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We present an analytical formula to achieve numerical simulations of Kelvin force microscopy
�KFM� signals from static force fields, which can be employed to describe amplitude-modulation or
frequency-modulation KFM, as well as simultaneous topography and KFM modes for which the tip
probe exhibits a nonzero oscillation during KFM imaging. This model is shown to account for
side-capacitance and nonlinear effects taking place in KFM experiments, and can therefore be used
conveniently to extract quantitative information from KFM experiments at the nanoscale. © 2010
American Institute of Physics. �doi:10.1063/1.3323098�

The ability to measure local surface potentials at the
nanoscale is essential for material science, nanoelectronics,
and nanotechnology. The most common technique for such
measurements is Kelvin force microscopy �KFM�, which
uses the cantilever of an atomic force microscope as a Kelvin
probe.1 Numerous variants of KFM have been developed
since the 1990s, in which the surface potential is either de-
tected in air or in a vacuum environment,2 either separately
or simultaneously with the topography imaging,3 and finally
either using force or force gradient signals leading, respec-
tively, to amplitude-modulation KFM �AM-KFM� or
frequency-modulation KFM �FM-KFM�. All implementa-
tions however suffer from the fact that the cantilever tip
probes actually “feel” the surface through a series of parallel
capacitances. This averaging effect both degrades the lateral
resolution in KFM and prevents direct quantitative measure-
ments of surface potentials as first analyzed by Jacobs et al.4

This issue is already significant at the micrometer5 or
submicrometer6 scale due to the capacitive interaction of the
cantilever itself with the surface but becomes especially rel-
evant when imaging features below the tip apex radius,7,8 or
at the nanoscale. Although a phenomenological description
may be obtained from experiments,9 the extraction of the real
local electrostatic potentials from KFM data needs in general
to be performed through simulations.4,10

In this letter, we present an analytical formula to achieve
numerical simulations of KFM signals from static force
fields, which can be used either for AM-KFM or FM-KFM.
The model is shown to conveniently account for side-
capacitance effects,4 and thus, to enable the extraction the
real electrostatic potentials from measured KFM signals,
even at the nanometer scale. It is also generalized to the case
of an oscillating tip probe. This corresponds to experimental
situations in which the tip probe is, e.g., mechanically ex-
cited at its fundamental resonance and electrostatically ex-
cited either at low frequency or at a cantilever higher-order
resonance so as to simultaneously determine either FM-KFM
or AM-KFM signals,2,3,11,12 respectively. Our model enables
us to take into account the nonlinearities of surface potentials
with the tip-substrate distance, which are crucial to interpret
KFM experiments performed at short �i.e., less than 20 nm�
tip-substrate distances, such as in atomically resolved non-
contact atomic force microscopy.

The basic principle of KFM �here AM-KFM� between
a tip probe set at a distance z from a sample of surface
potential VS consists of: �i� applying a dc+ac bias Vdc
+Vac sin��t� to the tip forming a capacitance C�z� with the
sample; �ii� monitoring the cantilever capacitive force com-
ponent along the z-axis F��t�=�C /�z�Vdc−VS�Vac sin��t� at
the excitation angular frequency � �in practice, the cantilever
oscillation at the angular frequency ��; and �iii� regulating
the dc bias Vdc to nullify F� using a feedback loop. This
provides a measurement of the sample surface potential VS,
which is here described in a purely capacitive model. In re-
ality, VS accounts for the work function difference between
the tip and sample, but also for local electrostatic potentials,
and for fixed charge or dipole contributions at the tip or at
the sample surface. FM-KFM �resp. AM-KFM� experiments
are based on force gradients �resp. forces� so that the regu-
lation signal for the KFM loop is proportional to �2C /�z2

�resp. �C /�z�. In the following, we will address the particular
case in which VS only originates in a surface charge Q, but
our analysis would be generalized readily to account for lo-
cal changes in work function, electrostatic potentials, charge
displacements, and surface dipoles.

To derive an expression of the dc potential regulated by
a KFM loop �here, AM-KFM�, we start from the total force
Ftot at the tip �including its static, � and 2� components�,
which is written as Ftot=1 /2�0��Etot

2 dS when integrating the
total electric field Etot over the tip and cantilever surface. Etot
can be written as Etot=EQ+Edc+Eac sin �t, in which EQ is
the electric field in presence of the charge Q but with the tip
at zero bias, and Edc+Eac sin �t the electric field generated
by the tip electrostatic excitation Vdc+Vac sin��t� and for Q
=0. EQ and Edc+Eac sin �t are by essence force fields with
different topologies, since they correspond to image charge
forces and to capacitive forces, respectively. The force com-
ponent at � equals F��t�=F� sin��t�, in which F� equals

F� = �0��EdcEacdS + �0��EQEacdS . �1�

The aim is now to express the force component F� from the
static force fields which can be calculated independently
using a Poisson solver: FVstat�0,Q�0, FVstat=0,Q�0, and
FVstat�0,Q=0 obtained when a static bias Vstat is applied to
the tip and/or a charge Q is present on the surface. The first
term in Eq. �1� only includes capacitive electric fields
�Edc and Eac� and can thus be directly written asa�Electronic mail: thierry.melin@isen.iemn.univ-lille1.fr.
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2�VacVdc /Vstat
2 �FVstat�0,Q=0. The second term consists in an in-

tegrated product of the capacitive and image electric fields.
The computational difficulty associated with this product can
be circumvented since it also corresponds to the double prod-
uct of FVstat�0,Q�0=1 /2�0���Estat+EQ�2dS multiplied by
Vac /Vstat. By developing this equation, the second term in
Eq. �1� thus becomes Vac /Vstat� �FVstat�0,Q�0−FVstat�0,Q=0

−FVstat=0,Q�0�. The KFM condition F�=0 then reads:

2�Vdc/Vstat�FVstat�0,Q=0 + �FVstat�0,Q�0 − FVstat�0,Q=0

− FVstat=0,Q�0� = 0. �2�

It leads to the following expression for the surface potential
Vdc, here noted Vdc �AM−KFM,A=0 as it is determined for an
AM-KFM loop with zero tip oscillation amplitude �A=0�:

Vdc�AM−KFM,A=0 = − Vstat � �FVstat�0,Q�0 − FVstat�0,Q=0

− FVstat=0,Q�0�/2FVstat�0,Q=0. �3�

This expression can be used to conveniently calculate surface
potentials using a Poisson solver. Keeping in mind that Vdc is
a phenomenological description of the total electrostatic
force FVstat�0,Q�0 in the form of A+B� �Vstat−Vdc�2, Eq. �3�
can be also understood as the cross-term interaction between
the surface charge Q and capacitive charges at the tip �double
product in the previous expression, and hence, the force
FVstat�0,Q�0 when corrected from the purely capacitive and
image charge force components FVstat�0,Q=0 and FVstat=0,Q�0�,
normalized by twice the capacitive force FVstat�0,Q=0. Equa-
tion �3� is also independent of the value of Vstat used to
compute the static forces. In the case of FM-KFM, electro-
static forces have to be replaced by electrostatic force gradi-
ents. The surface potential Vdc �FM−KFM,A=0 for an FM-KFM
loop with zero tip oscillation �A=0� becomes

Vdc�FM−KFM,A=0 = − Vstat � �FVstat�0,Q�0� − FVstat�0,Q=0�

− FVstat=0,Q�0� �/2FVstat�0,Q=0� �4�

in which derivatives are taken as a function of z.
To illustrate side-capacitance effects and the use of Eqs.

�3� and �4�, we performed numerical simulations using COM-

SOL as Poisson solver, in axial symmetry. We show in Figs.
1�a� and 1�b� the geometry and the local isopotential pattern
of a charged disk �diameter d, charge density �� within a
disk-shape dielectric layer ��r=4� of fixed height h=10 nm
laying on a metal substrate, and probed by a metallic tip �of
same work function as the metal substrate�. A tip apex of 25
nm and a cone half angle of 15° has been used. In order to
minimize computational resources, we introduced an effec-
tive description for the cantilever, of disk shape, diameter
2.9 �m, and placed at a 1.0 �m distance above the sub-
strate plane. This configuration reproduces the typical ca-
pacitance gradient �here 5.4�10−11 F /m� of a commercial
cantilever.13 Von Neumann boundary conditions have been
taken at the edge of the simulation box. Results plotted in
Fig. 1�c� correspond to the dc surface potential calculated
using Eqs. �3� and �4�, and normalized with respect to the
�h2 /2�0�r value of the surface potential of a homogeneously
charged dielectric layer of height h and charge density �.14

This value is reached in Fig. 1�c� when using a cantilever
without tip and a homogenously charged dielectric layer �d
=2.9 �m� independently of the cantilever-substrate distance.

When probing �also without tip� a charged area of diameter
d�2.9 �m within the dielectric layer, the normalized sur-
face potential measured by the KFM loop is reduced, and
shows a parabolic variation with respect to d, i.e., a propor-
tionality with the disk surface, as expected from a side-
capacitance effect4 in a plane capacitor geometry. When a tip
is now introduced, the normalized surface potential is en-
hanced at low d due to the stronger weight associated with
the tip apex/cone capacitance gradient. This effect is how-
ever limited in AM-KFM, and the normalized surface poten-
tial does not exceed a few tens of percent for a charged area
falling below the tip cone �here d�500 nm�. Side-
capacitance effects effect associated with the cantilever itself
thus play a significant role in the interpretation of AM-KFM
measurements.5 We also plotted in Fig. 1�c� the calculated dc
potential in the case of FM-KFM, using Eq. �4�. The normal-
ized surface potential is seen to increase rapidly toward unity
for 0�d�200 nm, meaning that side-capacitance effects
associated with the cantilever itself are here negligible.13 The
error bars correspond here to the uncertainty introduced by
the calculation of the force derivatives in Eq. �4�.

We now investigate the case of an oscillating tip-probe
�A�0�,2,3,11,12 together with the sample topography acquired
in dynamic mode.3 Our model can be easily extended to this
situation, by considering the time-evolution of Eq. �2�. Since
the KFM regulation loop bandwidth stays low as compared
to the cantilever oscillation frequency,11,15 the force compo-
nents in Eq. �2� simply become integrated over time. This
leads to the following formula for surface potentials in AM

FIG. 1. �a� Schematics of the tip-substrate geometry in axial symmetry. A
spherical-conical tip with disk-shape cantilever is used. �b� Zoom-in of the
isopotential pattern of the tip probing a charged disk �diameter d=100 nm�
within a dielectric layer of thickness 10 nm and relative dielectric constant
�=4. The tip and metal surface are grounded. �c� Plot of the surface poten-
tial of the charged disk as a function of its diameter d. The limit of d
=2.9 �m corresponds to a homogeneously charged dielectric layer. The
surface potential is normalized by that of the homogeneously charged di-
electric layer �see text�, and plotted either for a cantilever without tip
�squares�, and for AM-KFM �circles� and FM-KFM �triangles�.
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or FM modes for a nonzero tip oscillation �A�0� using
integrals over a cantilever oscillation period

Vdc�AM−KFM,A�0 = − Vstat � �� FVstat�0,Q�0dt −� FVstat�0,Q=0dt

−� FVstat=0,Q�0dt	/2� FVstat�0,Q=0dt , �5�

Vdc�FM−KFM,A�0 = − Vstat � �� FVstat�0,Q�0� dt −� FVstat�0,Q=0� dt

−� FVstat=0,Q�0� dt	/2� FVstat�0,Q=0� dt . �6�

In these expressions, the time integrals �or force gradient�
component can also be replaced by weighted integrals as a
function of the tip-substrate distance z, following the ap-
proach of Ref. 16. The integrals in Eqs. �5� and �6� play a
significant role provided the force or force gradients expres-
sions in Eqs. �3� and �4� exhibit a nonlinear behavior with
respect to the tip-substrate distance z, which occurs, e.g.,
when scanning with rather short tip substrate distances, as in
noncontact atomic force microscopy. To illustrate this effect,
we show in Fig. 2�a� the surface potential Vdc which would
be regulated by AM-KFM over a charged dielectric sphere
�height 8 nm, charge density+1018e cm−3, �=12�, as a func-
tion of the distance z between the tip apex and charged
sphere, and with no tip oscillation �A=0�. Vdc has been here
normalized with respect to the volume average Vnc of the

charged sphere electrostatic potential and shows values up to
a few tens percents, as previously discussed. A clear nonlin-
ear behavior is visible from Fig. 2�a�. It stems �i� from the
nonlinearities of local Coulomb forces or force
gradients and �ii� from the intrinsic z-dependence of side-
capacitance effects.4 The impact of nonlinearities however
depends in practice on both the average tip-substrate distance

z� and on the tip-oscillation amplitude A. This is further
illustrated in Fig. 2�b�, in which the normalized surface po-
tential over the charged dielectric sphere has been calculated
for an AM-KFM loop using Eq. �5� for three different aver-
age tip-substrate distances �
z�=20 nm, 6 nm, and 2.5 nm�,
and as a function of the tip oscillation amplitude �here nor-
malized with respect to 
z��. The Vdc potential regulated by
the KFM loop is seen to increase when 
z� is decreased, in
agreement with Fig. 2�a�, but also to increase with the tip
oscillation amplitude, as a result of the nonlinearities. The
weight of nonlinear effects in AM-KFM �or FM-KFM� has
in practice to be determined carefully from scanning condi-
tions, with the aim to obtain a quantitative interpretation of
KFM experiments.

In conclusion, we have established a formula to calculate
KFM signals from static force fields, which can be used ei-
ther for AM-KFM or FM-KFM. This general model can be
conveniently used to take into account side-capacitance and
nonlinear effects, so as to extract quantitative information
from KFM signals at the nanometer or atomic scales.

We thank H. Diesinger, D. Deresmes, and ANR for sup-
port under Contract No. ANR 06-NANO-070.
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FIG. 2. �a� Surface potential of a charged dielectric sphere �relative dielec-
tric constant �=12� of diameter 8 nm, normalized with respect to the volume
average Vnc of the charged sphere electrostatic potential, and represented as
a function of the tip-sample distance z. Inset: Isopotential pattern for z
=20 nm, and a grounded tip and substrate. �b� Calculated AM-KFM surface
potential �normalized with respect to Vnc� in the case of an oscillating tip,
and for three average tip-sample �t-s� distance �
z�=20 nm, 6 nm, and 2.5
nm�, and plotted as a function of the normalized tip oscillation amplitude
A / 
z�. The surrounded point corresponds to a tip oscillation amplitude A
=15 nm and a minimum tip-substrate distance of 5 nm.
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