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In 1956 Landau developed an elegant descrip-
tion of interacting Fermi systems at low tem-
perature relying on the existence of long-lived
quasiparticles. While this Fermi liquid theory
(FLT) describes well Helium 3 and many solid-
state materials above the superfluid temperature,
there exist notable exceptions such as under-
doped cuprates [1]. In dilute atomic fermionic
gases, the Fermi liquid nature of the normal
phase is currently under debate. On the one
hand, recent photoemission spectroscopy exper-
iments near the critical temperature were inter-
preted using a pseudogap model [2]. On the other
hand, measurement of the temperature depen-
dence of the specific heat displayed a linear be-
haviour compatible with Fermi liquid’s prediction
[3]. Here, we measure the magnetic susceptibil-
ity of a Fermi gas with tunable interaction in the
low temperature limit and compare it to quantum
Monte Carlo calculations. Experiment and the-
ory are in excellent agreement and fully compati-
ble with FLT. We also measure the condensation
energy which is a key quantity measured in super-
conducting compounds. Temperature variation
data and magnetic susceptibility are combined to
deduce a full set of Fermi liquid parameters de-
scribing the microscopic quasiparticle properties
of the normal phase. The photoemission spec-
trum calculated with these parameters is found in
good agreement with the measurements reported
in [2]. We conclude that all existing data to date
on the normal phase of the unitary Fermi gas are
well described by Landau’s Fermi liquid theory.

Ultracold Fermi gases are a privileged tool to inves-
tigate the subtle interplay between the strength of in-
teractions, temperature and external magnetic field on
a strongly-interacting material. For a trapped spin-1/2
mixture with contact interactions described by an s-wave
scattering length a, the strength of interactions can be
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tuned using a Feshbach resonance, allowing to investigate
the crossover between the weakly and strongly attractive
regimes. While the superfluid state has been extensively
studied [4], the normal state and its nature is still an open
question. Several scenarios were proposed to describe
the crossover from the Bose gas of pre-formed molecules
(small and positive a) to the ideal Fermi gas (small and
negative a) and were recently addressed for spin-balanced
gases above the superfluid transition, through the mea-
surement of equations of state [3, 6–8], the study of the
single-particle excitation spectrum [2, 9] or of spin fluc-
tuations [10]. All these experimental probes give access
to the properties of the normal phase above the critical
temperature. This limitation can be overcome by sta-
bilizing the normal state at T < Tc by imposing a spin
population imbalance in the trapped gas [11–13]. Pre-
vious works focused on the highly-polarized limit where
minority atoms behave as impurities: n2 ≪ n1, where
ni is the density for species i [3, 5, 14–21]. In this Let-
ter we interpret the spin imbalance as the application of
an effective magnetic field to the unpolarized normal gas
at very low temperature. Using a combination of Monte
Carlo simulations and experimental results, we extract
from the equation of state the magnetic spin response of
the normal phase in the limit T ≪ Tc.

The polarization dependence of the energy E of
the system directly reflects the presence of spin-singlet
dimers in the sample. Indeed, the presence of a gap in
the spin excitation spectrum implies a linear dependence
of the energy E with polarization p at low temperature,
and hence a zero spin susceptibility (see supplementary
discussions).

We have performed quantum Monte Carlo simulations
of the partially polarized Fermi gas at T = 0 in the BEC-
BCS crossover. We make use of the fixed-node diffusion
Monte Carlo method that was employed in earlier stud-
ies of polarized Fermi gases [15, 19] (see Methods). The
state of the system is forced to be in the normal phase by
imposing the nodal surface of a many-body wave func-
tion incompatible with off-diagonal long-range order. We
consider a system with fixed total number of particles N
in a fixed volume V and we calculate its energy density
E for different values of the interaction strength 1/kFa,
where kF = (3π2n)2/3, n = N/V and of the polarization
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FIG. 1: Canonical equation of state of a two-component Fermi
gas calculated using quantum Monte Carlo simulation, for
1/kF a = −1.5,−1,−0.6,−0.2, 0, 0.2, 0.4, 0.5 (from top to bot-
tom). The solid lines are fits of the low-polarization data with
equation (1). Inset: Extracted values of the susceptibility χ̃
as a function of 1/kF a. The dashed red line is the result of a
perturbation expansion valid up to order (kF a)

2.

p = (N1 −N2)/(N1 +N2). The results for the canonical
equation of state are shown in Fig.1. They are well fitted
by the energy functional

E(p) =
3

5
NEF

(
ξN +

5

9
χ̃−1p2 + . . .

)
, (1)

holding for a spin polarizable system at low temperature,
where both ξN and the dimensionless spin susceptibility
χ̃ (in units of the susceptibility of an ideal Fermi gas
3n/2EF ) depend on 1/kFa. The Monte Carlo method
indicates the absence of spin gap, and thus of preformed
molecules in the normal phase for 1/kFa <∼ 0.5. Note that
the extracted values of χ̃ reported in the inset of Fig.1
show a rapid drop for positive values of a when entering
the BEC side of the Feshbach resonance. A likely expla-
nation is the binding of fermions into spin-singlet pairs
for some positive value of the interaction strength 1/kFa.
Monte Carlo calculations for values of 1/kFa ≥ 0.7 show
that E(p) is indeed linear rather than quadratic in p, indi-
cating the emergence of a gap. However, pairing fluctua-
tions play a major role for such values of the coupling and
the nodal surface of the Jastrow-Slater state (see Meth-
ods) is no longer sufficient to enforce the normal phase.
This behavior is reminiscent of the pairing transition in-
vestigated in the framework of BCS theory [23], as well
as in the normal phase of the attractive Hubbard model,
extrapolated to a temperature range below the superfluid
transition [24, 25], while in our work the extrapolation is
made towards a small spin imbalance.
We now compare these simulations with the grand-

canonical equation of state of a homogeneous system ob-
tained experimentally in ref. [3, 5] . Using the local

density approximation, it is possible to relate simply the
doubly integrated density profile of a cloud trapped inside
a harmonic potential to the grand canonical equation of
state P (µ1, µ2) (see Methods). From dimensional anal-
ysis, the equation of state (EoS) of a spin-imbalanced
Fermi gas can be written as

P (µ1, µ2, a) = P0 (µ)h

(
δ =

h̄√
2mµa

, b =
µ1 − µ2

µ1 + µ2

)
,

where µ = (µ1 + µ2)/2 is the mean chemical potential
and P0(µ) is the pressure of a non-interacting unpolar-
ized Fermi gas. δ is a grand-canonical analog of the inter-
action parameter 1/kFa, and b is a dimensionless number
proportional to the effective ‘spin-polarizing field’ µ1−µ2.
Thanks to the variation of the chemical potentials with
axial position, an in situ image provides a measurement
of the function h(δ, b) along a line in the (δ, b) plane (see
Fig.2). Except in the unitary limit, both δ and b vary
along the cloud, according to δ ∝

√
b.

At all values of the scattering length addressed in this
work, the equation of state exhibits a clear discontinu-
ity of its derivative at the critical field bc(δ), indicating
a first-order phase transition from a superfluid state for
b < bc to a normal state for b > bc [5, 12]. Let us first
analyze the equation of state in the superfluid phase. In
the unitary limit, h(δ = 0, b) is constant in the super-
fluid phase b < bc = 0.80(4). Since the density difference
n1 − n2 is proportional to ∂h/∂b|δ, this directly shows
that the superfluid phase is not polarized, whatever the
chemical potential imbalance. Away from the unitary
limit, since the interaction parameter varies with b, the
derivative dh/db does not directly give access to the den-
sity difference. However, we observe on the absorption
images of the two spin states that the doubly-integrated
density difference is always constant in the region cor-
responding to the superfluid phase [5]. This is a direct
signature of full pairing in the superfluid phase in the
whole parameter space addressed in this work [22]. The
superfluid equation of state is thus independent of b and
can be written as h(δ, b) = hS(δ), a quantity that we
measured in [5].
We now focus on the properties of the normal phase.

From experimental data of Fig. 2, we observe that h is
linear with b2, in agreement with the expansion

h(δ, b) = hN (δ)

(
1 +

15

8
χ̃GC(δ)b2 +O(b4)

)
. (2)

hN (δ) is the grand-canonical equation of state in the nor-
mal state, extrapolated to a spin-symmetric configura-
tion. χ̃GC(δ) is a grand-canonical analog of the magnetic
susceptibility. For an ideal two-component Fermi gas,
the functions hN and χ̃GC are equal to 1. Fitting our
data in the normal phase with (2), we obtain the pa-
rameters hN(δ) and χ̃GC(δ) in the BEC-BCS crossover
shown in Fig.3 where we compare their values to the pre-
dictions of the Monte Carlo simulations. To this end, we
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FIG. 2: Samples of thermodynamic function h(δ, b) measured at different magnetic fields B0 = 871, 834, 822 G. For each
magnetic field, the data from 10 to 20 images are averaged. The blue lines correspond to the superfluid equation of state
hS(δ) measured in [5]. The red lines are linear fits of the data in the normal phase, b > bc. The dashed lines indicate the
superfluid/normal phase transition (b = bc).

fit the dependence with 1/kFa of the parameters ξN and
χ̃ determined by Monte Carlo simulations, and perform
a Legendre transform to obtain the grand-canonical EoS
hN (δ) of the normal phase and magnetic susceptibility
χ̃GC(δ) measured experimentally. In the investigated pa-
rameter range, the agreement between theory and exper-
iment is excellent. We also remark that our value for the
susceptibility of the normal phase at unitarity is about
twice larger than the MIT value, measured on a gas with
a 35% condensate fraction, confirming a significant sup-
pression of the spin susceptibility in the superfluid phase
[10].
To make a closer connection with condensed matter

systems, in the Supplementary Discussion, we convert
our data at the unitary limit to usual variables of con-
densed matter systems, namely the spin polarization
p = (n1 − n2)/(n1 + n2) versus normalized chemical po-
tential difference (µ1 − µ2)/2EF .
We also show in Fig.3 the superfluid thermodynamic

function hS(δ) that we measured in [5]. Since for a
spin-balanced gas the superfluid is the actual ground
state, we necessarily have hS(δ) > hN (δ). The differ-
ence hS(δ) − hN (δ) quantifies the ‘condensation energy’
Ec = P0(µ)V (hS(δ) − hN(δ)), which is the value of the
decrease in free energy associated with superfluidity. At
the superfluid/normal transition b = bc(δ), the superfluid
and normal pressures are equal, leading to the relation

hS(δ)− hN (δ) =
15

8
hN (δ)χ̃GC(δ)b2c(δ),

which is analogous to the expression for the condensation
energy of a superconductor as a function of the critical
field Hc, Ec = V 1

2µ0H
2
c , where µ0 is the permeability of

free space. In the Supplementary Discussion, we show
that, surprisingly, this condensation energy agrees in the
strongly-interacting regime addressed in this work with
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FIG. 3: Fermi liquid equation of state extrapolated to a spin-
symmetric configuration hN (δ). The black dots are the exper-
imental data, and the red line is calculated from the Monte
Carlo data. The blue line is the equation of state hS(δ) of the
actual (superfluid) ground state, fitted from the data in [5].
The difference hS(δ)− hN (δ) (in gray) quantifies the conden-
sation energy. Inset: Grand-canonical susceptibility χ̃GC(δ)
of a Fermi gas in the BEC-BCS crossover. Experimental data
(black dots), and Monte Carlo data (red line) are in excellent
agreement.

the BCS prediction Ec = 3
8N∆2/EF , where ∆ is the

single-particle excitation gap measured in [26].
Our findings demonstrate that for 1/kFa <∼ 0.5, the

spin excitations of the system are not gapped in the
normal phase which therefore does not support “true”
molecules. However, a certain class of theories predicts a
reminiscence of this gap in the form of a dip in the density
of states over a range ∆∗ around the Fermi level. ∆∗ is of-
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ten called the pseudogap, in relationship to some features
of high-critical temperature superconductors. These the-
ories predict a departure of E(p) from its quadratic be-
havior when the Fermi levels of the two spin species reach
the edges of the dip, µ2 − µ1 ≃ ∆∗. (see supplementary
materials). The absence of such an anomaly in Fig. 1 and
2 thus suggests that the dip is either extremely narrow
or very broad: the density of state remains flat over the
range of polarizations and interaction strength studied
in our work. For instance, at unitarity this range covers
0 < b2 < 3. If a sizeable dip existed, then its width can-
not be smaller than ≃ (µ1 + µ2)

√
3 ≃ 1.4EF where we

have used the unitary equation of state, µ = 0.41EF

[5]. Such a large pseudogap is not compatible with
the photoemission data of [2](See below). Furthermore,
we would expect on physical grounds that ∆∗ becomes
smaller on the BCS side of the resonance. This is ob-
served neither in the experimental data of Fig.2 nor in
the Quantum Monte Carlo results of Fig.1.
On the contrary, Landau’s theory of Fermi liquids is

fully compatible with our observations. This theory as-
sumes the existence of long-lived fermionic excitations
above the Fermi surface. Combining the results of [3]
with the magnetic susceptibility data presented here, we
can fully characterize the parameters of the theory at
the unitary limit. Indeed, in [3] the low-temperature
compressibility κ and specific heat Cv were measured.
Here we obtain from the magnetic response of the T = 0
unitary gas its magnetic susceptibility and another de-
termination of κ. The two determinations of κ coincide
within 5%, showing that the two approaches indeed probe
the same Fermi liquid. From this set of thermodynamic
quantities we derive, according to Landau’s Fermi liquid
theory, a complete characterization of the low-lying ex-
citations of the unitary gas: besides their effective mass
m∗ = 1.13m and Landau parameters F s

0 = −0.42, F s
1 =

0.39 found in [3], we recover here F s
0 = −0.40 and obtain

the new parameter F a
0 = m∗/mχ̃(0)−1−1 = 1.1(1). Note

that F a
0 > 0 corresponds to magnetic correlations which

do favor the singlet configuration. From these quanti-
ties we derive in the supplementary discussion a stability
region of the normal phase in the spin-imbalance, tem-
perature plane.
We can finally test FLT on the single-particle photoe-

mission spectrum of a 40K trapped gas prepared at the
unitary limit and at the onset of superfluidity [2]. The ex-
perimental signal A(k, ω) is directly proportional to the
spectral function A(k, ω−µ) averaged over the trap (see
Methods).
In the vicinity of the Fermi surface, the dispersion re-

lation of the Fermi liquid quasi-particles reads

h̄ωk = µ+
h̄2k2 − h̄2k2F

2m∗
, (3)

where m∗ = 1.13 m. Assuming long-lived quasiparticles,
we approximate A(k, ω) by δ(ω − ωk) and perform the

integration over the trap to obtain A(k, ω). In the har-
monic trap, A(k, ω) becomes δ(h̄ω−µ(r)− m

m∗
(kF (r)

2 −
k2)). We calculate the density profile and hence the lo-
cal Fermi momentum kF (r) of the trapped gas using the
equation of state of the unitary gas at the onset of su-
perfluidity measured in [3]. In order to make a direct
comparison with the experimental data, we convolve our
result with the experimental resolution in ω in [2], equal
to 0.25EF/h̄ and results for various values of k are shown
in Fig. 4.
With no free parameter in the theory, FLT well re-

produces the experimental spectra for A(k, ω) in the re-
gion k < kF , with an excellent agreement in the re-
gion 0.3 kF ≤ k ≤ kF close to the most probable Fermi
level in the trap (≃ 0.7kF ) where FLT is expected to be
more accurate. Interestingly, we observe that the width
of the peak at k/kF = 0.6 is well reproduced by our
model meaning that the broadening of the line is not
limited by the lifetime of the quasiparticles, but rather
by trap inhomogeneity and measurement resolution. Sig-
nificant deviations between experiment and FLT appear
for k > 1.1kF , far from the most probable Fermi wave-
vector. However in this region the energy spectrum signal
is very broad and weak, corresponding to an incoherent
background in the spectral function. Our Fermi liquid
description thus accounts for the coherent part of the
excitation spectrum from [2].
In conclusion we have shown that the magnetic and

thermal responses of the unitary Fermi gas support a de-
scription of the normal phase in terms of Fermi liquid the-
ory despite the fact that this system exhibits a high crit-
ical temperature for superfluidity. This behaviour is in
contrast with underdoped cuprate high Tc materials dis-
playing anomalous magnetic susceptibility or pseudogap
physics in the normal phase. Note however that recent
quantum oscillation experiments on underdoped cuprates
in high magnetic field, aiming at studying the incipient
normal state (somewhat analogously to the present work)
do suggest long-lived quasiparticles [28]. From thermo-
dynamic quantities, we derived the Landau parameters
of the low energy excitations and the FLT reproduces
the excitation dynamics measured in [2]. The drop of
the susceptibility on the BEC side of the resonance for
1/kFa >∼ 0.5 suggests the appearance of a spin gap in
this regime that deserves further investigations. Finally,
the magnetic susceptibility could be a key observable for
characterizing the onset of itinerant ferromagnetism in a
repulsive Fermi gas [27, 29].
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METHODS SUMMARY
We recall here the procedure used to measure the equa-
tion of state P (µ1, µ2, a), that was already employed
in [5] after the method proposed by [9]. We prepare
a deeply degenerate mixture of the two lowest inter-
nal states of 6Li, held in a cylindrically symmetric hy-
brid optical/magnetic trap, of radial (axial) frequency
ωr (ωz, respectively). The bias magnetic field B0 is
chosen between 822 G and 981 G, allowing to tune the
strength of interactions. The final atom number is 2 to
10 × 104 atoms per spin state, and the gas temperature
is 0.03(3)TF , as measured from the fully-polarized wings
of a trapped gas [30]. As shown in [3, 5, 9], the local
gas pressure along the z axis can directly be obtained
from its in situ image. In the framework of local density
approximation, this provides the grand-canonical equa-
tion of state P (µ1, µ2, a) at the local chemical potentials
µiz = µ0

i − 1
2mω

2
zz

2, where µ0
i is the global chemical

potential for species i. The global chemical potential
µ0
1 for the majority species is directly obtained from the

Thomas-Fermi radius R1 of the fully polarized phase, ac-
cording to µ0

1 = 1
2mω

2
zR

2
1. Similarly to [5], we obtain

the global chemical potential µ0
2 by imposing that, at
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the outer radius R2 of the minority species, the chemi-
cal potential ratio µ2/µ1 is given by the resolution of the
impurity problem [14–16, 18–20].
We make use of the fixed-node diffusion Monte Carlo

method that was employed in earlier studies of polarized
Fermi gases [15, 19]. The state of the system is forced
to be in the normal phase by imposing the nodal sur-
face of a many-body wave function incompatible with
off-diagonal long-range order. A simple way to imple-
ment this requirement is by choosing the trial function
of the Jastrow-Slater form

ψT (R) =
∏

i,i′

f(rii′ )D(N1)D(N2) , (4)

where R = (r1, ..., rN ) is the spatial configuration vector
of the N particles and D denotes the Slater determinant
of plane waves in a cubic box of size L with periodic
boundary conditions, accommodating the Ni particles of
each species i. The positive Jastrow correlation term f(r)
is determined as described in Ref. [15]: at short distances
it corresponds to the lowest-energy solution of the two-
body problem, while it satisfies the boundary condition
on its derivative f ′(r = L/2) = 0. Finite-size effects have
been reduced using the technique described in [29].

METHODS
Fixed-Node Monte Carlo simulation The Hamilto-
nian of the N = N1 + N2 atoms of the two species is
given by

H = − h̄2

2m

(
N1∑

i=1

∇2
i +

N2∑

i′=1

∇2
i′

)
+
∑

i,i′

V (rii′ ) , (5)

where i, j, ... and i′, j′, ... label, respectively, majority and
minority fermions. We model interspecies interatomic
interactions using an attractive square well potential:
V (r) = −V0 if r < R0 and zero otherwise (V0 > 0). The
short range R0 is fixed by the condition nR3

0 = 10−6,
where n = n1 + n2 is the total atom density. The depth
V0 is instead chosen as to give the proper value of the
scattering length a along the BEC-BCS crossover. We
consider a system with fixed total number of particles
(N = 66) in a fixed volume V = L3 and we calcu-
late using fixed-node diffusion Monte Carlo method its
energy for different values of the interaction strength
1/kFa, where kF = (3π2n)2/3, and of the polarization
p = (N1 − N2)/(N1 + N2), and obtain the data plotted
in Fig.1.

Averaged spectral function of a Fermi liquid The
trap-averaged spectral function A(k, ω) is related to the
spectral function A(k, ω) by [2]:

A(k, ω) =
48k2

π2

∫
d3r

A(k, ω − µ(r)/h̄)

1 + exp h̄ω−µ(r)
kBT

, (6)

where µ(r) is the local chemical potential at position r. In
order to calculate the integrated spectral function A(k, ω)
of a Fermi liquid, we replace the spectral function by
equation (3), where kF (r) is calculated from the equation
of state of the unitary gas determined in [3], and perform
the integral in (6). The temperature is chosen at the
onset of superfluidity kBT/µ

0 = 0.32. In order to make a
direct comparison with the experimental data, we finally
convolve our result with the experimental resolution in
ω, equal to 0.25EF/h̄.
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SUPPLEMENTARY DISCUSSION
Gap and spin susceptibility Let us consider a system
containing N↑ and N↓ spin up and spin down particles.
We define M = N↑ −N↓ and N = N↑ +N↓ the polariza-
tion and the total atom number and we note E(N,M)
the energy of the system. If one assumes that the energy
can be expanded inM then by symmetry the linear term
vanishes and one gets E(N,M) = E(N, 0)+M2/2χ+ ....
With this definition, χ is then the spin susceptibility
of the system. Indeed, adding a magnetic field h con-
tributes to a −hM term to the energy and we immedi-
ately see that the energy minimum is shifted fromM = 0
to M = χh.
This argument is no longer true in the case of a gapped

system. Indeed, polarizing a spin balanced system costs
the binding energy of the broken pairs. This definition
applies to any system composed of spin-singlet dimers,
from a fermionic superfluid composed of Cooper pairs,
or a pure gas of uncondensed molecules, and leads to the
following leading order expansion

E(N,M) = E(N, 0) + |M |∆+ ...

To evaluate the spin susceptibility, we add as above a
magnetic field h changing the energy into E − hM . We
see that for h 6= 0, the potential is tilted but the energy
minimum stays located at M = 0 (as long as |h| < ∆
corresponding to the Pauli limit pointed out by Clogston
and Chandrasekhar in the case of superconductors [7, 8]).

Thermodynamic signature of the pseudogap. The
pseudogap phenomenon can be defined as a dip in the
density of state ρ(ε) close to EF reminiscent of the true
cancellation of ρ inside the superfluid gap. We note ∆∗

the width of the dip, and for the sake of simplicity we
assume that ∆∗ ≪ kBTF . In a simple model where one
assumes that the excitations of the system are described
by the Fermi-Dirac distribution, one can show that the
spin susceptibility of the system is the inverse of the den-
sity of state at the Fermi level. For small imbalances,
the Fermi levels of the two spin states lie within the dip.
The spin susceptibility is thus χ−1 = ρ∗0. When the im-
balance is larger, the two Fermi surfaces are outside the
dip (when EF1 −EF2 ≫ ∆∗), and the pseudogap excita-
tions do not contribute anymore to the thermodynamics
of the system. In this case, the spin susceptibility is given
by χ−1 = ρ0 > ρ∗0 (see Fig. 6).

Polarizability of the unitary Fermi gas It is inter-
esting to express our data for the unitary Fermi gas in
the usual variables of condensed matter physics, namely
the polarization p = (n1 − n2)/(n1 + n2) as a function
of (µ1 − µ2)/2EF , where EF is the Fermi energy. These
quantities are calculated from the thermodynamic func-
tion at unitarity h0(b) = h(δ = 0, b) according to

p =
h′0(b)

5
2h0(b)− b h′0(b)

,
µ1 − µ2

2EF
=

b

(h0(b)− 2
5b h

′
0(b))

2/3
.
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FIG. 5: Dependence of energy E with spin population imbal-
ance M for gapless (top) and gapped (bottom) systems. Top.
Full line: The dependence with spin imbalance is quadratic
and the curvature is equal to the inverse of the spin suscep-
tibility χ̃. Dashed line: In the presence of a spin polarizing
field h, the energy minimum is shifted to M = χ̃h. Bottom:
gapped system. Full line: Energy in the absence of exter-
nal spin polarizing field. The slope is equal to the gap ∆.
Dashed line: in the presence of a spin polarizing field, the
energy profile is tilted but the minimum remains located at
M = 0.

This requires to take the derivative of our experimental
data, which decreases the signal-to-noise ratio. We ob-
tain the data plotted in Fig.7. In the superfluid phase the
polarization remains equal to 0 and jump to p ≃ 0.4 at
the superfluid/normal transition (for µ1−µ2 ≃ 0.4·2EF ).
The polarization then increases linearly with the mag-
netic field over a large polarization range, according to
p = 3

2χN(µ1 − µ2)/2EF , with χ̃ = 0.54.

Condensation energy and excitation gap BCS the-
ory predicts that the condensation energy associated with
superconductivity is related to the single-particle excita-
tion gap through

Ec =
3

8
N

∆2

EF
.

The transposition to the canonical equations of state E =
3
5NEF ξα(1/kFa) in the superfluid (α = S) and normal
(α = N) states reads

ξN − ξS =
5

8

∆2

EF
. (7)
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FIG. 6: Top: sketch of the density of state in a pseudogap
model. A footprint of the molecular state appears as a dip of
width ∆∗ and depth ρ0 − ρ∗0 in the density of state. Bottom:
Polarization p as a function of the magnetic field b, with ρ∗0 =
0.5ρ0 and ∆∗ = 0.1µ. At low imbalance, the Fermi levels
of the two spin species lie inside the dip. This results in
a depletion of spin excitations and a reduction of the spin
susceptibility.
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n 1
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n 2
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n 2

FIG. 7: Polarization p of the unitary Fermi gas as a function
of the magnetic field µ1 − µ2, normalized to the Fermi en-
ergy EF = h̄2/2m(3π2n)2/3. The red line corresponds to the
relation p = 3

2
χ̃(µ1 − µ2)/2EF , with χ = 0.54.

In Fig.8 we compare ξN − ξS determined from Monte

è
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FIG. 8: Condensation energy expressed as ξN − ξS as a func-
tion of 1/kF a, determined from a fit of Monte Carlo calcu-
lations (blue line). The red dots are equal to 5

8
∆2/EF , with

the experimental gap values from [26].

Carlo simulations [1–3] to the experimental values of the
gap from [26]. Surprisingly, we observe that equation (7)
seems valid in the strongly-interacting regime addressed
in this work.

Lower bound on the superfluid/normal transition
From the low-temperature and low-magnetic field behav-

àà

ìì

ìì
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FIG. 9: Lower bound on the superfluid/normal transition
in the (b, t) magnetization, temperature plane deduced from
a Fermi liquid description of the normal phase (red line).
The red diamonds correspond to the t = 0 and b = 0 su-
perfluid/normal transitions [3]. The dashed black line is a
Nozières-Schmitt prediction from [4], the black dot is the cor-
responding tri-critical point. The blue square is the tri-critical
point predicted from a renormalization group theory [5].

iors measured respectively in [3] and in this work, we can
write the equation of state of the normal phase of the
unitary gas at finite temperature and magnetic field:

PN (µ1, µ2, T )

P0(µ)
= ξ

−3/2
N +

5π2

8
ξ
−1/2
N

m∗
m
t2+

15

8
ξ
−1/2
N χ̃GCb2,

where t = kBT/µ. In the superfluid phase, since
∂PS/∂T |µ1, µ2 is the entropy and is positive, one has

PS(µ1, µ2, T ) ≥ PS(µ1, µ2, T = 0) = 2ξ
−3/2
S P0(µ). At

the superfluid to normal transition, PS = PN , which
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leads to the following inequality:

ξ
−3/2
N +

5π2

8
ξ
−1/2
N

m∗
m
t2 +

15

8
ξ
−1/2
N χ̃GCb2 ≥ ξ

−3/2
S ,

which provides a lower bound on the stability region of
the Fermi liquid state (see Fig.9). At low temperature
the bound coincides with the actual superfluid/normal
transition (b ≃ 0.8, t = 0) by construction. Interestingly,
it is also very close to the transition point of a spin-
unpolarized gas (b = 0, t = 0.32) determined in [3]. This
shows that temperature effects are rather small in the su-
perfluid state. While the prediction of Nozières-Schmitt-
Rink theory from [4] for the transition line is correctly
above our lower bound, it is surprising to observe that
the prediction of renormalization group theory for the tri-
critical point largely violates it [5]. Finally we can give
a lower bound on the curvature of Tc at low magnetic
field: d2tc/db

2 > −0.46. The Monte Carlo calculation

d2tc/db
2 = 0.25(40) from [6] satisfies this condition.
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