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Introduction

The Riemann Hypothesis (RH), that describes the non trivial zeroes of Riemann ζ function, is a Holy Grail of Mathematics [START_REF] Borwein | The Riemann hypothesis: a resource for the afficionado and virtuoso alike[END_REF][START_REF] Lachaud | L'hypothèse de Riemann : le Graal des mathématiciens[END_REF]. Many formulations of RH may be found in the literature [START_REF] Conrey | The Riemann hypothesis Notices[END_REF]. In this paper, we mainly refer to the Nicolas inequality [START_REF] Nicolas | Petites valeurs de la fonction d[END_REF] (1)

N k ϕ(N k ) > e γ log log N k ,
where N k = k i=1 p i is the primorial of order k, ϕ is the Euler totient function and γ ≈ 0.577 is the Euler-Mascheroni constant.

The inequality [START_REF] Borwein | The Riemann hypothesis: a resource for the afficionado and virtuoso alike[END_REF] holds for all k ≥ 1 if RH is true [START_REF] Nicolas | Petites valeurs de la fonction d[END_REF]Th. 2 (a)]. Conversely, if RH is false, the inequality holds for infinitely many k, and is violated for infinitely many k [14, Th. 2 (b)].

The Bost and Connes (BC) system is a quantum dynamical model whose partition function is the Riemann zeta function ζ(β) (with β = 1 kT the inverse temperature) and that exhibits a spontaneous symmetry breaking at the pole β = 1. The behaviour of the system reminds that of a ferromagnet. At a temperature larger than the critical temperature T c ≈ 10 3 K, the disorder of the spins dominates and the thermal equilibrium state is unique while for T < T C the individual spins tend to align to each other, which in the three-dimensional space R 3 of the ferromagnet yields a set of equilibrium thermal states parametrized by the symmetry group SO(3) of rotations in R 3 . In Bost and Connes approach, the Hamiltonian operator is given by the logarithm of the number operator N as H 0 = log N. This contrasts with the ordinary Hamiltonian H 0 = N + 1 2 for the harmonic oscillator. It may be that the logarithmic Hamiltonian is realized in the field of quantum physiology, where the perception states are proportional to the logarithm of the excitation instead of being proportional to it.

For a first account of this process, see [START_REF] Planat | On the cyclotomic quantum algebra of time perception[END_REF][START_REF] Planat | Riemann and Galois: phase-locking[END_REF]. See also [START_REF] Mack | Riemann zeta function from wave-packet dynamics[END_REF] for a model of a wave-packet dynamics based on a logarithmic energy spectrum.

The purpose of the paper is two-fold. First, we rewrite the abstract mathematical language of BC theory with, as much as possible, concepts of quantum information processing (QIP).

Second, we uncover a relationship between the statistical phase states (KMS states) of BC theory and Riemann hypothesis (RH). The Riemann hypothesis is shown to be equivalent to an inequality satisfied by the KMS states of the BC theory at a selected low temperature β > 2. A special case (at [START_REF] Solé | Extreme values of the Dedekind ψ function[END_REF]. It plays a leading role for counting the number of maximal commuting sets of qudits [START_REF] Planat | Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function?[END_REF]. Higher temperatures KMS states (1.5 < β < 2) require RH to be analyzed with conventional tools such as the prime counting function π(x). Very high temperatures KMS states (0 < β < 1.5) are left as an open problem.

β = 3) of this inequality is ψ(N k )/(N k log log N k ) > e γ /ζ(2) for k > 3, where ψ(n) = ψ 2 (n) is the Dedekind ψ function

On modular exponentiation: classical and quantum

Let us start the parallel between the BC theory and QIP with the problem of finding the multiplicative order r in the modular equation ( 2)

a x = 1 (mod q).
Given the integer a and a positive integer q with (a, q) = 1, the order r = ord q (a) is the smallest positive integer x satisfying [START_REF] Bost | Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory[END_REF]. It is straigthforward to establish the set of inequalities (3) ord q (a) ≤ λ(q) ≤ ϕ(q) ≤ q -1, where ϕ(q) is the Euler totient function [it counts the number of irreducible fractions p q with p < q] and λ(q) is the Carmichael lambda function [it is the smallest positive integer x satisfying (2) for every integer a < q with (a, q) = 1] 1 . Both ϕ(q) and λ(q) are universal exponents that satisfy (2) for any integer a coprime to q.

Order-finding is a task that can in principle be performed more efficiently on a quantum computer than on a classical computer. It is a building block of the Shor algorithm for factoring the integers [START_REF] Nielsen | Quantum computation and quantum information[END_REF].

Let q be an m-bit integer and a be an integer smaller than q with (a, q) = 1. The quantum algorithm for order-finding is based on the following unitary operator acting on m-bits and such that for any n < q

(4) |n → U a |n = |an mod q .
Since a is coprime to q, it has an inverse modulo q and U a U ⋆ a = 1 (U a is unitary). Operator U a is also multiplicative:

U a U b = U b U a , ∀a, b < q.
The eigenvalues of the operator (4) are in the form exp(2iπ k r ) and the corresponding eigenvectors are given as a quantum Fourier transform ( 5)

|u k = 1 r 1/2 r-1 j=0 exp( -2iπkj r ) a j mod q .
The efficient implementation of the quantum Fourier transform on a quantum computer allows the efficient estimation of the period r of the function f (x) = a x mod q in (2), and subsequently the efficient factorization of an integer (in polynomial time instead of the exponential time required on a classical computer).

1 The recursive calculation of λ(n) is as follows. For a positive integer

k ≥ 3, λ(2 k ) = 2 k-2 . For p an odd prime ≥ 3 or 0 < k ≤ 2, λ(p k ) = ϕ(p k ) = (p -1)p k-1 . For q = n i=1 p ki i a product of primes, λ(q) = lcm[λ(p ki i )] i
, where lcm denotes the least common multiple of the numbers in the bracket.

On the KMS-states of Bost-Connes model

Bost and Connes theory is a skilfull balance of concepts related to QIP and to quantum statistical physics [START_REF] Bost | Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory[END_REF]. The Bost-Connes C ⋆ algebra is the cross product [START_REF] Laca | Semigroup of *-endomorphisms, Dirichlet series and phase transitions[END_REF] (6)

C Q = C ⋆ (Q/Z) ⋊ N ⋆
of the C ⋆ -algebra C ⋆ (Q/Z) of additive/phase operators e δ acting on qudits |n as [START_REF] Hardy | An introduction to the theory of numbers[END_REF] |n → e δ |n = exp(2iπ

p q ) |n , δ = p q ∈ Q/Z, by the semigroup N ⋆ of multiplicative operators µ a (8) |n → µ a |n = |an mod q , a ∈ N ⋆ .
The operator µ a is closely related to U a but acts on qudits |n .

The BC system is the pair (C Q , σ t ) with entries the algebra C Q and a quantum statistical flow σ t .

In standard quantum statistical mechanics, given an observable Hermitian operator M and a Hamiltonian H 0 , one has the evolution σ t (M) versus time t as For the more general case of an algebra of observables A, the Gibbs state is replaced by the so-called Kubo-Martin-Schwinger (or KMS β state). One introduces a 1-parameter group σ t of automorphisms of A so that for any t ∈ R and x ∈ A

(11) σ t (x) = exp(itH 0 )x exp(-itH 0 ).
For the algebra A, the equilibrium state remains unique only if some conditions regarding the evolution of the operator x ∈ A are satisfied: the KMS states φ β on A have to fulfill the KMS β condition with respect to σ t , namely that for any x, y ∈ A, there exists a bounded

holomorphic function F x,y (z), 0 ≤ ℑz ≤ β such that (12) F x,y (t) = φ β (xσ t (y)) and F x,y (t + iβ) = φ β (σ t (y)x), ∀t ∈ R.
The KMS flow of BC system. The Hamiltonian on the BC system is defined from its action on the qudits |n by Applying [START_REF] Planat | On the cyclotomic quantum algebra of time perception[END_REF] to the Hamiltonian (13) one obtains [START_REF] Koch | Sur la distribution des nombres premiers[END_REF] σ t (µ a ) = a it µ a and σ t (e δ ) = e δ for any a ∈ N ⋆ , δ ∈ Q/Z and t ∈ R.

It can be shown [START_REF] Bost | Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory[END_REF][START_REF] Laca | Semigroup of *-endomorphisms, Dirichlet series and phase transitions[END_REF] that in the high temperature regime 0 < β ≤ 1 there is a unique KMS β state of the quantum statistical system (C Q , σ t ). It corresponds to the partition function [START_REF] Nicolas | Petites valeurs de la fonction d[END_REF]. In the low temperature regime β > 1, the KMS β is no longer unique. The symmetry group G of the quantum statistical system is a subgroup of the automorphisms of (C Q , σ t ) which commutes with σ t , i.e. ( 16)

w • σ t = σ t • w for any w ∈ G and t ∈ R,
where • is the composition law. The symmetry group G permutes a family of extremal KMS β states generating the possible states of the system after phase transition. The symmetry group of the algebra (µ a , e δ ) endowed with the Hamiltonian H 0 in (13) is the Galois group

G = Gal(Q cycl /Q) of the cyclotomic extension Q cycl of Q. The field Q cycl is generated in
Q by all the roots of unity. The Galois group G is aut(Q cycl ). It is isomorphic to Z ⋆ q . At any temperature β < ∞, the restriction of the KMS β state to C ⋆ (Q/Z) is given by [START_REF] Mack | Riemann zeta function from wave-packet dynamics[END_REF] φ β (q) = q -β p∈P,p|q

1 -p β-1 1 -p -1 and for β = ∞ it is (18) φ ∞ (q) = µ(q)/ϕ(q),
where µ is the Möbius function.

The KMS state (17) may be easily rewritten as φ β (q) = N β-1 q-1 (q)ψ β-1 (q), where N q = q k=1 p k is a primorial number and ψ b (q) is defined in the abstract.

The Bost-Connes KMS states and Riemann hypothesis

In section(4.1) one formulates Riemann hypothesis as a property of the KMS states [START_REF] Mack | Riemann zeta function from wave-packet dynamics[END_REF] with the inequality

(19) ǫ β (q) = N q |φ β (N q )| log log N q - e γ ζ(β -1) > 0 when β > 2.
The special case β = 3 corresponds to our recent paper [START_REF] Solé | Extreme values of the Dedekind ψ function[END_REF]. In section (4. to obtain

ψ b (N n ) ∼ e γ ζ(b) log(p n ),
Now the Prime Number Theorem [7, Th. 6, Th. 420] shows that x ∼ θ(x) for x large where θ(x) stands for Chebyshev's first summatory function:

θ(x) = p≤x log p.
This implies that, upon taking x = p n we have p n ∼ θ(p n ) = log(N n ). The result follows.

Proposition 2. Pick a real number b > 1. For n ≥ 2 we have

n 2 > ϕ(n)ψ b (n) ≥ n 2 ζ(b) .
Proof: The first inequality follows at once upon writing

ϕ(n)ψ b (n) n 2 = p|n (1 -1/p b ),
a product of finitely many terms < 1. Notice for the second inequality that

ϕ(n)ψ b (n) n 2 = p|n (1 -1/p b ) ≥ p (1 -1/p b ),
an infinite product that is the inverse of the Eulerian product for ζ(b).

The next result is a far reaching consequence of Nicolas study of the small values of Euler ϕ function.

Theorem 1. Under RH the ratio R b (N n ) is > e γ ζ(b) for n ≥ 3.
If RH is false, this is still true for infinitely many n.

Proof:

Follows by Proposition 2, combined with [14, Theorem 2].

In view of this result and of numerical experiments the natural conjecture is

Conjecture 1. Fix a real number b > 1. For all n ≥ 3 we have R b (N n ) > e γ
ζ(b) . The main result of this note is the following. Theorem 2. Conjecture 1 is equivalent to RH.

Proof: If RH is true we refer to the first statement of Theorem 1. If RH is false we consider the function

g(x) := e γ ζ(b) log θ(x) p≤x (1 -1/p) p≤x (1 -1/p b ) . Observing that log θ(p n ) = log N n , we see that g(p n ) < 1 is equivalent to R b (N n ) > e γ ζ(b)
. We need to check that for x large enough g(x) can be > 1 or equivalently log g(x) > 0. Using [6, Lemma 6.4], we obtain, upon writing

-log ζ(b) = p≤x log(1 -1/p b ) + p>x log(1 -1/p b ),
the bound log g(x) ≥ log f (x) -b/x, where f is the function introduced in [14, Theorem 3], that is

f (x) := e γ log θ(x) p≤x (1 -1/p).
We know by [START_REF] Nicolas | Petites valeurs de la fonction d[END_REF]Theorem 3 (c)] that, if RH is false, there is a constant 0 < c < 1 such that lim sup x -c f (x) > 0.

Since for x large b/x << x -c , the result follows. Recall the Prime Number Theorem with rest from 1896 [START_REF] Hardy | An introduction to the theory of numbers[END_REF],

π(x) = Li(x) + O(x exp(-c log x)),
for some constant c > 0, as well as the Prime Number Theorem with rest under RH ( [START_REF] Koch | Sur la distribution des nombres premiers[END_REF]).

π(x) = Li(x) + O( √ x log x).
Plugging these estimates into the definition of J b we obtain Lemma 2. Let 0 < b < 1. We have, unconditionally,

J b (x) = x 2 Li(t)dt t 1+b + O( x 2 exp(-c √ log t)dt t b
).

and, under RH

J b (x) = x 2 Li(t)dt t 1+b + O( x 2
log tdt t b+0.5 ).

The preceding result shows that the assumption b > 1/2 is necessary to have asymptotic results to the precision O(1), since we need the integral in the error term to converge. where

I b (x) = x 2 
Li(t)dt t 1+b .

Proof: Combine Lemma 1, Koch's paper [START_REF] Koch | Sur la distribution des nombres premiers[END_REF] and Lemma 2. Theorem 4. Under RH and for 0.5 < b < 1, there is constant K b > 0, such that, for large n, we have

ψ b (N n ) ∼ K b log p n exp(-B b (p n )).
Proof: Note that the definition of A b (x) entails

A b (x) = C b + o(1) - p≤x 1/p b .
Combine Theorem 1 with the above and with Mertens formula

p≤x (1 -1/p) -1 ∼ e γ log x.
The result follows upon putting x = p n .

We now give a lower bound on ψ b (N n ).

Theorem 5. Under RH and for 0.5 < b < 1, for every ǫ > 0, there is an N such that n ≥ N yields

ψ b (n) > K b e γ (1 -ǫ)N n log 2 2 N n exp(-B b (p n )). Proof: First, note that ϕ(N n ) N n ψ b (N n ) = p≤pn (1 -1/p b ),
a divergent product bounded below by

K b (1 -ǫ) log 2 N n exp(-B b (p n )),
for n large enough, by Theorem 4.

Under RH Nicolas inequality

N n ϕ(N n ) > e γ N n log 2 N n ,
holds for all n. The result follows.

Conclusion and open problems

In the present paper, we established the new criterion (19) (theorem 2) for Riemann hypothesis from the low temperature KMS states of the Bost-Connes model. Our vision is related to but distinct from Connes vision of the zeroes of ζ as an absorption spectrum [START_REF] Connes | Trace formula in noncommutative geometry and the zeros of the Riemann zeta function[END_REF]. In our approach the zeroes lurk in the backstage, and partial Eulerian products appear on the forefront. While the low temperatures KMS states (β > 2) lend themselves to an elegant analysis leading to infinitely many equivalence criterion with RH, high temperatures 

( 9 )

 9 σ t (M) = exp(itH 0 )M exp(-itH 0 ), and the expectation value of M at the inverse temperature β = 1 kT is the unique Gibbs state (10) Gibbs(M) = Trace(M exp(-βH 0 ))/Trace(exp(-βH 0 ).

( 13 )

 13 H 0 |n = ln n |n . Using the relations exp(-βH 0 ) |n = exp(-β ln n) |n = n -β |n , it follows that the partition function of the model at the inverse temperature β is (14) Trace(exp(-βH 0 )) = ∞ n=1 n -β = ζ(β), ℜ(β) > 1.

4. 1 .Proposition 1 .

 11 Low temperature KMS states. To simplify the notation, we define the ratio R b (n) := ψ b (n) n log log n . The motivation for this strange ratio will become apparent in the following application of Mertens formula [7, Th. 429]. Pick a real number b > 1. For n going to ∞, we have lim R b (N n ) = e γ ζ(b) . Proof: By the definition of ψ b (n) we can combine the Eulerian product for ζ(b) with the Mertens formula p≤x (1 -1/p) -1 ∼ e γ log(x).

4. 2 . 1 . 1 . 2 π

 2112 High temperature KMS states. To investigate high temperature KMS states at large dimensions n, we will need the following lemmas. Recall π(x) the prime counting functionπ(x) = p≤x Lemma Let 0 < b < 1. We have p≤x 1 p b = π(x) x b + bJ b (x),where J b (x) =x (t)dt t 1+b . Proof: Write the above sum as a Stieltjes integral, and integrate by parts.

Lemma 3 .

 3 Let 0.5 < b < 1. We have, under RH p≤x 1 p b = Li(x) x b + bI b (x) + O(1),

Theorem 3 .

 3 Let 0.5 < b < 1. We have, under RH, Use lemma 3 and integrate I b by parts. If 0.5 < b < 1, denote by C b the sum of the convergent series C b = p (log(1 -1/p b ) + 1/p b ). Denote by A b (x) the partial sum A b (x) = p≤x log(1 -1/p b ). Denote by B b (x) the Bertrand integral B b (x) = x 2 dt t b log t .

( 2 5 .

 25 > β > 3/2) forced us to assume RH to establish the asymptotic formulas in theorems 4 and Future work should focus on the physical understanding of the lower bound on KMS states (equivalent to RH) we established. Another direction of inquiry is the study of such a lower bound attached to a quantum statistical system whose partition function is the Dedekind zeta function[START_REF] Cohen | Quantum statistical mechanics and number theory[END_REF]. As a finer point, we mention very high temperatures KMS states ( β < 3/2), which are challenging to analyze even under RH.

Table 1 .

 1 N q 6.4 × 10 10 4.7 × 10 219 6.7 × 10 3392 9.1 × 10 45336 A check of KMS inequality (19).
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