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The importance of planning production processes has been well recognized [START_REF] Huang | Tolerance-based process plan evaluation using Monte Carlo simulation[END_REF]. As a vital link between design and production, planning determines how well a product can be fulfilled in terms of cost, lead time and quality [START_REF] Martinez | Product family manufacturing plan generation and classification[END_REF].

Decision making in planning production processes is complex since it involves multiple, often conflicting, production performance metrics, a variety of operations types, operations precedence and alternative manufacturing resources of same kinds [START_REF] Chan | Modeling of integrated, distributed and cooperative process planning system using an agent-based approach[END_REF].

Production processes of products consist of both manufacturing processes of component parts and assembly processes of component assemblies. Thus, production process planning provides inputs (e.g., parts, assemblies, manufacturing resources) to downstream computer-aided process planning and assembly planning for specifying detailed process parameters such as cutting speed, feed rate and depth of cut [START_REF] Turner | Introduction to Industrial and Systems Engineering[END_REF]. It also provides inputs for scheduling needs [START_REF] Martinez | Product family manufacturing plan generation and classification[END_REF].

Manufacturers at large have adopted the strategy of developing product families in attempting to stay competitive through satisfying diverse individual customer requirements while maintaining low costs [START_REF] Sanderson | Managing Product Families[END_REF]. Successful product family development relies on achieving efficiencies in both designing and producing product families. Some researchers (e.g., [START_REF] Fixson | Product architecture assessment: A tool to link product, process, and supply chain design decisions[END_REF], [START_REF] Huang | Towards integrated optimal configuration of platform products, manufacturing processes, and supply chains[END_REF]. [START_REF] Lu | Process development: A theoretical framework[END_REF], to name but a few) have pointed out that planning of production processes for product families can help achieve production stability, and eventually mass production efficiency. Production processes planning for product families is more challenging and complex when compared with that for individual products [START_REF] Martinez | Product family manufacturing plan generation and classification[END_REF]. The reasons are threefold. First, the optimal production processes of individual products may not contribute to that of the product family as a whole due to the limited number of manufacturing resources [START_REF] Zhang | Process Platform-based Production Configuration for Mass Customization[END_REF].

Second, the solution space of production processes of product families is combinatorial in nature due to the large number of individual products, process types, operations types, and process elements [START_REF] Martinez | Product family manufacturing plan generation and classification[END_REF]. Last, production processes planning for product families involves specific technical and managerial challenges, which are inadequately addressed in the literature [START_REF] Lu | Process development: A theoretical framework[END_REF]. application results. Further discussions along with some managerial implications are provided in Section 6.

RELATED WORK

To capture the hierarchical nature of assembly planning, [START_REF] Thomas | A hierarchical Petri net framework for the representation and analysis of assembly[END_REF] propose a hierarchical PN framework, where each control plan corresponding to an assembly robot operation is viewed as a lower level representation of assembly tasks at the higher level. [START_REF] Adamous | Hierarchical modeling and control of flexible assembly systems using object-oriented Petri nets[END_REF] introduce a hierarchical model of flexible assembly system control using object PNs, which is built on hierarchical decomposition of the system through coordination among lower level decomposed system elements. [START_REF] Lomazova | Nested Petri nets: A formalism for specification and verification of multi-agent distributed systems[END_REF] discusses two level NPNs for modeling multi-agent distributed system and the extension to multi-level NPNs. She proves that NPNs are able to maintain the properties of classic PNs. To accommodate qualitative modeling of multiple mobile robot systems, Lopez-Mellado and Almeyda-Canepa ( 2003) develop a three level scheme of PNs, in which tokens themselves can be defined as PNs as well. In software system modeling, [START_REF] Hiraishi | A Petri-net-based model for the mathematic analysis of multi-agent systems[END_REF] presents a PN-based model, which adopts the classic PNs to analyze and design multi agent systems. He represents agents using tokens, which themselves are PNs. [START_REF] Li | Modeling an electronic component manufacturing system using object oriented colored Petri nets[END_REF] develop a hybrid object-oriented colored PNs (OOCPNs) by enhancing OOCPNs with time delay and firing speed. The hybrid OOCPNs are used to model formally batch-based electronic component manufacturing systems. Recognizing the importance of solving deadlocks in flexible manufacturing systems, [START_REF] Abdallaht | Deadlock-free scheduling in flexible manufacturing systems using Petri nets[END_REF] put forward a deadlock free scheduling algorithm using TPNs in order to minimize mean flow time. [START_REF] Reddy | Timed Petri net: An expeditious tool for modeling and analysis of manufacturing systems[END_REF] present an algorithm for qualitative and quantitative analysis of TPN models in manufacturing systems with focus on real time control and performance evaluation. [START_REF] Liu | Modeling workflow processes with colored Petri nets[END_REF] propose a workflow modeling language-based CPNs called WFCP-nets (workflow based on CPNs) and apply it to the product development workflow. [START_REF] Chin | Integrated definition language 0 (IDEF) and colored Petri nets (CPN) modeling and simulation tool: A study on mould-making processes[END_REF] put forward methodologies based on integrated definition language and CPNs for modeling and simulating complicated manufacturing processes. Researchers, e.g., [START_REF] Dotoli | Colored timed Petri net model for real-time control of automated guided vehicle systems[END_REF], [START_REF] Nandula | Performance evaluation of an auction-based manufacturing system using colored Petri nets[END_REF], [START_REF] Jiang | Temporized colored Petri nets with changeable structure (CPN-CS) for performance modeling of dynamic production systems[END_REF], Ravi [START_REF] Ravi Raju | Design and evaluation of automated guided vehicle systems for flexible manufacturing systems: An extended timed Petri net-based approach[END_REF], to name but a few, also apply CPNs and TPNs to manufacturing systems modeling, analysis and control. An observation on available PN models is that most researchers have adopted the basic ideas of different extensions of classic PNs and further extended them to accommodate the different modeling requirements of their own problem domains. Similarly, in this work, we integrate the advantages of NPNs, TPNs and CPNs to accommodate the difficulties in modeling production configuration.

DEFINITIONS OF NESTED COLORED TIMED PETRI NETS

Production configuration entails a process of configuring a complete production process for a product along with the product hierarchy (i.e., at different levels of abstraction). Being located at the highest level, the more abstract production process involving the product's immediate child items is configured first. Subsequently, the assembly processes and/or manufacturing processes for producing these immediate child items are configured at the second level, and so on. The manufacturing processes for parts at the lowest level of each branch of the hierarchy are last to be configured.

In each such process, be it a manufacturing process for a part, an assembly process for an assembly or the abstract production process for the final product, a number of alternative machines (including the corresponding tools, fixtures, etc) are able to complete same tasks.

While these machines work on same input items for same tasks, they execute different operations and, in most cases, incur different cycle times. In practice, it is a common solution that buffers are adopted to keep raw materials, parts, assemblies and final products.

Furthermore, a number of different types of WIPs (work in processes) are involved in a process. Unlike a part or assembly that can be located in the BOM (bill of materials) of a product, a WIP is an intermediate pseudo item formed by sibling parts and/or assemblies and is not specified in the BOM.

Bearing in mind the similarities embedded in processes (e.g., adoption of buffers and alternative machines, involvement of WIPs), we define a basic PN structure first. Accordingly, the basic PN structure reflects the generalized common process elements, which are assumed by different types of nets defined in the proposed formalism.

Basic Net Structure

Definition 1: A basic PN structure is a directed bipartite graph ( ) ready to be processed (be it a raw material, part, assembly, or WIP), R P machines, and CR P the conceptual machines in accordance with alternative machines that can complete same tasks by performing different operations;

φ = ∩ ∪ ∪ = T P , T T T T T R L
is a finite set of transitions with three disjoint subsets: L T denoting a set of logical transitions, R T a set of reconfigurable transitions, and T T a set of timed transitions;

R CR T P h × ⊆
is a finite set of inhibitor arcs that connect a conceptual machine place to a reconfigurable transition and assumes two values: 1 and 0. When

( ) R CR T t , P p , 1 t , p h ∈ ∈ ∀ =
, there is a token in the conceptual machine place; the associated 

( ) h P T T P A ∩ × ∪ × ⊆
is a finite set of arcs excluding inhibitor arcs that connect places/transitions to transitions/places.

Attempting to capture and model multiple alternative machines in relation to same tasks, CR P is defined in the formalism to represent the corresponding conceptual machines in addition to R P , which is defined to denote specific machines. The common practice suggests that only one machine works on same items at one time. Thus, in conjunction with CR P , h and R T are introduced to model this situation, where multiple machines can perform same tasks and only one is used eventually. The firing of R T leads to the reconfiguration of proper machines. In this way, CR P , R T and h can address process variations in system models without rebuilding new ones when machines are added and/or removed.

L

T is defined to capture the logic of system running. Their firing indicates the satisfaction of preconditions of operations, among which the typical one is the presence of material items and machines to be used. T T is defined to represent operations, which take certain time durations to complete. Accordingly, the firing of timed transitions incurs time delays. Both logical and reconfigurable transitions are untimed. Their firing is instantaneous and takes 0 time delay.

Figure 1 shows a basic PN structure and the corresponding graphical formalism. Based on the basic PN structure, three types of PNs, namely manufacturing nets ( MNets ), assembly nets ( ANets ) and a process net ( PNet ) are defined to address the granularity issue in production configuration. These nets are defined as a type with a marking, with each type , where

MNet is a manufacturing net representing the processes of manufacturing a part family;

( )

τ Ε β α Σ , , , , , G ToM M =
is a manufacturing type with

• G is the basic PN structure;

• M Σ is a finite set of color sets or types, each of which includes a number of individual color instances;

• M M P Σ α a :
is a color assignment function that maps a place, p , to a set of colors, ( )

p α ( M M Σ is the family of all multisets over M Σ ); • ( ) { } ( ) ε β ∪ Σ × Σ : M M T a
is a color assignment function that maps a transition, t , to a set of color pairs, ( ) 

( ) τ Σ Ε Σ Σ Σ + → ∧ ∨ ∪ ∨ × : @ M M M A M M M M a
is an arc expression function that defines the timed and untimed arc expressions for arcs with respect to transition colors; ∧ ∨ / denote Exclusive OR (XOR)/AND relationships; and → represents an "if-then" relationship;

• 0 ∪ ℜ ∈ +
τ is a set of non-negative real numbers representing time delays; In PN models, tokens residing in places are used to represent objects. To reflect diverse product and process variety while building a concise and representative model, colors, i.e., specific data values, are attached to tokens. Each colored token is uniquely defined by a color, and vice versa. Since there is a one-to-one correspondence between colors and colored tokens, hereafter, colors and colored tokens are used interchangeably. While the places representing machines, conceptual machines, WIPs and part buffers are common to an MNet , ANet and PNet (the latter two are defined below), the places denoting raw material buffers are unique to an MNet . The set of colored tokens representing raw materials in a raw material buffer are defined according to the corresponding parts to be produced.

Machines have two statuses -busy and idle. While tokens in idle machine places are defined to represent machines, tokens in busy machine places are defined according to items to be produced. When there is a token residing in the conceptual machine place, the conceptual machine is instantiated to the specific machine represented by the token. A part buffer place contains the set of colored tokens representing the corresponding part family.

Following production practice, we define colored tokens of logical and reconfigurable transitions to be the same as those of output places and, similarly, colored tokens of timed transitions as those of input places. [START_REF] Tielemans | Lead Time Performance in Manufacturing Systems[END_REF] points out that cycle times are a useful performance measure of production. Thus, in this study we adopt cycle times to accommodate selection of proper processes from configured alternatives. Accordingly, time delays, τ , are defined in the formalism to represent operations cycle times. Time delays can be obtained from a process platform of a process family in relation to a product family [START_REF] Zhang | Process Platform-based Production Configuration for Mass Customization[END_REF]. See [START_REF] Bowden | A brief survey and synthesis of the roles of time in Petri nets[END_REF] for a comprehensive review of time representations in PN models.

To cope with the difficulties in modeling diverse cycle times associated with multiple machines and same tasks, an arc expression function, Ε , is introduced in the modeling formalism. It defines both timed arc expressions and untimed arc expressions. For every arc, Ε relates transition colors with multisets of place colors establishing pre-and post-conditions for transition firing. A timed arc expression is a set of antecedent-consequent statements with XOR relationships. Each antecedent contains a set of colored tokens with AND relationships. The occurrence of each such colored token may not be 1, and by default, the occurrence of 1 is omitted. The consequent includes a colored token to be generated in the busy machine place together with a time delay representing the corresponding operation cycle time. Untimed arc expressions are defined to specify (1) the input tokens for firing transitions; and (2) output tokens after firing transitions. Figure 2 shows an example of an MNet . In this net, the set of places is { } 

{ } { } { , b , b , a , a 2 1 2 1 { } { }} 2 1 3 2 1 m , m , A , A , A
. Table 1 shows the places, represented system elements and assigned colored tokens. <<<<<<<<<<<<<<<<<<<<<<Insert Table 1 Here>>>>>>>>>>>>>>>>>>>>>

The color pairs assigned to transitions and the timed/untimed arc expressions with respect to transition colors are shown in the figure (note: for a better understanding, the arc expression functions in accordance with individual color pairs of transitions are also given).

The three different time delays in the timed arc expression of ( ) 

3
( ) ( ) { } 3 3 2 2 1 1 A , A , A , A , A , A
, indicate that when 2 t is enabled with respect to ( )

1 1 A , A or ( ) 2 2 A , A or ( ) 3 3 A , A
, it must fire simultaneously with transition(s) containing same color pairs of the higher level nets, in which this MNet is contained. The color pairs of other transitions indicate that their firing is autonomous and transition synchronization is not required.

The marking of the four places containing tokens is ( ) ( ), )

a p 1 1 = µ ( ) ( ), b p 2 2 = µ ( ) ( )
1 2 2 1 m , m , 0 , 0 , 0 , b , a
.

Assembly Net ( ANet )

Definition 3: An assembly net is defined as a tuple

( ) µ , ToA ANet =
, where

ANet is an assembly net representing the processes of producing a family of assembly variants;

( )

τ Ε β α Σ , , , , , SoTma , G ToA A =
is an assembly type with

• G is the basic PN structure;

• SoTma is a set of manufacturing types and assembly types;

• A Σ is a finite set of color sets or token types;

• A M SoTma P Σ α ∪ : a
is an assignment function that maps a place, p , to manufacturing or assembly types or a set of colors, ( )

p α ; • { } ( ) ( ) { } ( ) ε Σ Σ ε Σ β ∪ × × ∪ : A A A T a
is an assignment function that maps a transition, t , to a set of color triples, ( ) 

( ) τ Σ Ε Σ Σ Σ + → ∧ ∨ ∪ ∨ × : @ M M M A A A A A a
is an arc expression function that defines the timed and untimed arc expressions for arcs with respect to transition colors; and 

• 0 ∪ ℜ ∈ + τ is a
{ } { } { } { } { } 3 3 2 1 2 1 3 2 1 m , X , X , X , B , B , A , A , A
. A PNet is defined to represent the more abstract production processes of producing a family of end-products. Essentially, a PNet is a special kind of ANet . It involves only the child items at the immediate lower level of BOM structures of end-products. As with an ANet , material buffer places in a PNet are defined for parts and/or assemblies. They contain tokens, which are MNets / ANets of their child parts/assemblies. Figure 4 shows an example of a PNet . In this net, the set of places is { } )

0 , 0 , m , 0 , 0 , 0 , 0 , m , 0 , m , 0 , 0 , ANet , 0 6 5 4
.

NESTED NET SYSTEM AND SYSTEM EVOLUTION

Consistent with the hierarchical structure of an end-product, production configuration can be regarded as a recursive process of configuring process elements through various levels of abstraction. For an end-product with an N-level hierarchy, production configuration is carried out for various product items at each level. Figure 5 concludes a parallelism between the product hierarchy and production configuration. For an end-product with an N-level hierarchy, the iterative process refinement will form a process hierarchy with N levels, where the processes at the N-th level are the detailed manufacturing processes for parts at the N-th level of the product hierarchy. Since parts can be at each level of the product hierarchy, detailed manufacturing processes can thus be found at each level of the N process hierarchy except the first level (i.e., Level 1).

While MNets , ANets and PNets are defined to model processes of parts, assemblies and end-products, where only the immediate child items are considered, a multilevel nested net system is defined to capture complete production processes of end-products. By complete, we mean that all processes for component items listed in a product's BOM hierarchy are considered.

<<<<<<<<<<<<<<<<<<<<<<Insert Figure 5 Here>>>>>>>>>>>>>>>>>>>>>

Nested Net System

Definition 5: A multilevel nested net system is defined as a triple, ( )

A , M , PNet MlNNS =
, where MlNNS is the multilevel nested net system for modeling the complete production processes of end-products;

PNet is the process net describing the abstract production processes of end-products;

{ } M N i MNet M = is a finite set of MNets , M N 2 1 M M M M ∪ ∪ = L
, where each

F o r P e e r R e v i e w O n l y { } [ ] M N j o N , 1 o , MNet M o M ∈ ∀ =
is a finite set of MNets nested in such places that are in the same nets at the immediate higher levels; and

{ } A N i ANet A = is a finite set of ANets , A N 2 1 A A A A ∪ ∪ = L , where each { } [ ] A N j p N , 1 p , ANet A p A ∈ ∀ =
represents the set of ANets that are nested in the same nets at the immediate higher levels.

Performing as an abstraction mechanism, an MlNNS facilitates the configuration of processes with right amount of details. Within MlNNS , the highest level is the PNet , while a number of MNets and ANets are located at the second level. Each of these nets provides more details for processes of input items involved in PNet . The nets at any lower level provide detailed descriptions of assembly and manufacturing processes nested in places of nets at their immediate higher level. At the lowest level of each path, all nets are MNets , whilst a mixture of MNets and ANets can be found at any arbitrary level. In accordance with an N level BOM structure, Figure 6 demonstrates an N level net system with nested MNets and ANets . For clarity, not all nested nets and arc expressions are shown.

<<<<<<<<<<<<<<<<<<<<<<Insert Figure 6 Here>>>>>>>>>>>>>>>>>>>>>

System Evolution

Following production practice, in an MlNNS , MNets nest in places of ANets and/or

PNet and ANets nest in places of higher level ANets and/or PNet . Consequently, configuration of a complete production process for an end-product necessitates interaction of nested nets and host nets. In this work, transition synchronization is introduced to enable interaction of nets at different levels. Transition synchronization is declared by the color pairs/triples of net transitions. [START_REF] Lomazova | Nested Petri nets: A formalism for specification and verification of multi-agent distributed systems[END_REF] states that transitions of nets at different levels may fire autonomously or are synchronized in NPNs. More specifically, two or more transitions with same color pairs and/or triples must be synchronized. Bearing in mind these characteristics, we define rules for enabling and firing transitions in the net system. While transitions of any net can fire iff they are enabled, different enabling rules are applied for MNets , ANets and the PNet , as elaborated below.

Transition enabling in MNets

Rule 1: A transition, t , of an MNet is enabled with respect to a color pair, cp , and fires autonomously without additional conditions if

( ) ( ) ( ) p cp , t , p , p µ Ε ⊆ ∀ and F o r P e e r R e v i e w O n l y ( ) ε Σ , cp M = .
For example, in the MNet in Figure 2, the marking of the three input places of transition,

1 t , is ( ) { } ( ) { } 1 2 1 1 b p , a p = = µ µ and ( ) { } 1 7 m p = µ , respectively. In addition, ( ) ( ) ( ) ( ) { }, a p , A , t , p 1 1 1 1 1 = ⊆ µ ε Ε ( ) ( ) ( ) ( ) { } 1 2 1 1 2 b p , A , t , p = ⊆ µ ε Ε and ( ) ( ) ( ) ⊆ ε Ε , A , t , p 1 1 7 ( ) { } 1 7 m p = µ
. Thus, 1 t meets the above enabling condition and fires autonomously.

Rule 2: A transition, t , of an MNet is enabled and fires simultaneously with an output transition of the place, where the MNet is nested, of the higher level ANet or PNet if

( ) ( ) ( ) p cp , t , p , p µ Ε ⊆ ∀ and 
( ) M M , cp Σ Σ = .
For example, in Figure 3, the MNet is nested in place 9 p of the ANet and 6 t is the output transition of 9 p . In the MNet , the marking of the input place, 3 p , of the transition,

2 t , is ( ) { } 1 3 A p = µ . Further, ( ) ( ) ( ) ( ) { } 1 3 1 1 2 3 A p A , A , t , p = ⊆ µ Ε
. Thus, 2 t fulfills the simultaneous enabling and firing condition with respect to the transition color pair, ( )

1 1 A , A .

Transition enabling in ANets

Rule 3: A transition, t , of an ANet is enabled with respect to a color triple, ct , and fires autonomously without additional conditions if

( ) ( ) ( ) p ct , t , p , p µ Ε ⊆ ∀ and ( ) ε Σ ε , , ct A = .
In Figure 3, if two more tokens, 1 B and 1 A , are added into the two input places, 10 p and 11 p , of transition, 7 t , of the ANet , respectively, ( ) { }

1 10 B p = µ , ( ) { } 1 11 A p = µ and ( ) { } 3 12 m p = µ . Moreover, ( ) ( ) ( ) ( ) { } 1 10 1 7 10 B p , X , , t , p = ⊆ µ ε ε Ε , ( ) ( ) ( ) ⊆ ε ε Ε , X , , t , p 1 7 11 ( ) { } 1 11 A p = µ and ( ) ( ) ( ) ( ) { } 1 12 1 7 12 m p , X , , t , p = ⊆ µ ε ε Ε
. Accordingly, 7 t satisfies the enabling rule and fires autonomously.

Rule 4: A transition, t , of an ANet is enabled and fires simultaneously with a transition bearing a ( )

A A , cp Σ Σ = or ( ) A A , , ct Σ Σ ε = of the lower level MNet or ANet that nests in an input place of t , if ( ) ( ) ( ) p ct , t , p , p µ Ε ⊆ ∀ and ( ) ε Σ Σ , , ct A A = .
In Figure 3 

( ) M M , cp Σ Σ = or ( ) A A , , ct Σ Σ ε = of the lower level MNet or ANet that nests in an input place of t , if ( ) ( ) ( ) p cp , t , p , p µ Ε ⊆ ∀ and 
( ) P P , cp Σ Σ = .
In the PNet in Figure 4, a color pair assigned to 10 t is ( )

1 1 X , X
. Suppose the ANet in Figure 3 

Transition firing

While the firing of transitions of any net does not provoke the transfer of nested nets, that is, the nested nets remain in the same places before and after simultaneous transition firing, tokens, other than the nested nets, are created and removed as follows:

Rule 8: The firing of an enabled transition, t , in nets at any arbitrary level modifies markings by 1) generating tokens in the output places as specified by <<<<<<<<<<<<<<<<<<<<<<Insert Table 4 Here>>>>>>>>>>>>>>>>>>>>>

( ) ( ) cp , p , t Ε or ( ) ( )
As shown in Figure 7, the motor family has 4 assembly families: BA, FA, AA and CA.

Similar with constructing the PNet , the ANet of the 4 assembly families have been constructed. Figure 9 shows the ANet of BA family. 8 after being enabled by either one of the 3 tokens: In a similar way, MNets have been constructed in accordance with part families produced in house. Figure 10 shows the MNet of Ba family and p represent raw materials ready to be processed.

They are defined according to the 3 Ba variants to be produced: 

System Analysis

After construction, all models are analyzed to check 1) whether or not they are correct;

and 2) whether or not they reflect logically the corresponding system operations. [START_REF] Jensen | Colored Petri Nets: Basic Concepts[END_REF] introduces several methods to verify models with respect to dynamic properties. Among these, P-invariant analysis, which we adopt in this study, is of particular interest to most researchers due to its easy-understandability and implementation. Several P-invariant can be identified in each MNet , ANet and the PNet . The total number of busy machines and idle machines gives a P-invariant. In other words, in any system state, the total number of tokens appearing in idle machine places, conceptual machine places and machine processing input item places is always the same. Another P-invariant relates to the input items ready to be processed and the corresponding output items. This P-invariant is obtained through mapping the output items to the input items, i.e., representing the output items by the input items.

In addition, in view of the impact of deadlock and conflicts on the logical operations of system models [START_REF] Jiang | Object-oriented Petri nets with changeable structure (OPNs-CS) for production system modeling[END_REF], we perform deadlock and conflict analysis in this work.

Following practice in high variety production, this study does not draw attention to the sharing of a single machine or resources among multiple tasks -a typical characteristic of previous studied manufacturing systems, e.g., flexible manufacturing systems [START_REF] Kaighobadi | Flexible manufacturing systems: An overview[END_REF]. Accordingly, the potential conflicts resulting from resources sharing do not exist in the constructed PN models. Moreover, the definition of colored tokens and arc expressions resolves possible conflicts regarding the firing of transitions with respect to different tokens in all MNets , ANets and the PNet . In other words, transitions fire according to the match between colored tokens in the input places and these are assigned to transitions. Further, with the presence of alternative colored tokens that can enable the same transitions, transition firing can be determined by adopting preferred rules, e.g., the shortest delay times.

<<<<<<<<<<<<<<<<<<<<<<Insert Figure 12 Here>>>>>>>>>>>>>>>>>>>> state k , the procedure ends. The conclusion that the model is live and deadlock free can then be drawn. The procedure also indicates that if no enabled transitions can be identified and g µ is not achieved yet when the PN model is in a state k , the model is not correct and needs to be modified.

In this study, we apply the above DDA procedure to the constructed MNets , ANets and the PNet . For each net, a feasible firing sequence has been obtained. Each sequence starts from a predetermined initial state marking and ends at a predetermined goal state marking through firing enabled transitions. Figure 13 

Application Results

As indicated by the nets in Figures 8,9 and 10, more than one production process consisting of different combination of machines is feasible to fulfill each of the 3 motor variants: 

FURTHER DISCUSSIONS

Recognizing the significance of production configuration for producing product families while maintaining production stability and efficiency, this paper studies the underlying logic for configuring production processes from a process platform. In view of the importance of PN techniques in shedding light on system dynamic behaviors, we apply PN techniques to model production configuration. More specifically, we develop a new formalism of NCTPNs by integrating the advantages of CPNs, TPNs and NPNs.

In the formalism, the adoption of colored tokens and time delays of transition firing facilitates the modeling of variety handling, constraint satisfaction and process selection. The definition of a reconfiguration mechanism, consisting of reconfigurable transitions, inhibitor arcs and conceptual machine places, tackles the many inherent process variations when building system models. The incorporation of net nesting addresses granularity issues in production configuration. Moreover, three types of nets: MNets, ANets and a PNet are defined to represent the processes of manufacturing parts, producing assemblies and forming final products, respectively. And a multilevel nested net system is defined to capture the entire process of production configuration. The results of the industrial example of vibration motors

for mobile phones show the potential of the NCTPNs formalism in revealing the logic of production configuration. The advantages of the proposed formalism along with some managerial implications are further discussed as follows:

1) NCTPNs possess a combined power of top-down decomposition and bottom-up implementation through net nesting. In the realistic applications, top-down decomposition and bottom-up implementation are important approaches for system design and planning and, they provide managers with an ability to carry out system analysis and synthesis in an interactive and integrative way. This especially true when the system in consideration is large and complex. Due to the high product and process variety, their relationships and the many constraints/restrictions, production configuration is complex. Therefore, NCTPNs are convenient and promising for modeling production configuration. They also enable managers to make right decisions in configuration by presenting an overall interactive picture of higher level more abstract processes and lower level more detailed processes.

2)

The nested ANets and MNets in the proposed formalism are independent of one another. There is no direct connection between two nets that are nested in different places of nets at a same level of the configuration hierarchy. As a result, one nested net can be changed without causing any structural changes to other nets. Hence, it is easy for managers to maintain and modify the production configuration models based on the proposed NCTPNs.

3) As a graphical modeling tool, the NCTPNs provide managers with a visualization of the entire process of production configuration. Transaction synchronization is used to capture the interactions between lower level nested nets and higher level host nets. Thus, the impact on the relevant higher level nets caused by the changes of lower level nets, be it a change of net structures or of process elements configured, can be intuitively captured.

This, in turn, offers an easier understanding of the impacts caused by configuration changes on production configuration to managers.

4)

NCTPNs can be used to facilitate the development of a production rule-based computational system which implements production configuration. There are some correspondence between NCTPNs and rule-based systems. The tokens carrying important information pertaining to the represented objects are equivalent to facts in a rule-based system. Transaction firing rules relate to rules in a rule-based system. Transition firing corresponds to rule execution in a computational system. Therefore, the analogy between the NCTPNs and rule-based systems can facilitate the development of a computational system to implement production configuration.

The scope of this study is limited to the development of a proper formalism to model production configuration, and does not extend to the computational implementation of production configuration based on the proposed model. In addition, this study does not address the impact of the different combinations of production objectives and transition firing rules on the final configuration results in that different companies may adopt different combinations according to their own production characteristics. Accordingly, future research may be extended to address them. And more efforts might be made to develop a rule-based Assemblies ready to be processed

( ) { } 2 1 17 Y , Y p = α 18 p
Assemblies ready to be processed 

( ) { } 3 2 1 18 X , X , X p = α 19 p A conceptual machine ( ) { }
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  function specifying the distribution of colored tokens in all places of an MNet (

  of the MNet is (

  function specifying the distribution of nested nets and colored tokens in all places.

  current marking of the ANet is (

  Figure 9. Either of the 2 alternative machines ( 7 m and 8 m ) is used to form Babs (WIPs) by joining Bas and Bbs first. Then, one of another three alternative machines (

  constructed MNets , ANets and PNet , the multilevel system of production configuration is obtained as shown in Figure 11. Due to the space constraints, the timed/untimed arc expressions and the color triples/pairs assigned to transitions are not shown. As shown in the figure, the PNet is at the highest level; 3 ANets for producing assembly families AA, BA and FA are located at the second level; 1 ANet for producing CA family and 3 MNets for manufacturing part families Ba, Bb and Tl are at the third level; and 2 MNets for fabricating part families Tp and Cl are located at the lowest level. Each lower level nested net is linked with the corresponding tokens residing in places of higher level nets. <<<<<<<<<<<<<<<<<<<<<Insert Figure 11 Here>>>>>>>>>>>>>>>>>>>>>

  [START_REF] Wang | Modeling with colored timed object-oriented Petri nets for automated manufacturing systems[END_REF] describe a procedure of Deadlock Detection Algorithm (DDA) for deadlock analysis, as shown in Figure12. It starts from setting an initial state marking 0 µ and a goal state marking g µ for a PN model being analyzed. The incidence matrix W is constructed based on the difference of arc expressions of output arcs and input arcs from places to transitions with respect to colored tokens. When the system model is in a state k , the enabled transitions along with the colored tokens are identified. Subsequently, one selected to fire in accordance with the colored tokens. The characteristic vector k S of a transition firing sequence k S when the model is in a state k is obtained through setting an entry (i.e., the corresponding colored tokens) for the transition selected to fire and 0 for all other transitions. With k µ (the marking of the system in a state k ) and k S , the system marking of the next state

.

  shows a transition firing sequence by applying the DDA procedure to the MNet in Figure 10. This firing sequence leads to Also shown in the figure are the fired transitions along with the corresponding colored tokens. <<<<<<<<<<<<<<<<<<<<<Insert Figure 13 Here>>>>>>>>>>>>>>>>>>>>>

  8. In this regard, minimizing the completion time of the last operation of producing the three vibration motors is chosen as the production objective and thus the selection is made based on this objective. In the application, we adopt the shortest delay times to fire transitions, which are enabled by alternative colored tokens.

  Figure 1: A basic PN structure and the graphical formalism

Figure 3 :

 3 Figure 3: An ANet including the nested MNet
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  Figure 4: A PNet
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 56 Figure 5: Parallelism between product hierarchy and production configuration

  Figure 9: The ANet of the bracketassy family

  set of non-negative real numbers representing time delays; ANets of child items. The assignment function, α , specifies the allocation of such MNets / ANets to buffer places and colored tokens to other places.

	µ	:	P	a	M	α	( ) p	,	p ∀	∈	P	is a marking function specifying the distribution of colored
	tokens, manufacturing and assembly nets in all places of an ANet .
	An ANet is defined to represent the processes of producing a family of assemblies.
	Unlike raw material buffer places in an MNet , buffer places in an ANet are defined for the
	immediate child items of assemblies. Tokens in such part/subassembly buffers are
	Figure 3 shows an example of an ANet . Also shown is the MNet (in Figure 1) nested
	in place 9 p of the ANet . In this net, the set of places is {	8 p L ,	,	p	14	}	; the transition set is
	{ t L 5 ,	,	t	8	}	; the arc set is ( {	p	8	,	t	5	) ( ,	p	9	,	t	6	) ( t , , L	8	,	p	14	) }	; and the set of color sets is

MNets /

Table 2

 2 

	lists the set of places, represented system elements

4 Process Net ( PNet )

  

	ToP	=	( G	,	SoTma	,	Σ	P	,	α	,	β	,	Ε	,	τ	)	is a process type (a special assembly type) with
	• G is the basic PN structure;
	• SoTma is a set of manufacturing types and assembly types;
	•	P Σ is a finite set of color sets or token types;
	•	α	P : a	SoTma	∪	M	Σ	P	is an assignment function that maps a place, p , to
		manufacturing or assembly types or a set of colors, ( ) p α ;
	•	{ } ) ( ) P Σ ε × set of color pairs, ( ) ( P T Σ β ∪ : a F t β , such that a pair declares that the transition t must be is an assignment function that maps a transition, t , to a o synchronized internally with transitions of the nested nets, except if the pair is r ( ) P Σ }, {ε with ε representing nil;
	•	Ε	:	A	×	Σ	P	P Σ ∪ ∨ M P a	∨	( ∧	M	Σ	P	→	M	Σ	P	@	+	τ	)	is an arc expression function that
		e defines the timed and untimed arc expressions for arcs with respect to transition
	•	colors; and 0 ∪ ℜ ∈ + τ			e r is a set of non-negative real numbers representing time delays;
																							R
																							e
																							v i e
																							w
																							O n l
																							y
	Definition 4: A process net is defined as a tuple	PNet =	( ToP	,	µ	)	, where
	PNet is a process net representing more abstract production processes of producing a
	family of end-products;									

Table 3 Here>>>>>>>>>>>>>>>>>>>>>

 3 Both the color pairs assigned to transitions and the timed/untimed arc expressions with respect to transition colors are shown in the figure. The color pairs of 9 t , 10 t and 15 t indicate that if enabled, they must fire simultaneously with the corresponding transitions of the lower level nested nets. The marking of the places of the PNet is ( ) ( )

	15 p L ,	,	p	28	; the

  , 6 t of the ANet meets the firing rule and fires simultaneously with 2 t of the nested MNet . PNet is enabled with respect to a color pair, cp , and fires

			In Figure 3, if a token, 1 X , is added into the input place, 13 p , of transition, 8 t , of the
	ANet , ( ) { } 1 13 X p = µ	and	Ε	( (	13 p	,	t	8	) ( , ε	,	X	1	,	X	1	) ) ( ) { } 1 13 X p = ⊆ µ	. Thus, 8 t with respect
	to ( ε	,	X	1 X ,	1	)	meets the enabling condition and fires simultaneously with other transitions
	of the host nets.							
	4.2.3 Transition enabling in PNet		
	Rule 6: A transition, t , of a autonomously without additional conditions if F In the PNet in Figure 4, if two tokens 1 , p ∀ Z and ( ) ( , t , p Ε XY are added into the two input ) ( ) p cp µ ⊆ and ( ) P , cp Σ ε = . 1 o r places 24 p and 25 p of transition 16 t of the PNet , respectively, 16 t meets the above
											P		
												e
														e r
																		R
																		e
																		v i e
																		w
																		O n l
																		y
	p ∀	,	Ε	( ) ( , t , p	ct	) ( ) p µ ⊆	and	ct	=	( ε	,	Σ	A ,	Σ	A	)	.

Rule 5: A transition, t , of an ANet is enabled and fires simultaneously with an output transition of a place, where the ANet is nested, of the higher level ANet or PNet , if enabling condition and fires autonomously. The same can be applied to other transitions, e.g., 11 t , 17 t .

Rule 7: A transition, t , of a PNet is enabled and fires simultaneously with a transition bearing a

  is nested in 16 p of the PNet . If 8 t in the ANet in Figure 3 is enabled, 10 t

	and 8 t fire simultaneously.

Construction of PNet, ANets, MNets and Net System

  VM ) are shown in Figure8and Table4, and in the figures and tables in the following case study as well. The timed arc expression of arc

	relation to 3 motor variants (	VM	5. INDUSTRIAL EXAMPLE 2 1 VM , and 3
	The NCTPNs formalism developed in this study is tested using an industrial example of
	vibration motors for mobile phones. Although vibration motors themselves are not complex, ( ) 20 13 p , t shows that 1 VM assumes both Wt and Rh,
	they are typical examples of customized products. The high variety of individualized mobile
	phones assumes different technical specifications, which, in turn, lead to unique design
	requirements of vibration motors (e.g., dimensions, components).
	F o r 5.1 Figure 7 shows the common product structure of a motor family. This motor family assumes several part types, including: rubber holder (Rh), weight (Wt), frame (Fm), bracket a (Ba), bracket b (Bb), terminal (Tl), magnet (Mt), coil (Cl), shaft (St), commutator (Ct) and F o r
		P P
		e e
				e r e r
					R R
					e e
					v i e v i e
					w w
	alternative machines (	1 m , m	2	O n l m ) is used to process AAs and BAs, then one of the 2 and 3 O n l
	ct machines ( 4 , p , t Ε ; and 2) removing tokens from the input places as specified by y Ε m and 5 m ) is used to work on the formed WIPs (i.e., ABs) and FAs, at last final ( ) ( ) cp , t , p or y
	( ) ( , t , p motors are assembled at the workstation ( 6 ) ct Ε . m ).
	For instance, in Figure 3, the firing of 6 t generates a token (either 1 A , 2 <<<<<<<<<<<<<<<<<<<<<<Insert Figure 8 Here>>>>>>>>>>>>>>>>>>>>> A ) in A or 3 The places, represented system elements and contained colored tokens/lower level nets,
	11 P . While the MNet remains in 9 P after firing 2 t , it evolves into a new state, i.e., a
	token is generated in 4 P and a token is removed from the input place 5 P .

tape (Tp). For each part type, there are a number of variants catering for specific mobile phone requirements. In turn, the different combinations of different/same specific parts form a variety of assemblies belonging to same families. According to design requirements, individual motors may not contain a specific variant from each part family. In other words, not all part types are assumed by each individual motor variant. <<<<<<<<<<<<<<<<<<<<<<Insert Figure 7 Here>>>>>>>>>>>>>>>>>>>>> By following the common process structure underpinning the motor family's process platform, the PNet is constructed, as shown in Figure 8. In the PNet , the items involved include AAs (armatureassies), FAs (frameassies), BAs (bracketassies), ABs (abassies; WIPs formed by AAs and BAs), MBs (mainbodies; WIPs formed by ABs and FAs) and VMs (final vibration motors). Three different machines (including the corresponding tools and fixtures) are used to process AAs and BAs for forming Abs; two different machines to process ABs and FAs for forming MBs; one workstation (including 2 operators, tools and fixtures) to assemble final motors from MBs, Rhs and/or Wts. As shown in the PNet , first one of the 3 are listed in Table 4. The color pairs assigned to each transaction are shown in Figure 8. As shown in the figure, it takes different/same machines different time durations to complete operations on same/different input items. For illustrative simplicity, the colored tokens in 2 VM contains a Wt, and 3 VM includes an Rh.

Table 5 Here>>>>>>>>>>>>>>>>>>>>>

 5 Table 5 lists the places, colored tokens/lower level nets and the represented system elements.Also shown in Figure9are the color triples assigned to each transition. According to these colored triples, transitions of this ANet fires autonomously, or simultaneously with either transitions of nested nets residing in places

	<<<<<<<<<<<<<<<<<<<<<<Insert Figure 9 Here>>>>>>>>>>>>>>>>>>>>>
	<<<<<<<<<<<<<<<<<<<<<<Insert 25 22 p , p	and 31 p or transitions of the
					t : ( { ε	,	BA 1	,	BA 1	) ,	( ε	,	BA 2	,	BA 2	),
	( ε	,	3 3 BA , BA	)}	indicates that 2 t fires simultaneously with 26						

PNet in Figure

8

. For example, the set of color triples of 26 t of the PNet in Figure

Table 6 Here>>>>>>>>>>>>>>>>>>>>>

 6 Table 6 lists the places, colored tokens and the corresponding system elements. As shown in the MNet , the color pairs assigned to each transition require synchronized and autonomous transition firing. For Manufacturing Ba variants requires two types of operations, as shown in the MNet .

	instance, as indicated by the color pairs: ( {	Ba	1	,	Ba	1	) ( ,	Ba	2	,	Ba	2	) ( ,	Ba	3	,	Ba	3	) }	, 32 t must fire
	simultaneously with transition 15 t of the ANet in Figure 9 with the presence of either	Ba	1
	or	2 Ba or	3 Ba , whilst 31 t fire autonomously after being enabled by either	1 . Ba 1 or
	1 . Ba 2 or	1 . Ba 3 together with 14 m .																	
	<<<<<<<<<<<<<<<<<<<<<Insert Figure 10 Here>>>>>>>>>>>>>>>>>>>>>
	<<<<<<<<<<<<<<<<<<<<<<Insert While two alternative machines ( 12 m and 13 m ) are available to execute the first operation,
	only one machine ( 14 m ) is able to carry out the second operation. The tokens,	Ba	1	, 1 .	Ba	2	1 .
	and	1 . Ba 3 , in the raw material buffer 39																

Table 7

 7 

	<<<<<<<<<<<<<<<<<<<<<<Insert Table 7 Here>>>>>>>>>>>>>>>>>>>>>
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presents the result of configured production processes in terms of machines in line with items in the nets in Figures 8, 9 and 10.

Table 4 :

 4 The places, represented system elements and colored tokens/nets

	Places	System Elements		Nets/Colored Tokens
	p	1	/	4	/	11	Input assembly buffers for AAs/BAs/FAs	ANets for producing assembly families AA/BA/FA
			p	2		AAs are ready to be processed		α	( ) { 2 AA 1 p =	,	2 AA	,	3 AA	}
			p	3		BAs are ready to be processed		α	( ) { 2 BA 1 p =	,	2 BA	,	3 BA	}
	p	5	/	13	Conceptual machines for assembling ABs/MBs	α	( ) { 5 m 1 p =	,	2 m	,	3 m	} ( ) { 13 m 4 p / = α	,	5 m	}
	p	6	/	7	/	8	Alternative idle machines for forming ABs						

Table 5 :

 5 The places, represented elements and colored tokens/nets

	Places	System Elements		Nets/Colored Tokens
	p	22	/		25	/	31	Input part buffers for Bas/Bbs/Tls	MNets for producing part families Ba/Bb/Tl
		p	23			Bas are ready to be processed		α	( ) { 23 Ba 1 p =	,	Ba	2	,	Ba	3	}
		p	24			Bbs are ready to be processed		α	( ) { 24 Bb 1 p =	,	2 Bb	,	3 Bb	}
	p	26	/	33		Conceptual machines for assembling Babs/BAs	α	( ) { 26 m 7 p =	,	8 m	} ( ) { 33 m 9 p / = α	,	10 m	,	11 m	}
	p	27	/	28		Alternative idle machines for forming ABs					

Table 6 :

 6 The places, represented elements and colored tokens/nets

	Places	System Elements		Colored Tokens
	p	39	A raw material buffer for Bas	α	( ) { Ba p 1 39 =	, 1 .	Ba	2	.	, 1	Ba 3	.	} 1
	p	40	A conceptual machines for manufacturing Bas		α	( ) { 40 m 12 p =	,	13 m	}
	p	41	/	42	Alternative idle machines for manufacturing Bas	α	( ) { } ( ) { } 13 42 12 41 m p / m p = = α
	p	43	Alternative machines processing Ba raw materials	α	( ) { Ba p 1 43 =	.	2	,	Ba 2	.	2	,	Ba 3	} 2 .
	p	44	Ba WIPs are ready to be processed	α	( ) { Ba p 1 44 =	.	2	,	Ba	2	.	2	,	Ba	3	.	} 2
	p	45	The second machine for manufacturing Bas											

  ∧

																	p	5					1 m		t	4
											1 m	∨													
											m	2	∨														2 m
											m	3						t	6	m	3				
		p	2																	p	8						
																													(	AB 1	FA 1	m	4	MB 1	@	. 12	8	)	p	16	t	12
																													(	AB 1	FA 1	m	5	MB 1	@	14	2 .	)
																													(	AB	2	FA 2	m	5	MB	2	@	. 10	6	)
		p	3								t	3														t	9 (	AB	3	FA 2	m	4	MB	3	@	11	7 .	)
																													p	11	t	8	p	17
		t	2																										1 FA ∨	2 FA	p	12
																													1 MB	∨
		p	4																									MB	2	∨	MB	3
	β	( ) ( { t 1 =	AA 1	,	AA 1	) ( ,	AA 2	,	AA 2	) ( ,	AA 3	,	AA 3	) };	β	( ) ( { 2 t =	1 BA	,	1 BA	) ( ,	2 BA	,	2 BA	) ( ,	3 BA	,	3 BA	) }
																β	( ) ( ) ( { t t 7 3 ε β = =	,	AB 1	) ( , ε	,	AB	2	) ( , ε	,	AB	3	) };

  ∧

																											p	34
																											p	33	t	23
																											9 m	∨
																											10 m	∨	m	10
																											11 m	t	25
																											36 p
	p	23																								37 p	t	26
																											(	Bab 1	BA 1	@	0	)
	p	24								t	17														t	22	( (	Bab 2 Bab 2	Tl 1 Tl 1	m 10 m 9	@ @ 2 BA BA 2	) ) 8 2 . 2 . 3
																											(	Bab 2	Tl 1	m 11	BA 2	@	. 3	9	)
																											(	Bab 3	Tl	2	m 9	BA 3	@	3	5 .	)
	t	16																								31 p	1 Tl ∨	Tl	2	t	21	32 p	( (	Bab 3 Bab 3	Tl Tl	2 2	m 11 m 10	BA 3 BA 3	@ @	2 . 0 . 3 4	) )	38 p
	p	25																							
	β	( ) ( { t 15 =	Ba	1	,	Ba	1	,	ε	) ( ,	Ba	2	,	Ba	2	,	ε	) ( ,	Ba	3	,	Ba	3	,	ε	) };

  ∧

																											p	34
																											p	33	t	23
																											9 m	∨
																											10 m	∨	m	10
																											11 m	t	25
																											36 p
	p	23																								37 p	t	26
																											(	Bab 1	BA 1	@	0	)
	p	24								t	17														t	22	( (	Bab 2 Bab 2	Tl 1 Tl 1	m 10 m 9	@ @ 2 BA BA 2	) ) 8 2 . 2 . 3
																											(	Bab 2	Tl 1	m 11	BA 2	@	. 3	9	)
																											(	Bab 3	Tl	2	m 9	BA 3	@	3	5 .	)
	t	16																								31 p	1 Tl ∨	Tl	2	t	21	32 p	( (	Bab 3 Bab 3	Tl Tl	2 2	m 11 m 10	BA 3 BA 3	@ @	2 . 0 . 3 4	) )	38 p
	p	25																							
	β	( ) ( { t 15 =	Ba	1	,	Ba	1	,	ε	) ( ,	Ba	2	,	Ba	2	,	ε	) ( ,	Ba	3	,	Ba	3	,	ε	) };
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