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Electronic states and vibrons in carbon nanotube quantum dots have in general different location
and size. As a consequence, the conventional Anderson-Holstein model, coupling vibrons to the dot
total charge only, may no longer be appropriated in general. Here we explicitly address the role of the
spatial fluctuations of the electronic density, yielding space-dependent Franck-Condon factors. We
discuss the consequent marked effects on transport which are compatible with recent measurements.
This picture can be relevant for tunneling experiments in generic nano-electromechanical systems.

PACS numbers: 73.23.-b; 85.85.+j; 78.32.-k

Introduction — Advances in miniaturization paved the
way to the fabrication of nanodevices in which molec-
ular systems become active elements of circuits [1].
Tunneling of electrons through molecules leads to the
excitation/de-excitation of quantized vibrational modes
(vibrons) which have been experimentally observed in
suspended carbon nanotubes (CNT) [2–5]. Their remark-
able electronic and vibronic properties allowed for the
observation of breathing [2] and stretching vibrons [3, 4]
in recent transport experiments.
In general vibrons couple both to the total dot charge and
to the spatial fluctuations of the electron density. The
latter received limited attention so far [6–8]. In most
cases the Anderson-Holstein (AH) model [9, 10] has been
employed, in which the vibron couples only to the to-
tal charge. The AH model yields position-independent
Franck-Condon (FC) factors [11] which strongly affect
transport [12–14]. The predicted current suppression at
low bias and the intensity of the vibrational sidebands
have been confirmed in a recent experiment on suspended
CNT quantum dots [4].
In this paper we show that the effects of density fluctu-
ations are crucial when the size and location of the dot
and of the vibron do not coincide. They are indeed dra-
matic when the vibron size Lv is smaller than the dot size
Ld: here, in sharp contrast with the AH model, position-
dependent FC factors arise, possibly asymmetric on the
dot tunneling barriers. This has profound consequences
on the transport properties of the system. Only when
Lv > Ld, the total charge contribution is dominant and
an effective AH model may be justified [15].
Our predictions find an important confirmation in fur-

ther measurements on the device considered in Ref. 4.
A scanning electron microscope image, Fig. 1a, shows
the CNT connected to source (S) and drain (D) leads.
A central suspended electrode (TG) acts as an electri-
cally insulated top-gate, below which a quantum dot is
formed (for more details see Ref. 4). Transport mea-
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FIG. 1: (Color online) (a) Scanning electron microscope of
the suspended CNT (arrows denote its position) connected to
source (S) and drain (D) contacts. A top gate (TG) is also
present. Scale bar: 200 nm. (b,c) Experimentally determined
differential conductance G (units e2/h) as a function of the
top gate voltage Vg (units V) and bias V (units mV). (d)
Schematic view of the coupled quantum dot-vibron system.
The thick part represents the quantum dot and the wiggly
line the vibron.

surements have been performed in a pumped 4He cryo-
stat with a standard lock-in technique. The differential
conductance G (Figs. 1b,c) exhibits an almost perfect
fourfold degeneracy in the Coulomb blockade diamonds
and a rich structure of sidebands due to the excitation
of stretching vibrons. The energy of electronic excited
states measured on the Coulomb diamonds yields a dot
size Ld ≈ 240 nm, while the separation of vibrational
subbands of about 0.8 meV yields Lv ≈ 60 nm < Ld [4].
A striking feature is the suppression of vibrational side-
bands with negative slope as the gate voltage is varied.
While in Fig. 1c, with Vg in the regime analyzed in Ref. 4,
sidebands with both slopes are present, in Fig. 1b for
Vg < 0 those with negative slope are completely absent.
Here we show that this behaviour requires asymmetric
FC factors at the tunneling barriers between the dot and
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the leads. We stress that such a suppression cannot be
obtained within the AH model, even assuming strongly
asymmetric tunnel barriers. The case of Fig. 1c is on the
other hand consistent with quasi-symmetric FC factors,
in the spirit of the standard AH model.
In addition, an alternating pattern of positive and nega-
tive differential conductance (PDC/NDC) is observed in
all the explored voltages ranges. This fact will be ex-
plained in terms of a dynamical trapping of dot states
induced by asymmetries in the tunnel barriers.

CNT Dot-vibron model — As a model for our system,
we consider a quantum dot confined between y1 = 0 and
y2 = Ld along the CNT and a vibron clamped at y0
and y0 + Lv, with −Lv < y0 < Ld for a finite over-
lap between the two systems (see Fig. 1d). We describe
the CNT-quantum dot as a Luttinger liquid with two
valleys η = ±1 and two spin channels σ = ±1 [16]
employing standard bosonization techniques with open
boundaries [17, 18] (i.e. the electronic field satisfies
ψη,σ(0) = ψη,σ(Ld) = 0). The bosonization picture is
not essential in our analysis, but it simplifies consider-
ably the formal treatment of the electron-vibron cou-
pling. The dot Hamiltonian is composed of three terms

Hd = H
(0)
d +H

(1)
d +H

(2)
d (~ = 1, µ ∈ {c+, c−, s+, s−})

H
(0)
d =

Ec

8
(Nc+ −Ng)2 +

πvF
8Ld

(
N2
c− +N2

s+ +N2
s−
)
,

H
(1)
d =

1

2

∑
µ

∞∑
q=1

(
p2µ,q + ω2

µ,qx
2
µ,q

)
,

H
(2)
d =

∆ε

2
(Nc+ −Nc−) .

The term H
(0)
d describes the energy of Nc+ electrons in

the dot for a given configuration with Nησ electrons with
spin σ in branch η. Here, total (+) and relative (-) charge
(c) and spin (s) modes have been introduced [16], with
Nc+ =

∑
ησ Nησ, Nc− =

∑
ησ ηNησ, Ns+ =

∑
ησ σNησ

and Ns− =
∑
ησ ησNησ. In addition, Ng ∝ Vg is the

charge induced by the top-gate voltage Vg, Ec is the
charging energy and vF the Fermi velocity [19]. Collec-
tive charge and spin excitations are described as bosonic

modes in H
(1)
d . The generalized position and momentum

of mode µ are respectively xµ,q and pµ,q, with frequency

ωµ,q = πvµq/Ld and group velocity vµ [19]. Finally, H
(2)
d

models a shift between the energy of the two valleys [20].
The lowest stretching vibron is described by the har-
monic Hamiltonian Hv = p20/2M + Mω2

0x
2
0/2, where

M is the vibron mass, ω0 = πvs/Lv its frequency and
vs the stretching mode velocity [19]. Here, x0 is the
amplitude of the lowest vibron, with distortion field
u(y) =

√
2x0 sin [π(y − y0)/Lv] along the CNT, and p0

is the conjugate momentum. In a CNT, vs < vµ and the
experimental estimates yield ω0 < ωµ,1 [3, 4].

Electrons and vibrations are microscopically coupled via

Hd−v = c

min[Ld,y0+Lv]∫
max[0,y0]

dy [ρ
(c+)
R (y)+ρ

(c+)
R (−y)]∂yu(y) , (1)

where c is the deformation potential coupling con-
stant [19, 21, 22] and we have introduced the to-

tal electron density of right movers ρ
(c+)
R (y) =∑

η,σ ψ
†
R,η,σ(y)ψR,η,σ(y) with ψR,η,σ(y) their Fermi op-

erator [23, 24]. Notice that, while vibrations cou-
ple to the c+ mode only, all four collective electronic
modes are important for transport. In bosonized form,

one has ρ
(c+)
R (y) = (Nc+/2Ld) + (1/2π)∂yφc+(y) with

φc+(y) =
√
ωc+,1/2

∑
q>0 e

−ξπq/2Ld [e−iπqy/Ld(xc+,q −
iω−1c+,qpc+,q) + h.c.] and ξ the short wavelength cutoff.
This expression of the density neglects the fast oscillat-
ing terms due to mixed right and left-moving fermion
fields and is reliable in the large total charge Nc+ regime
with Nc+ � Ld/πLv. This condition is experimentally
satisfied in all the ranges of parameters analyzed in this
paper. The coupling Eq. (1) can thus be decomposed into

H
(N)
d−v = c0x0Nc+ and H

(pl)
d−v = x0

√
M
∑∞
q=1 cqxc+,q, due

to zero modes and plasmons, respectively. The lengthy
but straightforward expressions of c0 and cq will be de-
ferred to a future publication [25]. We point out that
Eq. (1) accounts for the coupling between vibron and

density fluctuations H
(pl)
d−v, neglected in the AH model.

The total Hamiltonian H0 = Hd + Hv + Hd−v is thus
quadratic in the generalized coordinates and is diagonal-
ized [13, 26] (details will be given elsewhere [25]) into

H0 =
Ec

8
(Nc+ −Ng)2 +

πvF
8Ld

[
N2
c− +N2

s+ +N2
s−
]

+H
(2)
d

+
∑
ν≥0

Ωνa
†
νaν +

∑
µ6=c+

∑
ν≥1

ωµ,νb
†
µ,νbµ,ν . (2)

The sectors with µ 6= c+ are clearly unaffected by Eq. (1).
On the contrary, in the c+ sector new modes, created by
a†ν with energies Ων emerge. For ν ≥ 1 they represent
new collective electron modes (dressed plasmons), while
for ν = 0 a vibronic excitation dressed by plasmons is
obtained. The latter is the low-energy vibrational mode
observed in the experiments. The energies Ων satisfy
Ω2
ν = ω2

0 +
∑∞
q=1 c

2
q/
(
Ω2
ν − ω2

c+,q

)
, with Ω0 < ω0 and

Ων > ωc+,ν for ν ≥ 1 always. Note that we have reab-
sorbed a polaron shift into Ec [9].
Local FC factors — We can now study how the

bosonized Fermi field ΨR,η,σ(y) [18] is affected by the
transformation above. As we study tunneling at energies
smaller than the collective charge and spin excitations of
the dot, we restrict the Hilbert space to the ν = 0 mode
of the sector c+ only. Due to Eq. (1), the vibron oper-
ators aν appear in the electronic field, whose truncated
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form after the diagonalization reads [27]

ψR,η,σ(y) ≈ χη,σ√
2πξ

e−[λN+λ−(y)][a
†
0−a0]eiλ+(y)[a†0+a0] , (3)

where χη,σ decreases Nη,σ by one, λN = c0/
√

2MΩ3
0 and

λ±(y) =

√
κ
ωc+,1
Ω0

∞∑
q=1

cqF±(y)

Ω2
0 − ω2

c+,q

(4)

with κ = 1 +
∑∞
q=1 c

2
q/(Ω

2
0 − ω2

c+,q)
2 and F±(y) =

sin (πqy/Ld + π/4± π/4). Note that both λN and λ±(y)
depend on the CNT and dot parameters and position
only via y0, the length ratio δ = Lv/Ld, the ve-
locities ratio vc+/vs, and the dimensionless coupling
λm = c/(vs

√
Mω0) [19]. The local FC factors [9, 13]

Xll′(y) = 2πξ
∣∣〈Nη,σ − 1, l

∣∣ψR,η,σ(y)
∣∣Nη,σ, l′〉∣∣2 describ-

ing tunneling of an electron off the dot while changing
the vibron number from l to l′ (l ≤ l′) have the form

Xll′(y) = e−λ
2(y)[λ(y)]2(l

′−l) l!

l′!
[Ll
′−l
l (λ2(y))]2 (5)

with λ2(y) = [λN +λ−(y)]2 +λ2+(y) a position-dependent
effective coupling and Lba(x) the generalized Laguerre
polynomials. This is the main result of our paper.
The position dependence is entirely due to the cou-
pling between the vibron and the density fluctuations,
neglected by the AH model which instead predicts
position-independent FC factors, with constant interac-
tion strength λN . When max[λ±(y)] � λN the position
dependence cannot be neglected, and the AH model be-
comes questionable. This occurs for δ = Lv/Ld < 1
(which is the case of our experiment) and a vibron lo-
cated inside the dot: in this case indeed λN = 0. Fig. 2a

FIG. 2: (a) Plot of λ(y) for δ = Lv/Ld = 0.1 and different
positions of the vibron center yc = y0 + Lv/2: (thick solid)
yc = −Lv/4; (thick dashed) yc = 0; (thin solid) yc = Lv/2;
(thin dashed) yc = Ld/4; (thin dotted) yc = Ld/2. (b) Plot
of λ(yα) vs. δ (α = 1, 2) for y0 = 0 and α = 1 (solid) ; α = 2
(dashed). Notice the strong asymmetry for δ � 1 and the
symmetric λ’s for δ = 1. Here, vc+/vs = 32 and λm = 3 (for
a CNT waist ' 1 nm) [19].

shows λ(y) for δ < 1 and different locations of the vi-
bron. When the latter sits inside the dot (thin lines,
for 0 < y0 < Ld − Lv), λ(y) is sizeable only in the vi-
bron region. For vibrons partially outside the dot (thick
lines), λN 6= 0 and the position dependence of λ(y) is

weaker. For δ > 1 (not shown), λN � λ±(y) which im-
plies λ(y) ∼ λN , and the spatially-independent FC factors
of the AH model are obtained [15].
Of particular relevance for transport is the value of the
coupling at the position of the tunneling barriers, λ(y1)
and λ(y2). For δ < 1 and a vibron located asymmetri-
cally with respect to the dot center, they become very
asymmetric (see the thin solid line of Fig. 2a), yield-
ing strongly asymmetric FC factors. In Fig. 2b, λ(y1,2)
are shown as a function of δ ≤ 1 for a vibron located
near the left barrier. The couplings are strongly barrier-
dependent and vibrational excitations are strongly sup-
pressed for tunneling on the right. In the symmetric case
δ = 1, dot and vibron occupy the same region of space
and λ(y1) = λ(y2) [6]. Notice however that λN = 0.
The maximum value of the coupling for δ < 1 is cru-
cially sensitive to the ratio vs/vc+ and the value of
λm. The coupling of the dot to the breathing mode re-
duces vc+ [6, 28], increasing vs/vc+ and allowing to reach
λ(y1) > 1 with λ(y2) � 1. In parallel, recent measure-
ments in graphene [29] report a large deformation poten-
tial, which further increases λm.

Transport properties — In order to address the elec-
tronic transport we introduce the tunneling Hamiltonian
coupling the dot to the leads (represented by the CNT
portions outside the dot)

Ht =
∑
α=1,2

∑
η,σ

tα,ηψ
†
R,η,σ(yα)ΨR,η,σ(yα) + h.c. ,

where tα,η are tunneling amplitudes and ΨR,η,σ(yα) is
the right movers field for lead α . In sequential tunneling,
transition rates are evaluated between eigenstates of H0 -
Eq. (2). For tunneling into the state η of the dot through
the barrier α one has [14, 30]

Γ(in)
α,η = Γ0

|tα,η|2

|t2,+1|2
Xll′(yα)f

[
∆E + (−1)α+1eV/2

]
where Γ0 = 2πD|t2,+1|2/ξ2 and D is the leads density of
states, while f(E) is the Fermi function with ∆E the en-
ergy difference between final and initial dot states. Sim-
ilar expressions hold for tunnel-out processes.
The experiment allows to estimate the relevant param-
eters: Ec ≈ 4.5 meV (via Coulomb diamonds), the av-
erage Γ0 ≈ 1 µeV (via current traces), Ω0 ≈ 800µeV
(average vibron sideband separation) and kBT ≈ 90µeV
(for T ≈ 1K). Since kBT � Γ0 the sequential regime
is justified, Ω0 � kBT allows to resolve vibronic exci-
tations while Ω0 � Γ0 justifies a rate equation [14, 31]
neglecting vibronic coherences [32]. The extremely rich
scenario obtained for different asymmetries of left/right
tunnel barriers A = |t1,η|2/|t2,η|2 and of the coupling be-
tween leads and the two valleys γ = |tα,−1|2/|tα,+1|2 will
be discussed in detail elsewhere [25].
Here we focus on the relevant case to address the exper-
imental data in Fig. 1. For Vg < 0 in Fig. 1b, we found
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FIG. 3: (Color online) Plots of the numerical differential
conductance G (units e2/h) as a function of N̄g = Ng −
3πvF/2EcLd and V (units meV). (a) Density plot for A =
1/20, γ = 20, λ2(y1) = 2.4, λ2(y2) = 0.1; (b) same as in
(a) but for λ2(y1) = λ2(y2) = 2.4; (c) same as in (a) but
for A = 1/5, λ2(y1) = 1.8 and λ2(y2) = 0.6. In all panels,
Ω0 = 0.8 meV, kBT = 0.1 Ω0, Ec = 4.5 meV, ∆ε = 0.48 meV
and Γ0 = 0.8 µeV. For simplicity, only one resonance is
shown.

that the only possible parameter range compatible with
experimental data is: λ(y2) � λ(y1), A < 1, γ > 1 and
∆ε > kBT . The asymmetry of the FC factors is respon-
sible for the strong suppression of negative-sloped side-
bands, as clearly shown in Fig. 3a. We want to stress that
the absence of traces with negative slope is not achiev-
able in the standard AH model with symmetric FC fac-
tors, even in the presence of a quite strong asymmetry of
the tunneling barriers, as shown in Fig. 3b. This proves
the need to go beyond the AH model.
The alternating PDC/NDC traces can be addressed in
our model by the three remaining constraints (on A, γ
and ∆ε). The NDC is due to the creation of a bottleneck
in transport: when γ > 1 tunneling into states η = +1
is strongly suppressed leading to a dynamical trapping
and NDC [33, 34], while the states η = −1 provides a
fast pathway with ensuing PDC. A shift of the two val-
leys ∆ε > kBT is necessary in order to resolve the two
channels. Finally, the asymmetry A < 1 allows to obtain
the PDC/NDC pattern in all voltage regimes V ≷ 0.
Analyzing the experimental data, we observe that for
Vg > 0 the suppression of conductance traces becomes
less severe (see Fig. 1c), suggesting more symmetrical
FC factors as in Fig. 3c, in line with the standard AH
model. In this case NDC traces with both positive and
negative slopes occur for V > 0, pointing at an asym-
metry A weaker than in Fig. 3a. The ultimate reason
for the relative shift of electronic vs vibronic wavefunc-
tions at different Vg lies in the unknown details of the
electronic and mechanical confinements. Our predictions
could stimulate further developments of experimental se-
tups with full control over these delicate aspects.

Conclusions — Recent experimental data show the
need of a theory beyond the usual Anderson-Holstein
model of quantum transport in nano-electromechanical
systems. Here we investigate this new issue by consider-

ing the combined role of the electronic charge and density
fluctuations in the coupling to mechanical deformations
for suspended CNT quantum dots. When vibrons are
asymmetrically embedded into a larger dot, position de-
pendent Franck-Condon factors arise. The consequent
marked effects in the transport characteristics allow to
address experimental features which could not be cap-
tured by the standard AH model. Our analysis can be
easily extended to consider e.g. planar metallic contacts
or the tunneling from a localized tip. For small vibrons
embedded in larger dots a spatially-resolved injection of
electrons would show a tunneling suppression sensitive
to the vibron location, making our theory relevant for
spatially-resolved scanning tunnelling microscope mea-
surements as well. Similar effects could be expected also
in systems of higher dimensionality, such as e.g. quan-
tum dots embedded into suspended graphene sheets.
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