1 d1 ⇒ y2 max < +∞. The horizontal blue or red dotted lines denote the upper bounds
of the solutions yi max.

Corollary 5.1 is illustrated in figure 10, taking θ = 0.5 and a sinusoidal forcing

with amplitude v0 = 5 10−3 m/s (3.7). The densities and celerities are the same as

in the tests presented in section 7.2; the parameters of the cracks are

K1 = 1.3 109 kg.m−1.s−2, d1 = 6.1 10−6 m,

K2 = 2.5 109 kg.m−1.s−2, d2 = 8.1 10−6 m,
(7.4)

such that K1 d1 < K2 d2 (a). Another set of parameters is also obtained by permut-

ing indexes 1 and 2, hence K1 d1 > K2 d2 (b). In both cases, a positive horizontal
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asymptote is observed in y1 (a) and y2 (b), as predicted by corollary 5.1. Similar

figures (not shown here) are observed when θ = 1. Lastly, the previously used pa-

rameters (7.3) yield K1 d1 = K2 d2: as predicted by corollary 5.1, no upper bound

is observed in figure 9.
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Fig. 11. Configuration space ΓG (a-c) and ΓI (b-d) with θ = 0.5 (a-b) and θ = 1 (c-d): see
proposition 5.2. Amplitude v0 of the sinusoidal forcing (3.7): 10−3 m/s, 2 10−3 m/s, 5 10−3 m/s.

Proposition 5.2 is illustrated in figure 11, for various levels of v0 in (3.7). The

physical parameters are given in (7.4), and thus proposition 5.1 yields G 6= I. If

θ = 0.5 (a-b), the symmetry properties of ΓG observed in (a) are lost by ΓI (b),

where the configuration space is (y1, y2). If θ = 1, ΓG will be a straight line (c),

whereas ΓI is shown on the graph of G (d).
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8. Conclusion

8.1. Physical implications

The property 3.2 and the proposition 4.1 extend to two cracks the results obtained

with one crack, in particular the theorem 6-3 presented in Ref. 19. In the present

study, we have proved that the jumps of elastic displacement oscillate around pos-

itive mean values Yk, which amount to mean dilatations of each crack. These di-

latations increase quadratically with the forcing level v0. Lastly, estimates of Yk are

proposed in (4.15), in the limits of a small forcing. Each term in (4.15) has a clear

and separate physical significance:

• F
′′

k (0) / dk is a feature of the nonlinear crack, involving the local concavity of

the contact law at the origin F
′′

k (0) and the maximum allowable closure dk;

• v0

ω
denotes the amplitude of the source;

• X
(n)
k(1) corresponds to the mechanical oscillation of the crack in the linear regime;

• sn

n
involves the Fourier spectrum of the source.

An application of this study is to characterize real cracks by non-destructive tech-

niques. Knowing the maximal allowable closure of the cracks dk is crucial in ge-

omechanics and geohydrology, where it is linked to the transport of fluids across

fractured rocks.3 If the source and the physical parameters around the cracks are

known, then measuring the mean dilatations Yk = [u(αk, t)] provides an estimate

of |F
′′

k (0)| / dk in(4.15). The stiffnesses Kk is involved in (4.15), via the equations

(2.9) and (4.9); they are obtained by usual acoustic methods.30 The only difficulty

is thus to measure [u(αk, t)].

For this purpose, two methods exist. The first one is to measure the dilatation of

the crack mechanically with strain gauges around the crack.21 The second method

is to measure the scattered elastic waves. From the reflection or transmission co-

efficients, one can infer the mean jumps of elastic displacements; see for instance

section 7-2 of Ref. 19 for details in the case of a single crack.

8.2. Future lines of investigation

Periodic solutions. The physical observables mentioned in section 8.1 depend on

the existence and uniqueness of periodic solutions to the nonlinear NDDE (3.2)-

(3.3). The results obtained along section 6 suffer from two limitations:

• in theorem 6.1, existence and uniqueness have been proven for small source

under a diophantine condition;

• the sufficient condition in proposition 6.1 holds for a dense set of θ = τ / T ,

where τ is the travel time between the cracks, and T is the period of the source.

The size of the subset of R satisfying the necessary and sufficient condition D

is not known.
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We do not know whether these restrictions reflect reality (for instance, a lost of

uniqueness in the case of large sources), or whether they are simply induced by the

technical tools used in the proofs. As an argument in favor of the latter ”technical”

hypothesis, let us consider the special case θ = n / 2 (n ∈ N) investigated in section

5. In this case, theorems 5.1 and 5.2 ensure the existence and uniqueness of the

solution whatever the amplitude of the source, whereas theorem 6.1 does not. As

a second argument, many numerical experiments have been performed with large

forcing and various values of θ (in practice, rational values of θ are considered

numerically): existence of a periodic regime has always been observed.

To be able to clear up this point, other techniques are probably required.

Schauder’s fixed point method could be used to prove the existence whatever the

amplitude of the source, but the uniqueness would be lost. To prove the existence

and uniqueness with a full set of ratios θ, the Nash-Moser theorem16,18 could be

applied, but the results would still be restricted to small sources.

Multiple cracks. Wave scattering by a large number N of nonlinear cracks is

frequently involved in real applications. Physically relevant processes are expected:

wave localization, band-pass behavior, chaos, etc.32 The reduction of model fol-

lowed in section 2.2 should provide a system of N coupled nonlinear neutral delay

differential equations. The method used in section 6 is probably intricate when N

large, but the NDDE system remains probably useful if it is combined with other

approaches.

A promising strategy is to take advantage of the conservation of mechanical

energy.22 This energy is the sum of two terms: the mechanical energy of elastic

waves outside the cracks, and the potential energy of nonlinear deformation of the

cracks. From the properties of these terms, it may be possible to deduce qualitative

results about the solution.

Complex media. Along this paper, the focus was put on the mechanical be-

havior of cracks; therefore the elementary framework of linear elastodynamics was

chosen. This framework is sufficient for a large class of problems encountered in

real applications, at least qualitatively, but one can wonder whether more complex

models could be used and analyzed with the tools proposed along this article.

Some preliminary remarks can be done on this topic. Our approach relies on

the transformation of the system (2.1) coupled with the jump conditions (2.2) and

(2.5) into the system of neutral delay differential equations (2.10). This reduction,

which is performed in proposition 2.1, requires to express the field at α+
1 in terms

of the field at α−
2 , and reciprocally.

In other words, our approach could be extended to media where the method

of characteristics holds. For instance, it is the case of linear viscoelasticity and of

linear poroelasticity. The generalization to nonlinear constitutive laws, leading to

nonlinear hyperbolic systems, is more complex and requires a deeper exam.
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