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The General Assembly Line Balancing Problem with Setups (GALBPS) was recently defined in the literature. It adds sequence-dependent setup time considerations to the classical Simple Assembly Line Balancing Problem (SALBP) as follows: whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. This paper proposes heuristic procedures, based on priority rules, for solving GALBPS, many of which are an improvement upon heuristic procedures published to date.

Introduction

Assembly lines are components of many production systems, such as those used in the automotive and household appliance industries. The problem of designing and balancing assembly lines is very difficult to solve due to its combinatorial nature-it is NP-hard (see, e.g., Wee and Magazine, 1982)-and to the numerous tasks and constraints characteristic of real-life situations. The classic Assembly Line Balancing Problem (ALBP) basically consists of assigning a set of tasks (each characterized by its processing time) to an ordered sequence of workstations, such that the precedence constraints between tasks are maintained and a given efficiency measure is optimized. 2 Articles on assembly line balancing typically focus on the problem in a pure sense-as if, once the tasks were assigned to the workstations, there was nothing left to do. However, in some real production lines, the sequence in which tasks are executed inside the workstation is very important, since there are sequence-dependent setup times between tasks. [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] introduced the General Assembly Line Balancing Problem with Setups (GALBPS). GALBPS not only requires that the assembly line has to be balanced, but also that the sequence of tasks assigned to every workstation must be defined (due to the existence of sequence-dependent setup times). Therefore, both the inter-station balancing and intra-station task sequencing must be solved simultaneously. This reflects a more realistic scenario for many assembly lines, especially those from the electronics industry or similar sectors featuring low cycle times.

In this paper, we propose heuristic procedures, based on priority rules, for solving GALBPS, many of which are an improvement upon heuristic procedures published to date.

The remainder of the paper is organized as described below. GALBPS is outlined in Section 2, and the heuristic procedures designed to solve it are explained in Section 3. These heuristic procedures were tested and evaluated through a computational experiment, the main results of which are presented in Section 4. Finally, conclusions on this work and ideas for further research are presented in Section 5.

The General Assembly Line Balancing Problem with Setups

GALBPS adds sequence-dependent setup time considerations to the classical Simple Assembly Line Balancing Problem (SALBP) as follows: whenever a task j is assigned next to another task i at the same workstation, a setup time , i j τ must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. Furthermore, if a task p is the last one assigned to the workstation in which task i was the first task assigned, then a setup time , p i τ must also be considered. This is because the tasks are repeated cyclically; the last task in one cycle of the workstation is performed just before the first task in the next cycle.

Hence, GALBPS consists of assigning a set of tasks to an ordered sequence of workstations, such that the precedence constraints between tasks are maintained, the setup times between tasks are considered and a given efficiency measure is optimized. As in the classification of [START_REF] Baybars | A survey of exact algorithms for the simple assembly line balancing problem[END_REF], when the objective is to minimize the number of workstations for a given upper bound on the cycle time, the problem is referred to as GALBPS-1; when the objective is to minimize the cycle time given a number of workstations, the problem is called GALBPS-2. Herein are presented improved heuristic procedures based on priority rules to solve GALBPS-1.

As an example, we can take a case in which there are three tasks (A, B and C) assigned to a workstation and having processing times ( i t ) of 10 A t = , 12 B t = and 9

C t = , respectively. Moreover, we consider that are no precedence constraints between the tasks, and that the setup times ( ) , i j τ are the following: , 3 tasks, with the times to be considered as well as the global workstation time (which equals the sum of all processing times and setup times). As observed, the two solutions differ by three units of time.

A B τ = , , 4 A C τ = , , 2 B A τ = , , 1 B C τ = , , 3 C A τ = and , 4 C B τ = .

Insert Table 1

In most industrial assembly lines these setup times exist but are usually not considered because they are very short compared to processing times. In certain cases, the setup times do not depend on the sequence of tasks, and are added to the processing times of the tasks. In other cases, the task sequence for every workstation is defined only after the tasks have been assigned and the line has subsequently been balanced; the problem is therefore solved in two separate stages. However, a better strategy to solve GALBPS is to simultaneously solve the line-balancing and the task-sequencing problems. [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] introduced GALBPS and provided different real examples, including that of workers using different tools for different tasks and that of robotic lines. What is important in this situation is to define the best work sequence for the worker in order to minimize the global workstation time, including setup times. Robotic lines are another real case: often, the robot must remove one tool, select the corresponding new tool from a set and then make adjustments before starting the next assigned task. As mentioned in [START_REF] Graves | An Integer Programming Procedure for Assembly System Design Problems[END_REF], tool changes are especially important in robotic assembly because they may involve times that are comparable in magnitude to operation times. Another practical case is that in which components are located in separate containers: the time required to get to one container depends on the last component that was assembled for the product.

An overview of the relevant literature reveals a shortage of publications on this topic. On the one hand, we have focused on literature about scheduling research involving setup considerations [START_REF] Allahverdi | A review of scheduling research involving setup considerations[END_REF][START_REF] Allahverdi | A survey of scheduling problems with setup times or costs[END_REF] and Zhu and Wilhelm (2006)), but we were unable to find any references to evaluation of the work sequence inside the assembly line.

On the other hand, we referred to the surveys on problems and methods in assembly line balancing commented in Section 1. In these, setup times are only included when mixedmodel and multi-model lines are considered. However, in both cases the sequence refers to the products or models to be assembled on the line, not to the work sequence of tasks inside the workstations.

One survey which does include the sequence-dependent task time increments is [START_REF] Boysen | A classification of assembly line balancing problems[END_REF], in which it is commented that if two tasks are executed at a station, one directly after the other, setup time may be required for tool changes and repositioning of workpieces [START_REF] Arcus | COMSOAL: A computer method of sequencing operations for assembly lines[END_REF] or Wilhelm (1999)). In that paper it is also commented that sequence-dependent time increments occur if the status achieved by completing particular tasks has an effect on the processing time of other tasks which are executed later in the same or another station. This problem is handled in [START_REF] Scholl | The sequence-dependent assembly line balancing problem[END_REF], in which the sequence-dependent assembly line balancing problem (SDALBP) is defined, and in [START_REF] Capacho | ASALBP: the alternative subgraphs assembly line balancing problem[END_REF]; however, the aforementioned problem is not the same as the problem at hand: in GALBPS a setup time , i j τ must be considered whenever a task j is assigned next to another i at the same workstation. Finally, in [START_REF] Sawik | Balancing and scheduling of surface mount technology lines[END_REF] both the line balancing problem and the sequencing problem are handled simultaneously for the specific case of printed circuit board production lines; whereas [START_REF] Agnetis | Concurrent operations assignment and sequencing for particular assembly problems in flow lines[END_REF] face a related problem consists of assigning operations to machines, and then sequencing them in every workstation to maximize defined performance indicators. For a cyclic case in which the tasks p and i are the last and first assigned to a given workstation, respectively, then a setup time , p i τ must be also considered. However, the majority of works cited above do not apply it. Only [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] describe rapid and facile solution procedures that can be applied by any practitioner. Specifically, that paper, after introducing GALBPS and modelling GALBPS-1 through a binary programming model (which only provides optimal solutions for very small instances), designs eight heuristic priority rules and presents a GRASP algorithm.

The heuristic procedures

In ALBP, most heuristic algorithms are based on generating feasible solutions by successively assigning tasks, or subsets of tasks, to workstations. Therefore, these algorithms consider partial solutions containing a number of assigned tasks and (partial) workstation loads, whereas the remaining tasks and workstation idle times constitute a residual problem [START_REF] Scholl | State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[END_REF]. The aim is to assign tasks to workstations and sequence them such that no precedence relationships are violated, and the value global time (including setup times) is less than the cycle time. Almost every solution procedure is based on one of the two following construction schemes (introduced in Subsection 3.2 and 3.3), which define the main way of assigning tasks to workstations: workstation-oriented and task-oriented assignment. This Section is organized as follows: the terminology used is presented (Subsection 3.1); the workstation-oriented procedures based on not-weighted priority rules are described (Subsection 3.2); use of the task-oriented procedure and designed heuristic rules for said procedure are explained (Subsection 3.3); the workstation-oriented procedures based on weighted priority rules (which are fine-tuned by means of the Nelder and Mead algorithm) are introduced (Subsection 3.4); and, finally, improved tasks assignation schemes within a workstation are described (Subsection 3.5).

Terminology

The principal data and parameters used are described below: , i j index for the tasks k index for the workstations N number of tasks ( ) [START_REF] Scholl | Balancing and sequencing of assembly lines[END_REF]. The calculation of the range of workstations [ ]

,
i i E L also considers the minimum number of setup times between the task i and either its successor or preceding tasks.

Workstation-oriented procedure based on not-weighted priority rules (WH )

The workstation-oriented procedure (WH ) is an iterative procedure which, at each iteration and according to a priority rule, assigns one of a group of candidate tasks to the workstation k which is being completed. A task i is considered a candidate once its preceding tasks have been assigned and it fits in the workstation k . If there are no candidate tasks available, but there are still tasks left to assign, then k is closed, and workstation 1 k + is opened. The procedure ends once all of the tasks have been assigned.

A vital element in the definition of the WH procedure is the definition of the priority rule, which orders the candidate tasks at the time of choosing the next task to be assigned. Table 2 lists the not-weighted priority rules used in the WH procedure. In all cases, the task *

x is assigned with * max i

x i v v =
. Rules called A-01 to A-04 are described for GALBPS in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]; and priority rules denoted R-01 to R-12 are new rules developed in this work.

Insert Table 2

Trying to comprehend the influence of setup times on selecting tasks, and consequently design proprity rules appropriate for GALBPS, we analyzed firstly the most common priority rules in the literature for the SALBP: i t by [START_REF] Moodie | A heuristic method of assembly line balancing for assumptions of constant or variable work element times[END_REF] 

; i NS , 1 i i j j S i t t NS ∈ + + ∑ , i E -, i L -, ( ) i i L E -- , i i t L , 1 i i L NS   -  +   and i i i NS L E - by

Task-oriented procedure (TH )

The task-oriented procedure (TH ) is an iterative procedure which, at each iteration and according to a priority rule, assigns one of a group of candidate tasks to a workstation. A task is considered a candidate once all of its preceding tasks have been assigned. The chosen task is assigned to the first workstation in which it can be assigned (provided that it fits in the workstation and that all of its preceding tasks have been assigned). All of the workstations remain open until all of the tasks have been assigned, at which point the procedure ends.

As mentioned in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF], most computational experiments reported in the literature indicate that, for SALBP, workstation-oriented procedures provide better results than task-oriented ones, although they are not theoretically dominant [START_REF] Scholl | Simple assembly line balancing-Heuristic approaches[END_REF]. In addition, task-oriented procedures imply much higher computation times. All of the priority rules designed for the workstation-oriented procedure can be used here. However, in line with the aforementioned comments, only the priority rules shown in Table 3 were tested. In all cases the task * x is assigned with * max i

x i v v = .
Rules A-01 to A-04 were tested by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]; and priority rules R-05, R-08 and R-09 are tested in this work.

Insert Table 3

Workstation-oriented procedure based on weighted priority rules ( _ WH NM )

In this Subsection, the workstation-oriented procedure based on weighted priority rules (which are fine-tuned by means of the Nelder and Mead algorithm) is introduced.

Analysis of the results of preliminary computational tests revealed that the best results are obtained when assignment of tasks with the following characteristics is prioritized: those with the longest processing time ( i t ); those with the shortest setup time with the last task assigned to the workstation which is being completed ( , last i τ ); and those with the most successor tasks ( i NS ) or those which have longest times of their successor tasks, considering the average setup time of these successor tasks (

( ) i j j j S t τ ∈ + ∑
). Table 4 shows the three new weighted priority rules (R-13 to R-15) that were designed for consideration (again, the task *

x is assigned with * max i

x i v v =
), illustrating the advantages of the three characteristics. between the task i and the candidate tasks present once it has been sequenced. Table 4 shows the new weighted priority rule (R-16) that was designed for consideration.

Insert Table 4

In the previous priority rules, the weight of each of their elements had to be fine-tuned. Fine-tuning the parameters of a new heuristic is almost always difficult. The parameters greatly influence the results of the heuristic; hence, their values are crucial. Nonetheless, fine-tuning is usually done by intuitively testing several values. For fine-tuning, we used EAGH (Empirically Adjusted Greedy Heuristics), introduced in [START_REF] Corominas | Empirically Adjusted Greedy Algorithms (EAGH): A new approach to solving combinatorial optimisation problems[END_REF]. EAGH is a procedure to design greedy algorithms for a given combinatorial optimization problem, whose starting point is to consider greedy heuristics as members of an infinite set, H , defined by a function that depends on several parameters (in our case, each of the rules shown in Table 4). Searching for the best element of H can then be approached as an optimization problem, for which the solution consists of finding the parameter values that optimize the value of the objective function for the problem being solved. Since the set of instances of a problem is infinite, we must resign ourselves to a representative training set for performing the optimization.

EAGH employs the Nelder and Mead (N&M) algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF][START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF] for solving the fine-tuning problem because it is a direct one (i.e. it uses only the values of the function). Albeit other algorithms could be used to solve this fine-tuning optimization problem, the N&M algorithm has yielded good results since its publication and is referred to in recent papers [START_REF] Anjos | Maximizing revenue in the airline industry under one-way pricing[END_REF][START_REF] Chelouah | A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global minimization of multiminima functions[END_REF]. A detailed description of the N&M algorithm can be found in the publications cited above.

A set of 64 training instances (generated as explained in Section 4) was used to finetune the priority rules shown in Table 4. The new, fine-tuned priority rules are shown in Table 5 (the values of the parameters have been rounded to the first decimal place).

Insert Table 5

As observed, the values of the parameters 2 δ , 3 δ and 4 δ are lower than those of the other parameters. This does not imply that

( ) i j j j S t λ τ ∈ + ⋅
∑ is less important, as the values have not been normalized, and

( ) i j j j S t λ τ ∈ + ⋅
∑ tends to have a much higher value than the other elements considered.

Improved tasks assignation schemes within a workstation

In this Subsection, improved tasks assignation schemes within a workstation are introduced into the workstation-oriented procedure (WH ). These are based on considering all of the positions at which a candidate task can be assigned (Subsection 3.5.1); performing a local optimization of the tasks assigned to a workstation, once the workstation can be considered closed (Subsection 3.5.2); and performing a local optimization of the tasks assigned to a workstation, every time that a new task is assigned there (Subsection 3.5.3).

The position at which a candidate task can be assigned to ( _ WH pos )

In the WH procedure, a task i is always assigned after the last task assigned to the workstation k which is being completed. Completion of said condition yields a set of candidate tasks and enables calculation of the priority rule associated with each of them.

In the _ WH pos procedure, a task i can also be assigned to intermediate positions in the partial task sequence that have already been assigned to the workstation k . Obviously, in this case precedence among tasks must be respected, and, considering the setup times for assigning a task i to position s of the sequence, the task i must fit in the workstation k . A task i can thereby have different values for the priority rule (as long as the rule accounts for setup times): one value for each possible position s of the sequence in which i can be assigned. The greatest value of the priority rule is assigned to the task i for all possible positions s at which i can be assigned. In the event of a tie, the position s which corresponds to the lowest value of the sum of the setup time with the previous task in the sequence, the processing time, and the setup time with the following task in the sequence is assigned.

As may be deduced, the number of candidate tasks can-and does-increase: once a non-candidate task is sequenced after the last assigned task, it can become a candidate when it is assigned to an intermediate position of the partial sequence of already assigned tasks.

A set of four priority rules (R-05, R-08, R-09 and R-14) which gave good results and used complementary criteria were tested with the _ WH pos procedure.

Local optimization of the tasks assigned to a workstation ( _ WH swap )

The _ WH swap procedure consists of performing local optimization of the sequence of tasks assigned to the workstation k which has just closed because no additional tasks can fit, before opening a new workstation 1 k + . As a result of said optimization, the tasks assigned to the workstation k can be tracked (i.e. candidate tasks reappear).

The procedure used for local optimization consists of iteratively calculating all of the neighbouring sequences of a given sequence of tasks in the workstation k ( ) 

current

Local optimization of the tasks assigned to a workstation after each assignment ( _ WH opt )

The _ WH opt procedure consists of performing a local optimization of the sequence of tasks assigned to the workstation k which is being completed; such optimization takes place every time that a new task is assigned to the workstation. _ WH opt differs from _ WH swap in that the neighbouring sequences of current Seq are generated by inserting every task assigned to the workstation k at each possible position of the sequence.

In the _ WH opt procedure, in order to increase the number of candidate tasks, a task i is initially assigned after the last task assigned to the workstation k , and then the local optimization described in the previous paragraph is immediately performed. This differs from the procedure WH (whereby the task i is assigned after the last task assigned to the workstation k which is being completed), and from the procedure _ WH pos (in which the task i is assigned to the intermediate positions of the partial sequence of tasks already assigned to the workstation k ). Here, only feasible sequences are considered.

The number of candidate tasks can and does increase: a non-candidate task, having not been sequenced in any position of the partial sequence of already assigned tasks, can become a candidate upon execution of the local optimization.

_ WH opt was tested with the same priority rules used to test _ WH pos and _ WH swap .

Computational experiment

The heuristic procedures proposed in Section 3 were tested with a set of self-made instances. The results demonstrate that some of the heuristic procedures based on the new priority rules improve upon those described to date (the best of which are described in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]), including the metaheuristic GRASP proposed in the aforementioned paper. This Section is broken down as follows: the method used to generate the set of benchmark instances is detailed (Subsection 4.1); a lower bound on GALBPS and a GRASP metaheuristic both defined by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] are briefly introduced (Subsection 4.2 and 4.3); and lastly, the results of the computational experiment and a discussion of results are provided (Subsection 4.4 and 4.5).

Generation of benchmark instances

Since GALBPS is a novel problem, there is no set of benchmark instances with setup times available for testing. Therefore a set of self-made instances was generated from a well-known set of problems obtained from Scholl's and Klein's assembly line balancing research website (Scholl and Klein, 2008). The basic data used for the experiment are as follows: TC , respectively). The instances contain a wide range of values of the cycle time (from 11 to 10,816 units of time), number of tasks (from 21 to 297 tasks), order strength of the precedence graph (from 22.49 to 83.82) and average task processing time (from 5 to 912.1 units of time). These values were considered to be sufficiently representative.

-Four levels of variability of the setup times were set. The setup times were randomly generated according to a uniform discrete distribution min 0, 0.25 

U t  ⋅        , min 0, 0.75 U t  ⋅        , 0, 0.25 U t  ⋅        and 0, 0.75 U t  ⋅        . -

Insert Table 6

We were thus able to generate 640 cases that enabled us to extract conclusions on the overall behaviour of each procedure presented in Section 3. We solved these cases using each procedure, running nearly 26,500 experiments.

A lower bound on GALBPS

A lower bound on GALBPS,

GALBPS LB

, was used to evaluate the efficiency of the proposed heuristic procedures. The lower bound used was that proposed by Andrés et al. (2008),

1 GALBPS LB . 1 GALBPS LB
is an adaptation of the most common lower bound on SALBP, which considers the total process time of the tasks to be executed, plus the sum of a certain number of setup times among them, divided by the workstation cycle time, TC . Further details on 1 GALBPS LB can be found in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]. [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] The GRASP (Greedy Randomized Adaptative Search Procedure) metaheuristic, first described by [START_REF] Feo | Greedy randomized adaptative search procedures[END_REF] and used in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF], is the most efficient heuristic procedure for solving GALBPS published to date. It involves two steps: constructing a solution and improving it. The two steps are repeated a prescribed number of times, _ NS GRASP .

GRASP metaheuristic for GALBPS (from

We programmed GRASP to compare its efficiency to that of our new heuristic procedures. The GRASP metaheuristic of [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] is briefly summarised below.

In the first phase, in which an initial solution is constructed, two greedy procedures were used: the procedure used in [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF], which corresponds to the WH procedure with the priority rule A-01; and the WH procedure with the priority rule R- Sol are generated by swapping the tasks assigned to each pair of consecutive positions of the complete sequence of tasks with which it can be described. It should be noted that in this case, as opposed to that of _ WH swap , the tasks assigned to different workstations can be also interchanged.

_ NS GRASP (number of iterations of these 2 phases) was set to 5, since it provides a computational time comparable to that of computationally-intensive heuristic procedures (TH procedures).

Performance parameters and results

We evaluated the performance of the heuristic procedures in order to identify the best one. The solutions obtained by using each procedure for each instance were compared by means of performance measures usual in the literature about ALBP (e.g., [START_REF] Capacho | An evaluation of constructive heuristic methods for solving the Alternative Subgraphs Assembly Line Balancing Problem[END_REF] or [START_REF] Miralles | Branch and Bound procedures for solving the Assembly Line Worker Assignment and Balancing Problem. Application to Sheltered Work Centres for Disabled[END_REF]) and about other scheduling problems like the flowshop problem [START_REF] Framinan | Comparison of heuristics for flowtime minimisation in permutation flowshops[END_REF] or [START_REF] Ruiz | An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives[END_REF]). The results are shown in Table 7, in which the following notation is used: TofP , type of procedure; Rule , priority rule used; ARD , average relative deviation from the value of the best solution BS (for each instance, BS is the value of the best of all solutions found by the heuristic procedures (the best known solution), and ARD is computed, for each heuristic solution HS , as follows: 100 HS BS ARD BS -= ⋅ ); PBS , percentage of best solutions obtained; and Time , the computing time (in seconds) required to solve all the instances.

Insert Table 7

Discussion of results

The best not-weighted workstation-oriented procedure is that which used the priority rule R-09 ( _ 09 WH R ), with an average relative deviation from the value of the best solution of 3.30% ARD = and a percentage of best solutions obtained of 55.31% PBS =

. The best task-oriented procedure is that which used the priority rule R-09 ( _ 09 TH R ) as well, with values of 3.51% ARD = and 53.13% PBS = .

_ 09 WH R not only has better results than _ 09 TH R , but it is also 790 times faster (26.9 seconds of computational time required vs. 21,238.8 seconds). These results justified the development of the additional workstation-oriented procedures, presented in Subsections 3.4 and 3.5. The _ WH NM procedure improves upon the results obtained using the WH or TH procedures, indicating that procedures based on weighted priority rules, whose parameters have to be accurately fine-tuned, should be considered. Specifically, the _ WH NM procedure with priority rule R-14 ( _ _ 14 WH NM R ) obtained values of 2.17% ARD = and 68.59% PBS = .

Considering all positions at which a candidate task can be assigned provides good results when priority rule R-14 is used ( _ _ 14 WH pos R ). But compared to the results obtained with _ _ 14 WH NM R , the average relative deviation from the value of the best solution is worse.

The procedures which perform a local optimization of the tasks assigned to a workstation, either once the workstation is considered to be closable (the _ WH swap procedure) or each time that a new task is assigned there (the _ WH opt procedure), afford better results tan those obtained with _ _ 14 WH NM R . The _ WH opt procedure with priority rule R-14 ( _ _ 14 WH opt R ) has values of 1.09% ARD = y 82.97% PBS = . For this procedure, which is the best of all designed procedures, the computational time required to solve all instances is just 50.2 seconds. As observed in Table 7, the results obtained with the two GRASP procedures are worse than those obtained with _ _ 14 WH opt R , and also require much longer computational times.

An ANOVA analysis was made for evaluating both the ARD and the relative behaviour between seven procedures: the three best procedures by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] -which are one for each type: WH , TH and GRASP -and the four best procedures proposed in this work. We also analyzed the influence of the characteristics of the problem instances -in particular, order strength OS (which gives information on the complexity of the instance), number of tasks N (which indicates the size of the instance) and variability of setups times Var -on the quality of the obtained solutions. The solved instances have been classified according to OS , N and Var , as follows: i) Low-OS ( ) ; ii) Low-N ( )

21 32 N ≤ ≤ , Middle-N ( ) 53 94 N ≤ ≤
and High-N ( )

148 297 N ≤ ≤ ; iii) Low-Var ( ) min min 0, 0.25 0, 0.75 U t and U t  ⋅   ⋅              , Middle- Var ( ) 0, 0.25 U t  ⋅        and High-Var ( ) 0, 0.75 U t  ⋅        .
From our ANOVA analysis we may summarize the main conclusions obtained by means of the Fisher Test Graphics provided by ANOVA. Figure 1 confirms the results shown in Table 7: the procedure with a best overall behaviour was _ _ 14 WH opt R , and _ _ 09 WH opt R was not far from it.

Insert Figure 1

As we can see in Figure 2, the developed procedures show a robust behaviour to the characteristics N and OS and, except for the procedure 

Insert Figure 2

Insert Figure 3 To measure the quality of the solutions of these seven procedures, we calculated the workstations percentage increase ( ) NWPI . This indicator shows the percentage deviation between the number of workstations provided by a heuristic and GALBPS LB (the lower bound on GALBPS presented in Subsection 4.2). Table 8 shows the following information: the procedure (type of procedure and priority rule used), the average relative deviation from the value of the best solution ( ) ARD ; and the value of NWPI . For the best heuristic procedure designed, _ _ 14 WH opt R , the maximum average error obtained from the optimal solution was 14.96%, which is acceptable given the complexity of the problem at hand, its newness and the quality of the availaible lower bound (which is usually less than the exact solution, [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]).

Insert Table 8

Lastly, we would like to point out that the results obtained in this work are better than the best results published to date for solving GALBPS (obtained by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]).

Conclusions and further research

The General Assembly Line Balancing Problem with Setups (GALBPS) was recently defined in the literature. GALBPS adds sequence-dependent setup time considerations to the classical SALBP such that, whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. This reflects a more realistic scenario for many assembly lines. In [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] GALBPS is modelled through a binary programming model; however, the model only provides optimal solutions for very small instances. These authors presented and evaluated eight different heuristic rules and a GRASP algorithm (which are the best heuristic procedures published to date for solving GALBPS).

In this paper, we present several heuristic procedures, based on priority rules, for solving GALBPS-1 (i.e. for minimizing the number of workstations for a given upper bound on the cycle time): a workstation-oriented procedure based on not-weighted priority; a task-oriented procedure with several priority rules; a workstation-oriented procedures based on weighed priority rules (which are fine-tuned with the Nelder and Mead algorithm); and, finally, improved tasks assignation schemes within a workstation. These schemes are based on considering all positions at which a candidate task can be assigned; performing a local optimization of the tasks assigned to a workstation, once the workstation can be considered closed; and performing a local optimization of the tasks assigned to a workstation, every time that a new task is assigned there.

We tested the proposed heuristic procedures with a set of self-made instances. The results demonstrate that some of the heuristic procedures based on the new priority rules improve upon those described to date, including the metaheuristic GRASP proposed by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]. In detail, the procedure with a best overall behaviour was To measure the quality of the solutions, we calculated the workstations percentage increase that shows the percentage deviation between the number of workstations provided by a heuristic and a lower bound on GALBPS. For the best heuristic procedure designed, _ _ 14 WH opt R , the maximum average error obtained with the optimal solution was 14.96%, which is acceptable given the complexity of the problem at hand, its newness and the quality of the availaible lower bound (which is usually less than the exact solution, [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF]).

Our future work will focus on the design of metaheuristic procedures for the problem. 
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  from Scholl's and Klein's website were used.
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Table 1 .

 1 Two possible sequences for the tasks A, B and C

	Rule	i v			Rule	i v				Rule	i v									
	A-01	τ	, last i	+	i t	R-01	τ	, last i	i t + +	τ	, i first	R-07	i t	τ	, last i	i j S ∈	(	t	j	τ	j	)

Table 2 .

 2 Not-weighted priority rules for the WH procedure

	Rule	i v								Rule	i v
	A-01	τ	, last i	+	i t			R-05	i t τ -	, last i
	A-02	-	( τ	, last i	+	t	i	)	R-08	τ	i t last i ,
	A-03	τ	, last i						R-09	i t NS +	i
												τ	, last i
	A-04	τ -	, last i				

Table 3 .

 3 Priority rules for the TH procedure

	Rule

Table 4 .

 4 Weighted priority rules for the _ WH NM before fine-tuning

	α	4 β τ ⋅ -⋅ i t	, last i	4 ϑ τ + ⋅	, i next	4 + ⋅ δ	i ∑ j S ∈	t	j	4 λ τ + ⋅	j

Table 5 .

 5 Weighted priority rules for the _ WH NM procedure after fine-tuning

	Name	( ) N	t	min	t	max	t	OS	TC	min	TC	max
	Arcus1	83		233 3,691 912.1 59.09 3,786 10,816
	Barthold	148		3		383		38.1 25.80		403		805
	Barthol2	148		1		83		28.6 25.80		84		170
	Hahn	53		40 1,775 264.6 83.82 2,004 4,676
	Heskiaoff	28		1		108		36.6 22.49		138		342
	Lutz1	32		100 1,400 441.9 83.47 1,414 2,828
	Lutz2	89		1		10		5.4 77.55		11		21
	Lutz3	89		1		74		18.5 77.55		75		150
	Mitchell	21		1		13		5.0 70.95		14		39
	Mukherje	94		8		171		44.8 44.80		176		351
	Roszieg	25		1		13		5.0 71.67		14		32
	Sawyer	30		1		25		10.8 44.83		25		75
	Scholl	297		5 1,386 234.5 58.16 1,394 2,787
	Tonge	70		1		156		50.1 59.42		160		527
	Warnecke	58		7		53		26.7 59.10		54		111
	Wee-Mag	75		2		27		20.0 22.67		28		56

Table 6 .

 6 Instances from Scholl's and Klein's website(Scholl and Klein, 2008) 

	TofP	Rule	ARD	PBS	Time	TofP	Rule	ARD	PBS	Time
		A-01	7.95 36.41	31.0		R-13	2.62 63.59	28.8
		A-02 A-03	14.44 17.03 13.33 20.47	29.5 28.5	_ WH NM	R-14 R-15	2.17 68.59 2.35 66.41	26.7 31.7
		A-04	5.86 39.06	31.1		R-16	2.48 65.78	28.1
		R-01	8.10 36.41	31.4		R-05	3.29 55.00	32.0
		R-02 R-03	7.32 32.19 6.56 41.41	27.3 26.7	_ WH pos	R-08 R-09	4.08 49.38 2.77 59.38	34.1 33.7
	WH	R-04 R-05	7.11 40.31 5.29 42.97	30.1 29.9		R-14 R-05	2.51 69.53 4.72 46.56	32.9 30.3
		R-06 R-07 R-08 F R-09 o 4.13 51.56 4.64 45.94 4.49 45.63 3.30 55.31 R-10 3.60 51.56 R-11 6.26 42.66 r R-12 4.04 49.69	31.1 27.3 30.2 26.9 26.9 30.1 33.1	_ WH swap _ WH opt	R-08 R-09 R-14 R-05 R-08 R-09 R-14	4.34 48.13 2.37 63.59 2.07 69.38 2.71 59.84 3.12 57.50 1.80 70.47 1.09 82.97	31.2 34.6 39.0 65.3 60.9 88.4 50.2
		A-01 A-02	P 8.54 30.00 21,465.8 14.45 17.03 22,137.8	GRASP	A-01 R-14	3.47 53.44 34,814.3 7.74 30.16 38,529.1
	TH	A-03 A-04 R-05 R-08 R-09	12.17 22.03 22,438.6 e 5.81 39.69 23,659.2 6.05 37.66 21,345.6 e 4.80 44.06 24,895.8 r 3.51 53.13 21,238.8					
					R					
					e				
					v i e				
						w			
							O n l	
								y	
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Table 7 .

 7 Results of the computational experiment

	Pr ocedure	ARD	NWPI
	_ 01 GRASP A	3.47	17.60
	_ 04 TH A	5.81	20.37
	_ 04 WH A	5.86	20.44
	_ WH opt R _ 14	1.09	14.96
	_ WH opt R _ 09	1.80	15.68
	_ WH swap R _ 14	2.07	16.06
	_ WH NM R _ 14	2.17	16.17

Table 8 .

 8 Results of the workstations percentage increase Means and 95.0% LSD intervals graphic for procedures Figure 2. Interaction plots for order strength OS , number of tasks N and variability of setups times Var
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