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Computing material fronts with a Lagrange-Projection approach *

This paper reports investigations on the computation of material fronts in multi-fluid models using a Lagrange-Projection approach. Various forms of the Projection step are considered. Particular attention is paid to minimization of conservation errors.

Introduction

It is well-known that standard conservative discretizations of gas dynamics equations in Eulerian coordinates generally develop non physical pressure oscillations near contact discontinuities, and more generally near material fronts in multi-component flows. Several cures based on a local non conservative modification have been proposed. Let us quote for instance the hybrid algorithm derived by Karni in [START_REF] Karni | Hybrid multifluid algorithms[END_REF] and the Two-Flux method proposed by Abgrall and Karni in [START_REF] Abgrall | Computations of compressible multifluids[END_REF] for multi-fluid flows. See also [START_REF] Abgrall | How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach[END_REF], [START_REF] Barberon | Practical computation of axisymmetrical multifluid flows[END_REF] and the references therein. We investigate here a Lagrange-Projection type method to get rid of pressure oscillations. The basic motivation lies in the fact that oscillations do not exist in Lagrangian computations. It is then possible to clearly determine which operation in the projection step sparks off pressure oscillations. As in [START_REF] Karni | Hybrid multifluid algorithms[END_REF], [START_REF] Abgrall | Computations of compressible multifluids[END_REF], a non conservative correction is proposed. It is based on a local pressure averaging and a random sampling strategy on the mass fraction in order to strictly preserve isolated material fronts and get a statistical conservation property. Numerical results are proposed and compared with the Two-Flux method [START_REF] Abgrall | Computations of compressible multifluids[END_REF].

The model under consideration

We consider a nonlinear partial differential equations model governing the flow of two species Σ 1 and Σ 2 separated by a material interface. For instance, we focus on two perfect gases and we set p i (ρ i , e i ) = (γ i -1)ρ i e i , γ i = C p,i /C v,i and T i (ρ i , e i ) = e i /C v,i where p i , ρ i , e i , γ i > 1, T i , C p,i > 0, C v,i > 0 respectively denote the pressure, the density, the internal energy, the adiabatic coefficient, the temperature and the specific heats of Σ i , i = 1, 2. The mixture density is given by ρ = ρ 1 + ρ 2 and we adopt a Dalton's law for the mixture pressure p = p 1 (ρ 1 , e 1 ) + p 2 (ρ 2 , e 2 ). We assume in addition that the two species evolve according to the same velocity u and are at thermal equilibrium, that is T = T 1 (ρ 1 , e 1 ) = T 2 (ρ 2 , e 2 ). The mixture internal and total energies e and E are defined by ρe = ρ 1 e 1 + ρ 2 e 2 and ρE = 1 2 ρu 2 + ρe. Then, introducing the mass fraction Y = ρ 1 /ρ, straightforward manipulations yield ρe = ρC v T with

C v = C v (Y ) = Y C v,1 + (1 -Y )C v,2 and p = (γ -1)ρe with γ = γ(Y ) = Y C p,1 + (1 -Y )C p,2 Y C v,1 + (1 -Y )C v,2 > 1. 
In one-space dimension, the model under consideration writes

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x (ρE + p)u = 0, ∂ t ρY + ∂ x (ρY u) = 0, (2.1) 
and for the sake of conciseness, we set

∂ t u(x, t) + ∂ x f (u(x, t)) = 0. (2.
2)

The flux function f finds a natural definition with respect to the conservative unknowns u = (ρ, ρu, ρE, ρY ). Let us mention that (2.2) is hyperbolic with eigenvalues λ 0 (u) = u and λ ± (u) = u ± c(u), c(u) = γp/ρ, provided that ρ > 0, 0 ≤ Y ≤ 1 and p > 0. The characteristic field associated with λ 0 is linearly degenerate, leading to contact discontinuities or material fronts. The two extreme fields are genuinely nonlinear.

Numerical schemes

This section is devoted to the discretization of (2.2). As already stated, a specific attention must be paid to the contact discontinuities to avoid pressure oscillations. With this in mind, we first revisit the "Two-Flux Method" proposed by Abgrall and Karni [START_REF] Abgrall | Computations of compressible multifluids[END_REF] and then present a new numerical procedure based on a Lagrangian approach and a random sampling strategy. Comparisons will be proposed in section 4.

Let us introduce a time step ∆t > 0 and a space step ∆x > 0 that we assume to be constant for simplicity. We set λ = ∆t/∆x and define the mesh interfaces x j+1/2 = j∆x for j ∈ Z, and the intermediate times t n = n∆t for n ∈ N. In the sequel, u n j denotes the approximate value of u at time t n and on the cell C j = [x j-1/2 , x j+1/2 [. For n = 0 and j ∈ Z, we set u 0 j = 1 ∆x x j+1/2

x j-1/2 u 0 (x)dx where u 0 (x) is the initial condition.

The Two-Flux method revisited

Aim of this section is to review the Two-Flux method proposed by Abgrall and Karni [START_REF] Abgrall | Computations of compressible multifluids[END_REF]. Let us first recall that pressure oscillations do not systematically appear in single-fluid computations. Abgrall and Karni [START_REF] Abgrall | Computations of compressible multifluids[END_REF] then propose to replace any conservative multi-fluid strategy by a non conservative approach based on the definition of two single-fluid numerical fluxes at each interface. We first recall the algorithm in details and then suggest a slight modification in order to lessen the conservation errors. This strategy will be used as a reference to assess the validity of the Lagrangian strategies proposed in the next subsection.

The original algorithm. Let us consider a two-point numerical flux function g consistent with f . The Two-Flux method proposes to update the sequence (u n j ) j∈Z into two steps, under an usual 1/2 CFL restriction.

First step : evolution of ρ, ρu and p (t n → t n+1-) Let us first define v = (ρ, ρu, p, Y ) and the one-to-one mapping u → v = v(u) thanks to the thermodynamics closures. Two interfacial numerical fluxes g j+1/2,L and g j+1/2,R are then defined by

g j+1/2,L = g(u n j , u n j+1,L ), g j+1/2,R = g(u n j,R , u n j+1 ), (3.1) 
where

u n j+1,L = u(v n j+1,L ) with v n j+1,L = (ρ n j+1 , (ρu) n j+1 , p n j+1 , Y n j ), and u n j,R = u(v n j,R ) with v n j,R = (ρ n j , (ρu) n j , p n j , Y n j+1
). In some sense, the mass fraction Y is then assumed to be the same on both side of each interface since Y = Y n j is used for the computation of g j+1/2,L and Y = Y n j+1 for g j+1/2,R . At last, we use g j+1/2,L , respectively g j+1/2,R , to update the conservative unknowns ρ, ρu and ρE on the cell j, resp. (j + 1). With clear notations, we get for all j ∈ Z

ρ n+1- j = ρ n j -λ(g ρ j+1/2,L -g ρ j-1/2,R ), (ρu) n+1- j = (ρu) n j -λ(g ρu j+1/2,L -g ρu j-1/2,R ), (ρE) n+1- j = (ρE) n j -λ(g ρE j+1/2,L -g ρE j-1/2,R ). (3.2)
Let us note that ρ 1 = ρY is not concerned with (3.2). We simply set (ρ 1 )

n+1- j = ρ n+1- j × Y n j (Y is naturally kept constant in this step) and then p n+1- j = p(u n+1- j ) with u n+1- j = (ρ, ρu, ρE, ρ 1 ) n+1- j .
Second step : evolution of ρ 1 (t n+1-→ t n+1 ) In this step, ρ 1 is evolved in a conservative way using the numerical flux function g while the values of ρ, ρu and p are kept unchanged. Again with clear notations, the vector

v n+1 j = (ρ n+1 j , (ρu) n+1 j , p n+1 j , Y n+1 j ) is then defined ρ n+1 j = ρ n+1- j , (ρu) n+1 j = (ρu) n+1- j , p n+1 j = p n+1- j and Y n+1 j = (ρ 1 ) n+1 j /ρ n+1 j , where (ρ 1 ) n+1 j = (ρ 1 ) n j -λ(g ρY j+1/2 -g ρY j-1/2 ), (3.3) 
with

g j+1/2 = g(u n j , u n j+1 ). At last, we set u n+1 j = u(v n+1 j ).
It is worth noticing that the Two-Flux method is not conservative on ρ and ρu since the fluxes g j+1/2,L and g j+1/2,R defined at each interface are different as soon as Y n j = Y n j+1 . It is not conservative on ρE either, but by construction the Two-Flux method is conservative on ρ 1 .

The associated quasi-conservative algorithm. It is actually clear from [START_REF] Karni | Hybrid multifluid algorithms[END_REF], [START_REF] Abgrall | Computations of compressible multifluids[END_REF] and the references therein that in standard conservative discretizations of (2.2), only the update formula of the total energy ρE is responsible for the pressure oscillations. We are then tempted to propose a quasi-conservative variant of the Two-Flux method such that only the total energy is treated in a non conservative form. For all j ∈ Z, we simply replace (3.2) by

ρ n+1- j = ρ n j -λ(g ρ j+1/2 -g ρ j-1/2 ), (ρu) n+1- j = (ρu) n j -λ(g ρu j+1/2 -g ρu j-1/2 ), (ρE) n+1- j = (ρE) n j -λ(g ρE j+1/2,L -g ρE j-1/2,R ), (3.4) 
where again g j+1/2 = g(u n j , u n j+1 ). The second step is unchanged.

The Lagrange-Projection approach with random sampling

In this section, we propose a Lagrangian approach for approximating the solutions of (2.2). The general idea is to first solve this system in Lagrangian coordinates, and then to come back to an Eulerian description of the flow with a projection step. Under its classical conservative form, the Lagrange-Projection method generates spurious oscillations near the material fronts. In order to remove these oscillations, we propose to adapt the projection step (only). We begin with a description of the Lagrangian step and then recall, for the sake of clarity, the usual conservative projection step (see for instance [START_REF] Godlewsky | Numerical approximation of hyperbolic systems of conservation laws[END_REF]). Again, an usual 1/2 CFL restriction is used.

The Lagrangian step (t n → t n+1-) In this step, (2.2) in written in Lagrangian coordinates and solved by an acoustic scheme (see for instance [START_REF] Després | Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition[END_REF]), which gives

τ n+1- j = τ n j -λτ n j (u n j+1/2 -u n j-1/2 ), u n+1- j = u n j -λτ n j (p n j+1/2 -p n j-1/2 ), E n+1- j = E n j -λτ n j (pu) n j+1/2 -(pu) n j-1/2 , Y n+1- j = Y n j , (3.5) 
where the velocity and the pressure at interfaces are defined by

       u n j+1/2 = 1 2 (u n j + u n j+1 ) + 1 2(ρc) n j+1/2 (p n j -p n j+1 ), p n j+1/2 = 1 2 (p n j + p n j+1 ) + (ρc) n j+1/2 2 (u n j -u n j+1 ). (3.6) 
The proposed local approximation (ρc) n j+1/2 of the Lagrangian sound speed is (ρc) n j+1/2 = max((ρc) n j , (ρc) n j+1 ) but other definitions may be found for instance in [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF]. In this step, the grid points x j+1/2 move at velocity u n j+1/2 so that ρ n+1-

j = 1/τ n+1- j , (ρu) n+1- j = ρ n+1- j × u n+1- j , (ρE) n+1- j = ρ n+1- j × E n+1- j and (ρ 1 ) n+1- j = ρ n+1- j × Y n+1- j
define approximate values of u on a Lagrangian grid with mesh interfaces x * j+1/2 = x j+1/2 + u n j+1/2 ∆t.

The usual projection step (t n+1-→ t n+1 ) Aim of this step is to project the solution obtained at the end of the first step on the Eulerian grid defined by the mesh interfaces x j+1/2 . Usually, the choice is made to project the conservative vector u in order to obtain a conservative Lagrange-Projection scheme (see again [START_REF] Godlewsky | Numerical approximation of hyperbolic systems of conservation laws[END_REF]). More precisely, such a choice writes

ϕ n+1 j = 1 ∆x x j+1/2 x j-1/2 ϕ n+1-(x)dx with ϕ = ρ, ρu, ρE, ρ 1 = ρY, (3.7) 
or, with ∆x

* j = x * j+1/2 -x * j-1/2 and ε(j, n) = -1/2 if u n j+1/2 > 0, 1/2 if u n j+1/2 < 0, , ϕ n+1 j = 1 ∆x {∆x * j ϕ n+1- j -∆t(u n j+1/2 ϕ n+1- j+1/2+ε(j,n) -u n j-1/2 ϕ n+1- j-1/2+ε(j-1,n) )}.
What is wrong with this scheme ? The Lagrange-Projection approach allows to precisely reveal the operation that makes the material fronts necessarily damaged by pressure oscillations. Let us indeed consider an isolated material front with uniform velocity and pressure profiles : u(x, 0) = u 0 > 0 and p(x, 0) = p 0 , while Y (x, 0) = 1 if x < 0 and Y (x, 0) = 0 if x > 0. The density is also set to be uniform for simplicity : ρ(x, 0) = ρ 0 . We first observe that this profile is clearly preserved in the Lagrangian step since by (3.6) we have u 0 j+1/2 = u 0 and p 0 j+1/2 = p 0 by (3.6). Then, the projection procedure (3.7) gives ρ 1 j = ρ 0 and (ρu) 1 j = ρ 0 u 0 so that u 1 j = (ρu) 1 j /ρ 1 j = u 0 . After the first time iteration, the velocity profile is then still free of spurious oscillations. At last, using the property that this velocity is constant and positive, and focusing for instance on the cell of index j = 1, (3.7) gives for ϕ = ρE, ρ 1

(ρE) 1 1 = (ρE) 0 1 -u 0 λ (ρE) 0 1 -(ρE) 0 0 and Y 1 1 = u 0 λ.
The pressure is then given after easy calculations by

p 1 1 = p 0 × γ(Y 1 1 ) -1 × 1 γ 2 -1 (1 -u 0 λ) + u 0 λ 1 γ 1 -1 .
At this stage, there is no reason for p 1 1 to equal p 0 From the very first time iteration, a pressure oscillation is then created. As an immediate consequence, the velocity profile will not remain uniform in the next time iteration and the numerical solution is damaged for good.

It is then clear that the way the pressure is updated in the projection step (only) is responsible for the spurious oscillations in an usual conservative Lagrange-Projection scheme. We propose to modify this step. As for the Two-Flux method, the idea is to give up the conservation property in order to maintain uniform the pressure p across material fronts. Let us emphasize that the Lagrangian step is unchanged.

The quasi-conservative p-projection step (t n+1-→ t n+1 ) First of all, ρ, ρu and ρ 1 still evolve according to (3.7) so that the algorithm remains conservative on these variables. We will keep on using (3.7) for ϕ = ρE only for j not in a subset Z ε p of Z defined below. On the contrary, the pressure p (instead of ρE) is averaged for j ∈ Z ε p :

p n+1 j = 1 ∆x x j+1/2 x j-1/2 p n+1-(x)dx. (3.8) For j ∈ Z ε p , we then set v n+1 j = (ρ n+1 j , (ρu) n+1 j , p n+1 j , Y n+1 j ) with Y n+1 j = (ρ 1 ) n+1 j /ρ n+1 j , and u n+1 j = u(v n+1 j ).
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Definition of Z ε p . Up to our knowledge, the idea of averaging the pressure p in a Lagrange-Projection strategy first appeared in [START_REF] Barberon | Practical computation of axisymmetrical multifluid flows[END_REF]. This way to proceed is clearly sufficient to remove the pressure oscillations near the material fronts if Z ε p = Z. However, averaging the pressure p instead of the total energy ρE for all j ∈ Z gives a non conservative scheme that is expected to provide discontinuous solutions violating the Rankine-Hugoniot conditions, see for instance Hou and LeFloch [START_REF] Hou | Why nonconservative schemes converge to wrong solutions : error analysis[END_REF] (note however that here, the Lagrangian system associated with (2.1) is actually treated in a conservative form, while the pressure averaging takes place in the projection step only). This was confirmed in practice when considering solutions involving shocks with large amplitude. Then, in order to lessen the conservation errors, we propose to localize the non conservative treatment around the contact discontinuities setting

Z ε p = {j ∈ Z, max(|Y n j -Y n j-1 |, |Y n j+1 -Y n j |)
> ǫ} for a given ǫ > 0. Following Karni [START_REF] Karni | Hybrid multifluid algorithms[END_REF], we will use ǫ = 0.05 in practice.

The quasi-conservative p-projection step with sampling (t n+1-→ t n+1 ) The quasi-conservative p-projection step will be seen in the next section to properly compute large amplitude shock propagations. Localizing the averaging process of p nevertheless prevents the method from keeping strictly uniform the velocity and pressure profiles of an isolated material front, see Test A below. Indeed, note that since Z ε p is generally a strict subset of Z due to the numerical diffusion on Y (i.e. Z ε p Z), an usual conservative treatment is still used on ρE as soon as j not in Z ε p . This is sufficient to create pressure oscillations. In order to cure this problem, we propose to get rid of the numerical diffusion on Y so as to enforce the non conservative treatment (3.8) across an isolated material front. This objective is achieved when replacing the conservative updating formula (3.7) for ρ 1 with random sampling strategy applied to Y (see also [START_REF] Chalons | Capturing infinitely sharp discrete shock profiles with the Godunov scheme[END_REF] and [START_REF] Chalons | Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling[END_REF] for similar ideas). More precisely, we consider an equidistributed random sequence (a n ) in (0, 1) (following Collela [START_REF] Collela | Glimm's method for gas dynamics[END_REF], we take in practice the celebrated van der Corput sequence), define x * j = x j-1/2 + a n+1 ∆t for all j ∈ Z and set

     Y n+1 j = Y n+1- j-1 if x * j ≤ x * j-1/2 , Y n+1 j = Y n+1- j if x * j-1/2 ≤ x * j ≤ x * j+1/2 , Y n+1 j = Y n+1- j+1 if x * j ≥ x * j+1/2 .
Then, we set (ρ 1 ) n+1 j = ρ n+1 j Y n+1 j so that the conservation of ρ 1 now holds only statistically.

Numerical results

We propose two numerical experiments with γ 1 = 1.4 and γ 2 = 1.6 associated with a Riemann initial data. The left and right vectors v are denoted v L and v R and the initial discontinuity is at x = 0.5. In the first simulation (Test A), we consider the propagation of an isolated material interface with v L = (1, 1, 1, 1) and v R = (0.1, 0.1, 1, 0). We take ∆x = 0.005 and plot the solutions at time t = 0.15. The second simulation (Test B) develops a strong shock due to a large initial pressure ratio. More precisely, we choose v L = (1, 0, 500, 1) and v R = (1, 0, 0.2, 0). We take ∆x = 0.00125 and plot the solutions at time t = 0.008. We observe that the Two-Flux method and the Lagrangian methods are in agreement with the exact solutions and give similar results. As expected, note that the Lagrangian approach without sampling does not strictly maintain uniform the pressure profile for Test A. Note also that the mass fraction Y is sharp when a random sampling is used. At last, the relative conservation error on ρE (see for instance [START_REF] Chalons | Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling[END_REF] for more details) for the Lagrangian approach with random sampling is actually less important and swings around 0.2% only. 

Concluding remarks

We have investigated a Lagrange-Projection approach for computing material fronts in multi-fluid models. We get similar results to the Two-Flux method [START_REF] Abgrall | Computations of compressible multifluids[END_REF] with less important conservation errors on ρE. Let us mention that other strategies, like for instance the one consisting in a local random sampling of u (instead of Y only) in the Lagrangian step, have been investigated. The results are not reported here.
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