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Abstract

The well-know needle experiment of Buffon can be regarded
as an analog (i.e., continuous) device that stochastically
“computes” the number 2/π

.
= 0.63661, which is the exper-

iment’s probability of success. Generalizing the experiment
and simplifying the computational framework, we consider
probability distributions, which can be produced perfectly,
from a discrete source of unbiased coin flips. We describe
and analyse a few simple Buffon machines that generate ge-
ometric, Poisson, and logarithmic-series distributions. We
provide human-accessible Buffon machines, which require a
dozen coin flips or less, on average, and produce experiments
whose probabilities of success are expressible in terms of
numbers such as π, exp(−1), log 2,

√
3, cos( 1

4
), ζ(5). Gener-

ally, we develop a collection of constructions based on sim-
ple probabilistic mechanisms that enable one to design Buf-
fon experiments involving compositions of exponentials and
logarithms, polylogarithms, direct and inverse trigonometric
functions, algebraic and hypergeometric functions, as well
as functions defined by integrals, such as the Gaussian error
function.

Introduction

Buffon’s experiment (published in 1777) is as follows [1,
4]. Take a plane marked with parallel lines at unit
distance from one another; throw a needle at random;
finally, declare the experiment a success if the needle
intersects one of the lines. Basic calculus implies that
the probability of success is 2/π.

One can regard Buffon’s experiment as a simple
analog device that takes as input real uniform [0, 1]–
random variables (giving the position of the centre
and the angle of the needle) and outputs a discrete
{0, 1}–random variable, with 1 for success and 0 for
failure. The process then involves exact arithmetic
operations over real numbers. In the same vein, the
classical problem of simulating random variables can
be described as the construction of analog devices
(algorithms) operating over the reals and equipped
with a real source of randomness, which are both
simple and computationally efficient. The encyclopedic
treatise of Devroye [6] provides many examples relative
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Law supp. distribution gen.

Bernoulli Ber(p) {0, 1} P(X = 1) = p ΓB(p)

geometric Geo(λ) Z≥0 P(X = r) = λr(1− λ) ΓG(λ)

Poisson, Poi(λ) Z≥0 P(X = r) = e−λ
λr

r!
ΓP(λ)

logarithmic, Log(λ) Z≥0 P(X = r) =
1

L

λr

r
ΓL(λ)

Figure 1: Main discrete probability laws: support, expres-
sion of the probabilities, and naming convention for genera-
tors (L := log(1− λ)−1).

to the simulation of distributions, such as Gaussian,
exponential, Cauchy, stable, and so on.

Buffon machines. Our objective is the perfect
simulation of discrete random variables (i.e., variables
supported by Z or one of its subsets; see Fig. 1). In this
context, it is natural to start with a discrete source of
randomness that produces uniform random bits (rather
than uniform [0, 1] real numbers), since we are interested
in finite computation (rather than infinite-precision real
numbers); cf Fig. 2.

Definition 1. A Buffon machine is a deterministic de-
vice belonging to a computationally universal class (Tur-
ing machines, equivalently, register machines), equipped
with an external source of independent uniform random
bits and input–output queues capable of storing integers
(usually, {0, 1}-bits), which is assumed to halt1 with
probability 1.

The fundamental question is then the following. How
does one generate, exactly and efficiently, discrete dis-
tributions using only a discrete source of random bits
and finitary computations? A pioneering work in this
direction is that of Knuth and Yao [20] who discuss
the power of various restricted devices (e.g., finite-state
machines). Knuth’s treatment [18, §3.4] and the arti-
cles [11, 36] provide additional results along these lines.

1Machines that always halt can only produce Bernoulli distri-
butions whose parameter is a dyadic rational s/2t; see [20] and §1.
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Figure 2: A Buffon machine with two inputs, one output,
and three registers.

Our original motivation for studying discrete Buf-
fon machines came from Boltzmann samplers for combi-
natorial structures, following the approach of Duchon,
Flajolet, Louchard, and Schaeffer [7] and Flajolet, Fusy,
and Pivoteau [9]. The current implementations relie on
real number computations, and they require generating
distributions such as geometric, Poisson, or logarithmic,
with various ranges of parameters—since the objects ul-
timately produced are discrete, it is natural to try and
produce them by purely discrete means.

Numbers. Here is an intriguing range of related
issues. Let M be an input-free Buffon machine that
outputs a random variable X, whose value lies in {0, 1}.
It can be seen from the definition that such a machine
M, when called repeatedly, produces an independent
sequence of Bernoulli random variables. We say that
M is a Buffon machine or Buffon computer for the
number p := P(X = 1). We seek simple mechanisms—
Buffon machines—that produce, from uniform {0, 1}-
bits, Bernoulli variables whose probabilities of success
are numbers such as

1/
√

2, e−1, log 2,
1

π
, π − 3,

1

e− 1
.(0.1)

This problem can be seen as a vast generalization of
Buffon’s needle problem, adapted to the discrete world.

Complexity and simplicity. We will impose the
loosely defined constraint that the Buffon machines we
consider be short and conceptually simple, to the extent
of being easily implemented by a human. Thus, emulat-
ing infinite-precision computation with multiprecision
interval arithmetics or appealing to functions of high
complexity as primitives is disallowed2. Our Buffon pro-
grams only make use of simple integer counters, string

2 The informal requirement of “simplicity” can be captured
by the formal notion of program size. All the programs we de-

registers (§2) and stacks (§3), as well as “bags” (§4).
The reader may try her hand at determining Buffon-
ness in this sense of some of the numbers listed in (0.1).
We shall, for instance, produce a Buffon computer for
the constant Li3(1/2) of Eq. (2.11) (which involves log 2,
π, and ζ(3)), one that is human-compatible, that con-
sumes on average less than 6 coin flips, and that requires
at most 20 coin flips in 95% of the simulations. We shall
also devise nine different ways of simulating Bernoulli
distributions whose probability involves π, some requir-
ing as little as five coin flips on average. Furthermore,
the constructions of this paper can all be encapsulated
into a universal interpreter, briefly discussed in Sec-
tion 5, which has less than 60 lines of Maple code and
produces all the constants of Eq. (0.1), as well as many
more.

In this extended abstract, we focus the discussion
on algorithmic design. Analytic estimates can be ap-
proached by means of (probability, counting) generating
functions in the style of methods of analytic combina-
torics [12]; see the typical discussion in Subsection 2.1.
The main results are Theorem 2.2 (Poisson and loga-
rithmic generators), Theorem 2.3 (realizability of exps,
logs, and trigs), Theorem 4.1 (general integrator), and
Theorem 4.2 (inverse trig functions).

1 Framework and examples

Our approach consists in setting up a system based
on the composition of simple probabilistic experiments,
corresponding to simple computing devices. (For this
reason, the Buffon machines of Definition 1 are allowed
input/output registers.) The unbiased random-bit gen-
erator3, with which Buffon machines are equipped will
be named “flip”. The cost measure of a computation
(simulation) is taken to be the number of flips. (For the
restricted devices we shall consider, the overall simula-
tion cost is essentially proportional to this measure.)

Definition 2. The function λ 7→ φ(λ), defined for
λ ∈ (0, 1) and with values φ(λ) ∈ (0, 1), is said to
be weakly realizable if there is a machine M, which,

velop necessitate at most a few dozen register-machine instruc-
tions, see §5 and the Appendix, as opposed to programs based

on arbitrary-precision arithmetics, which must be rather huge;

cf [31]. If program size is unbounded, the problem becomes triv-
ial, since any Turing-computable number α can be emulated by

a Buffon machine with a number of coin flips that is O(1) on av-

erage, e.g., by computing the sequence of digits of α on demand;
see [20] and Eq. (1.5) below.

3This convention entails no loss of generality. Indeed, as first

observed by von Neumann, suppose we only have a biased coin,
where P(1) = p, P(0) = 1 − p, with p ∈ (0, 1). Then, one should
toss the coin twice: if 01 is observed, then output 0; if 10 is

observed, then output 1; otherwise, repeat with new coin tosses.
See, e.g., [20, 28] for more on this topic.



when provided on its input with a perfect generator of
Bernoulli variables of (unknown) parameter λ, outputs,
with probability 1, a Bernoulli random variable of pa-
rameter φ(λ). The function φ is said to be realizable,
resp., strongly realizable, if the (random) number C of
coin flips has finite expectation, resp., exponential tails4.

We shall also say that φ has a [weak, strong] simulation
if it is realizable by a machine [in the weak, strong
sense]. Schematically:

X1, X2, . . . ∈ Ber(λ) Y ∈ Ber(φ(λ))
M

The devices are normally implemented as programs.
Using ΓB(λ) as a generic notation for a Bernoulli
generator of parameter λ, a Buffon machine that realizes
the function φ is then equivalent to a program that can
call (possibly several times) a ΓB(λ), as an external
routine, and then outputs a random Bernoulli variable
of parameters φ(λ). It corresponds to a construction of
type ΓB(λ) −→ ΓB(φ(λ)).

The definition is extended to machines with m
inputs, in which case a function φ(λ1, . . . , λm) of m
arguments is realized ; see below for several examples. A
machine with no input register then computes a function
φ() of no argument, that is, a constant p, and it does so
based solely on its source of unbiased coin flips: this is
what we called in the previous section a Buffon machine
(or computer) for p.

The fact that Buffon machines are allowed input
registers makes it possible to compose them. For
instance, if M and N realize the unary functions φ
and ψ, connecting the output of M to the input of
N realizes the composition ψ ◦ φ. It is one of our
goals to devise Buffon computers for special values of
the success probability p by composition of simpler
functions, eventually only applied to the basic flip
primitive.

Note that there are obstacles to what can be done:
Keane and O’Brien [16], for instance, showed that the
“success doubling” function min(2λ, 1) cannot be re-
alized and discontinuous functions are impossible to
simulate—this, for essentially measure-theoretic rea-
sons. On the positive side, Nacu and Peres [27] show
that every (computable) Lipschitz function is realiz-
able and every (computable) real-analytic function has a

4 C ≡ C(λ) has exponential tails if there are constants K and
ρ < 1 such that P(C > m) ≤ Kρm.

strong simulation, but their constructions require com-
putationally unrestricted devices; namely, sequences of
approximation functions of increasing complexity. In-
stead, our purpose here is to show how sophisticated
perfect simulation algorithms can be systematically and
efficiently synthetized by composition of simple prob-
abilistic processes, this without the need of hard-to-
compute sequences of approximations.

To set the stage of the present study, we shall briefly
review in sequence: (i) decision trees and polynomial
functions; (ii) Markov chains (finite graphs) and ratio-
nal functions.

Decision trees and polynomials. Given three
machines P,Q,R with outputs in {0, 1} and with
PP (1) = p, PQ(1) = q, PR(1) = r, we can easily build
machines, corresponding to loopless programs, whose
probability of success is p · q, 1− p, or any composition
thereof: see Eq. (1.2) [top of next page] for the most
important boolean primitives. We can then simulate a
Bernoulli of parameter any dyadic rational s/2t, starting
from the unbiased flip procedure, performing t draws,
and declaring a success in s designated cases. Also, by
calling a Bernoulli variate of (unknown) parameter λ a
fixed number m of times, then observing the sequence
of outcomes and its number k of 1s, we can realize any
polynomial function am,kλ

k(1 − λ)m−k, with am,k any
integer satisfying 0 ≤ am,k ≤

(
m
k

)
.

Finite graphs (Markov chains) and rational
functions. We now consider programs that allow itera-
tion and correspond to a finite control graph—these are
equivalent to Markov chains, possibly parameterized by
“boxes” representing calls to external Bernoulli genera-
tors. In this way, we can produce a Bernoulli generator
of any rational parameter λ ∈ Q, by combining a sim-
pler dyadic generator with iteration. (For instance, to
get a Bernoulli generator of parameter 1

3 , denoted by
ΓB( 1

3 ), flip an unbiased coin twice; return success if 11
is observed, failure in case of 01 or 10, and repeat the
experiment in case of 00.) Clearly, only rational num-
bers and functions can be realized by finite graphs.

A highly useful construction in this range of meth-
ods is the even-parity construction:

[even-parity] do { if P () = 0 then return(1);
if P () = 0 then return(0) }.(1.3)

This realizes the function p 7→ 1/(1 + p). Indeed, the
probability of k + 1 calls to P () is (1 − p)pk, which,
when summed over k = 0, 2, 4, . . ., gives the probability
of success as 1/(1 + p); thus, this function is realizable.
Combining this function with complementation (x 7→
1 − x) leads, for instance, to a way of compiling any
rational probability a/b into a generator ΓB

(
a
b

)
whose

size is proportional to the sum of digits of the continued



Name realization function

Conjunction (P ∧Q) if P () = 1 then return(Q()) else return(0) p ∧ q = p · q
Disjunction (P ∨Q) if P () = 0 then return(Q()) else return(1) p ∨ q = p+ q − pq
Complementation (¬P ) if P () = 0 then return(1) else return(0) 1− p
Squaring (P ∧ P ) p2

Conditional (R→ P |Q) if R() = 1 then return(P ()) else return(Q()) rp+ (1− r)q.
Mean if flip() then return(P ()) else return(Q()) 1

2
(p+ q).

(1.2)

fraction representation of a/b. (See also Eq. (1.5)
below for an alternative based on binary representations
and [20] for more on this topic.)

Here are furthermore two important characteri-
zations based on works of Nacu–Peres [27] (see also
Wästlund [35]) and Mossel–Peres [26]:

Theorem 1.1. ([26, 27, 35]) (i) Any polynomial f(x)
with rational coefficients that maps (0, 1) into (0, 1) is
strongly realizable by a finite graph. (ii) Any rational
function f(x) with rational coefficients that maps (0, 1)
into (0, 1) is strongly realizable by a finite graph.

(Part (i) is based on a theorem of Pólya, relative to
nonnegative polynomials; Part (ii) depends on an in-
genious “block simulation” principle. The correspond-
ing constructions however require unbounded precision
arithmetics.)

We remark that we can also produce a geometric
variate from a Bernoulli of the same parameter: just
repeat till failure. This gives rise to the program

[Geometric] ΓG(λ) := {K := 0; do { if ΓB(λ) = 0
then return(K); K := K+ 1; } }.(1.4)

(The even-parity construction implicitly makes use of
this.) The special ΓG( 1

2 ) then simply iterates on the
basis of a flip.

In case we have access to the complete binary
expansion of p (note that this is not generally permitted
in our framework), a Bernoulli generator is obtained by

[Bernoulli/binary] { let Z := 1 + ΓG( 1
2
);

return(bit(Z, p)) }.(1.5)

In words: in order to draw a Bernoulli variable of
parameter p whose binary representation is available,
return the bit of p whose random index is given by a
shifted geometric variable of parameter 1/2. (Proof:
emulate a comparison between a uniformly random
V ∈ [0, 1] with p ∈ [0, 1]; see [20, p. 365] for this
trick.) The cost is by design a geometric of rate 1/2. In
particular, Eq. (1.5) automatically gives us a ΓB(p), for
any rational p ∈ Q, by means of a simple Markov chain,
based on the eventual periodicity of the representation
of p. (The construction will prove useful when we
discuss “bags” in §4.)

2 The von Neumann schema

The idea of generating certain probability distributions
by way of their Taylor expansion seems to go back to
von Neumann. An early application discussed by Knuth
and Yao [20], followed by Flajolet and Saheb [11], is
the exact simulation of an exponential variate by means
of random [0, 1]–uniform variates, this by a “continua-
tion” process that altogether avoids multiprecision op-
erations. We build upon von Neumann’s idea and in-
troduce in Subsection 2.1 a general schema for random
generation—the von Neumann schema. We then ex-
plain in Subsection 2.2 how this schema may be adapted
to realize classical transcendental functions, such as e−λ,
cos(λ), only knowing a generator ΓB(λ).

2.1 Von Neumann generators of discrete distri-
butions. First a few notations from [12]. Start from a
class P of permutations, with Pn the subset of permu-
tations of size n and Pn the cardinality of Pn. The
(counting) exponential generating function, or egf, is

P (z) :=
∑
n≥0

Pn
zn

n!
.

For instance, the classesQ,R,S of, respectively, all per-
mutations, sorted permutations, and cyclic permuta-
tions have egfs given by Q(z) = (1 − z)−1, R(z) =
ez, S(z) = log(1 − z)−1, since Qn = n!, Rn = 1,
Sn = (n − 1)!, for n ≥ 1. We observe that the class S
of cyclic permutations is isomorphic to the class of per-
mutations such that the maximum occurs in the first
position: U1 > U2, . . . , UN . (It suffices to “break” a cy-
cle at its maximum element.) We shall also denote by S
the latter class, which is easier to handle algorithmically.

Let U = (U1, . . . , Un) be a vector of real numbers.
By replacing each Uj by its rank in U, we obtain a
permutation σ = (σ1, . . . , σn), which is called the (or-
der) type of U and is written type(U). For instance:
type(1.41, 0.57, 3.14, 2.71) = (2, 1, 4, 3). The von Neu-
mann schema, relative to a class P of permutations is
described in Fig. 3 and denoted by ΓVN[P](λ). Observe
that it only needs a geometric generator ΓG(λ), hence,
eventually, only a Bernoulli generator ΓB(λ), whose pa-
rameter λ is not assumed to be known.



ΓVN[P](λ) := { do {
N := ΓG(λ);
let U := (U1, . . . , UN ), vector of [0, 1]–uniform
{ bits of the Uj are produced on call-by-need basis}
let τ := trie(U); let σ := type(U);
if σ ∈ PN then return(N) } }.

Figure 3: The von Neumann schema ΓVN[P](λ), in its basic
version, relative to a class of permutations P and a parame-
ter λ (equivalently given by its Bernoulli generator ΓB(λ)).

First, by construction, a value N is, at each stage
of the iteration, chosen with probability (1−λ)λN . The
procedure consists in a sequence of failed trials (when
type(U) is not in P), followed by eventual success. An
iteration (trial) that succeeds then returns the value
N = n with probability

(1− λ)Pnλ
n/n!

(1− λ)
∑
n Pnλ

n/n!
=

1

P (λ)

Pnλ
n

n!
.(2.6)

For P one of the three classes Q,R,S described above
this gives us three interesting distributions:

all (Q) sorted (R) cyclic (S)

(1− λ)λn e−λ
λn

n!

1

L

λn

n
geometric Poisson logarithmic.

(2.7)

The case of all permutations (Q) is trivial, since no
order-type restriction is involved, so that the initial
value of N ∈ Geo(λ) is returned. It is notable that,
in the other two cases (R,S), one produces the Poisson
and logarithmic distributions, by means of permutations
obeying simple restrictions.

Next, implementation details should be discussed.
Once N has been drawn, we can imagine producing
the Uj in sequence, by generating at each stage only
the minimal number of bits needed to distinguish any
Uj from the other ones. This corresponds to the
construction of a digital tree, also known as “trie” [19,
23, 33] and is summarized by the command “let τ :=
trie(U)” in the schema of Fig. 3. As the digital tree τ
is constructed, the Uj are gradually sorted, so that
the order type σ can be determined—this involves no
additional flips, just bookkeeping. The test σ ∈ PN is
of this nature and it requires no flip at all.

The general properties of the von Neumann schema
are summarized as follows.

Theorem 2.1. (i) Given an arbitrary class P of per-
mutations and a parameter λ ∈ (0, 1), the von Neumann
schema ΓVN[P](λ) produces exactly a discrete random
variable with probability distribution

P(N = n) =
1

P (λ)

Pnλ
n

n!
.

(ii) The number K of iterations has expectation
1/s, where s = (1− λ)P (λ), and its distribution is
1 + Geo(1− s).

(iii) The number C of flips consumed by the algo-
rithm (not counting the ones in ΓG(λ)) is a random
variable with probability generating function

E(qC) =
H+(λ, q)

1−H−(λ, q)
,(2.8)

where H+, H− are computable from the family of poly-
nomials in (2.10) below by

H+(z, q) = (1− z)
∞∑
n=0

Pn
n!
hn(q)zn

H−(z, q) = (1− z)
∞∑
n=0

(
1− Pn

n!

)
hn(q)zn.

The distribution of C has exponential tails.

Proof. [Sketch] Items (i) and (ii) result from the discussion
above. Regarding Item (iii), a crucial observation is that
the digital tree created at each step of the iteration is only
a function of the underlying set of values. But there is
complete independence between this set of values and their
order type. This justifies (2.8), where H+, H− are the
probability generating functions associated with success and
failure of one trial, respectively.

We next need to discuss the fine structure of costs. The
cost of each iteration, as measured by the number of coin
flips, is exactly that of generating the tree τ of random
size N . The number of coin flips to build τ coincides with the
path length of τ , written ω(τ), which satisfies the inductive
definition

ω(τ) = |τ |+ ω(τ0) + ω(τ1), |τ | ≥ 2,(2.9)

where τ = 〈τ0, τ1〉 and |τ | is the size of τ , that is, the number
of elements contained in τ .

Path length is a much studied parameter, starting with
the work of Knuth in the mid 1960s relative to the analysis
of radix-exchange sort [19, pp. 128–134]; see also the books
of Mahmoud [23] and Szpankowski [33] as well as Vallée et
al.’s analyses under dynamical source models [5, 34]. It is
known from these works that the expectation of path length,
for n uniform binary sequences, is finite, with exact value

En[ω] = n
∞∑
k=0

[
1−

(
1− 1

2k

)n−1
]
,

and asymptotic form (given by a Mellin transform analy-
sis [10, 23, 33]): En[ω] = n log2 n + O(n). A consequence
of this last fact is that E(C) is finite, i.e., the genera-
tor ΓVN[P](λ) has the basic simulation (realizability) prop-
erty.

The distribution of path length is known to be asymp-
totically Gaussian, as n→∞, after Jacquet and Régnier [15]



and Mahmoud et al. [25]; see also [24, §11.2]. For our pur-
poses, it suffices to note that the bivariate egf

H(z, q) :=

∞∑
n=0

En[qω]
zn

n!

satisfies the nonlinear functional equation H(z, q) =

H
(
zq
2
, q
)2

+ z(1− q), with H(0, q) = 1. This equation fully
determines H, since it is equivalent to a recurrence on coef-
ficients, hn(q) := n![zn]H(z, q), for n ≥ 2:

hn(q) =
1

1− qn21−n

n−1∑
k=1

1

2n

(
n

k

)
hk(q)hn−k(q).(2.10)

The computability of H+, H− then results. In addition,
large deviation estimates can be deduced from (2.10), which
serve to establish exponential tails for C, thereby ensuring
a strong simulation property in the sense of Definition 2.

A notable consequence of Theorem 2.1 is the possi-
bility of generating a Poisson or logarithmic variate by
a simple device: as we saw in the discussion preceding
the statement of the Theorem, only one branch of the
trie needs to be maintained, in the case of the classes R
and S of (2.7).

Theorem 2.2. The Poisson and logarithmic distribu-
tions of parameter λ ∈ (0, 1) have a strong simulation
by a Buffon machine, ΓVN[R](λ) and ΓVN[S](λ), re-
spectively, which only uses a single string register.

Since the sum of two Poisson variates is Poisson
(with rate the sum of the rates), the strong simulation
result extends to any X ∈ Poi(λ), for any λ ∈ R≥0.
This answers an open question of Knuth and Yao in [20,
p. 426]. We may also stress here that the distributions
of costs are easily computable: with the symbolic
manipulation system Maple, the cost of generating
a Poisson(1/2) variate is found to have probability
generating function (Item (iii) of Theorem 2.1)

3

4
+

7

128
q2+

119

4096
q4+

19

1024
q5+

2023

131072
q6+

179

16384
q7+· · · .

Interestingly enough, the analysis of the logarithmic
generators involves ideas similar to those relative to a
classical leader election protocol [8, 30].

2.2 Buffon computers: logarithms, exponen-
tials, and trig functions. We can also take any of
the previous constructions and specialize it by declar-
ing a success whenever a special value N = a is re-
turned, for some predetermined a (usually a = 0, 1),
declaring a failure, otherwise. For instance, the Poisson
generator with a = 0 gives us in this way a Bernoulli
generator with parameter λ′ = exp(−λ). Since the

von Neumann machine only requires a Bernoulli gen-
erator ΓB(λ), we thus have a purely discrete construc-
tion ΓB(λ) −→ ΓB

(
e−λ

)
. Similarly, the logarithmic

generator restricted to a = 1 provides a construction

ΓB(λ) −→ ΓB
(

λ
log(1−λ)−1

)
. Naturally, these construc-

tions can be enriched by the basic ones of Section 1, in
particular, complementation.

Another possibility is to make use of the number
K of iterations, which is a shifted geometric of rate
s = (1 − λ)P (λ); see Theorem 2.1, Item (ii). If we
declare a success whenK = b, for some predetermined b,
we then obtain yet another brand of generators. The
Poisson generator used in this way with b = 1 gives us
ΓB(λ) −→ ΓB

(
(1− λ)eλ

)
, ΓB

(
λe1−λ

)
, where the

latter involves an additional complementation.
Trigonometric functions can also be brought into

the game. A sequence U = (U1, . . . , Un) is said to
be alternating if U1 < U2 > U3 < U4 > · · ·. It is
well known that the egfs of the classes A+ of even-
sized and A− of odd-sized permutations are respectively
A+(z) = sec(z) = 1/cos(z), and A−(z) = tan(z) =
sin(z)/cos(z). (This result, due to Désiré André around
1880, is in most books on combinatorial enumeration,
e.g., [12, 13, 32].) Note that the property of being
alternating can once more be tested sequentially: only
a partial expansion of the current value of Uj needs to
be stored at any given instant. By making use of the
properties A+,A−, with, respectively N = 0, 1, we then
obtain new trigonometric constructions.

In summary:

Theorem 2.3. The following functions admit a strong
simulation:

e−x, ex−1, (1− x)ex, xe1−x,
x

log(1− x)−1
,

1− x
log(1/x)

, (1− x) log
1

1− x
, x log

1

x
,

cos(x),
1− x
cos(x)

,
x

tan(x)
, (1− x) tan(x).

2.3 Polylogarithmic constants. The probability
that a vector U is such that U1 > U2, . . . , Un (the first
element is largest) equals 1/n, a property that underlies
the logarithmic series generator. By sequentially draw-
ing r several such vectors and requiring success on all r
trials, we deduce constructions for families involving the
polylogarithmic functions, Lir(z) :=

∑∞
n≥1 z

n/nr, with
r ∈ Z≥1. Of course, Li1(1/2) = log 2. The few spe-
cial evaluations known for polylogarithmic values (see
the books by Berndt on Ramanujan [3, Ch. 9] and by

Lewin [21, 22]) include Li2(1/2) = π2

12 −
1
2 log2 2 and

Li3(
1

2
) =

log3 2

6
− π2 log 2

12
+

7ζ(3)

8
, ζ(s) :=

∑
n≥1

1

ns
.(2.11)



By rational convex combinations, we obtain Buffon

computers for π2

24 and 7
32ζ(3). Similarly, the celebrated

BBP (Bailey–Borwein–Plouffe) formulae [2] can be im-
plemented as Buffon machines.

3 Square roots, algebraic, and hypergeometric
functions

We now examine a new brand of generators based on
properties of ballot sequences, which open the way to
new constructions, including an important square-root
mechanism. The probability that, in 2n tosses of a fair
coin, there are as many heads as tails is $n = 1

22n

(
2n
n

)
.

The property is easily testable with a single integer
counter R subject only to the basic operation R := R±1

and to the basic test R
?
= 0. From this, one can build a

square-root computer and, by repeating the test, certain
hypergeometric constants can be obtained.

3.1 Square-roots Let N be a random variable with
distribution Geo(λ). Assume we flip 2N coins and
return a success, if the score of heads and tails is
balanced. The probability of success is

S(λ) :=

∞∑
n=0

(1− λ)λn$n =
√

1− λ.

(The final simplification is due to the binomial expan-
sion of (1− x)−1/2.) This simple property gives rise to
the square-root construction due to Wästlund [35] and
Mossel–Peres [26]:

ΓB
(√

1− λ
)

:={ let N := ΓG(λ);
draw X1, . . . , X2N with P(Xj = +1) = P(Xj = −1) = 1

2
;

set ∆ :=
∑2N
j=0Xj ;

if ∆ = 0 then return(1) else return(0) }.

The mean number of coin flips used is then simply
obtained by differentiation of generating functions.

Theorem 3.1. ([26, 35]) The square-root construc-
tion yields a Bernoulli generator of parameter

√
1− λ,

given a ΓB(λ). The mean number of coin flips required,
not counting the ones involved in the calls to ΓB(λ), is
2λ
1−λ . The function

√
1− λ is strongly realizable.

By complementation of the original Bernoulli generator,
we also have a construction ΓB(λ) −→ ΓB(1−λ) −→
ΓB
(√

λ
)
, albeit one that is irregular at 0.

Note 1. Computability with a pushdown automaton. It
can be seen that the number N in the square-root generator
never needs to be stored explicitly: an equivalent form is

ΓB
(√

1− λ
)

:= {do { ∆ := 0;
if ΓB(λ) = 0 then break;
if flip=1 then ∆ := ∆ + 1 else ∆ := ∆− 1;
if flip=1 then ∆ := ∆ + 1 else ∆ := ∆− 1 }
if ∆ = 0 then return(1) else return(0) }.

In this way, only a stack of unary symbols needs to be
maintained: the stack keeps track of the absolute value |∆|
stored in unary, the finite control can keep track of the
sign of ∆. We thus have realizability of the square-root
construction by means of a pushdown (stack) automaton.

This suggests a number of variants of the square-root
construction, which are also computable by a pushdown
automaton. For instance, assume that, upon the condition
“flip=1”, one does ∆ := ∆ + 2 (and still does ∆ := ∆ − 1
otherwise). The sequences of H (heads) and T (tails)
that lead to eventual success (i.e., the value 1 is returned)
correspond to lattice paths that are bridges with vertical
steps in {+2,−1}; see [12, §VII.8.1]. The corresponding
counting generating function is then S(z) =

∑
n≥0

(
3n
n

)
z3n,

and the probability of success is (1 − λ)S
(
λ
2

)
. As it is

well known (via Lagrange inversion), the function S(z) is
a variant of an algebraic function of degree 3; namely,
S(z) = (1 − 3zY (z)2)−1, where Y (z) = z + zY (z)3, and
Y (z) = z+ z4 + 3z7 + · · · is a generating function of ternary
trees. One can synthetize in the same way the family of
algebraic functions

S(z) ≡ S[t](z) =
∑
n≥0

(
tn

n

)
ztn,

by updating ∆ with ∆ := ∆ + (t− 1).

As a consequence of Theorems 2.3 and 3.1, the
function sin(λ) is strongly realizable, since sin(λ) =√

1− cos(λ)2.

3.2 Algebraic functions and stochastic gram-
mars. It is well known that unambiguous context-free
grammars are associated with generating functions that
are algebraic: see [12] for background (the Chomsky–
Schützenberger Theorem).

Definition 3. A binary stochastic grammar (a “bis-
toch”) is a context-free grammar whose terminal alpha-
bet is binary, conventionally {H,T}, where each produc-
tion is of the form

X −→ Hm + Tn,(3.12)

with m, n that are monomials in the non-terminal sym-
bols. It is assumed that each non-terminal is the left
hand side of at most one production.

Let G, with axiom S, be a bistoch. We let L[G;S] be
the language associated with S. By the classical theory
of formal languages and automata, this language can
be recognized by a pushdown (stack) automata. The
constraint that there is a single production for each
non-terminal on the left means that the automaton
corresponding to a bistoch is deterministic. (It is then
a simple matter to come up with a recursive procedure
that parses a word in {H,T}? according to a non-
terminal symbols S.) In order to avoid trivialities, we
assume that all non-terminals are “useful”, meaning



{ let N := ΓG(λ);
draw w := X1X2 · · ·XN with P(Xj = H) = P(Xj = T ) = 1

2
;

if w ∈ L(G;S) then return(1) else return(0) }.

Figure 4: The algebraic construction associated to the
pushdown automaton arising from a bistoch grammar.

that each produces at least one word of {H,T}?. For
instance, the one-terminal grammar Y = HYYY + T
generates all  Lukasiewicz codes of ternary trees [12,
§I.5.3] and is closely related to the construction of
Note 1.

Next, we introduce the ordinary generating function
(or ogf) of G and S,

S(z) :=
∑

w∈L[G;S]

z|w| =
∑
n≥0

Snz
n,

with Sn the number of words of length n in L[G;S]. The
deterministic character of a bistoch grammar implies
that the ogfs are bound by a system of equations (one
for each nonterminal): from (3.12), we have X(z) =
zm̂ + zn̂, where m̂, n̂ are monomials in the ogfs corre-
sponding to the non-terminals of m, n; see [12, §I.5.4].
For instance, in the ternary tree case: Y = z + zY 3.

Thus, any ogf y arising from a bistoch is a com-
ponent of a system of polynomial equations, hence, an
algebraic function. By elimination, the system reduces
to a single equation P (z, y) = 0. We obtain, with a
simple proof, a result of Mossel-Peres [26, Th. 1.2]:

Theorem 3.2. ([26]) To each bistoch grammar G
and non-terminal S, there corresponds a construction
(Fig. 4), which can be implemented by a deterministic
pushdown automaton and calls to a ΓB(λ) and is of type
ΓB(λ) −→ ΓB

(
S
(
λ
2

))
, where S(z) is the algebraic

function canonically associated with the grammar G and
non-terminal S.

Note 2. Stochastic grammars and positive algebraic func-
tions. First, we observe that another way to describe the
process is by means of a stochastic grammar with produc-
tion rules X −→ 1

2
m+ 1

2
n, where each possibility is weighted

by its probability (1/2). Then fixing N = n amounts to con-
ditioning on the size n of the resulting object. This bears a
superficial resemblance to branching processes, upon condi-
tioning on the size of the total progeny, itself assumed to be
finite. (The branching process may well be supercritical, as
in the ternary tree case.)

The algebraic generating functions that may arise from
such grammars and positive systems of equations have been
widely studied. Regarding coefficients and singularities,
we refer to the discussion of the Drmota–Lalley–Woods
Theorem in [12, pp. 482–493]. Regarding the values of
the generating functions, we mention the studies by Kiefer,
Luttenberger, and Esparza [17] and by Pivoteau, Salvy, and
Soria [29]. The former is motivated by the probabilistic
verification of recursive Markov processes, the latter by the
efficient implementation of Boltzmann samplers.

It is not (yet) known whether a function as simple as

(1−λ)−1/3 is realizable by a stochastic context-free grammar
or, equivalently, a deterministic pushdown automaton. (We
conjecture a negative answer, as it seems that only square-
root and iterated square-root singularities are possible.)

3.3 Ramanujan, hypergeometrics, and a Buffon
computer for 1/π. A subtitle might be: What to do if
you want to perform Buffon’s experiment but don’t have
needles, just coins? The identity

1

π
=

∞∑
n=0

(
2n

n

)3
6n+ 1

28n+4
,

due to Ramanujan (see [14] for related material), lends
itself somewhat miraculously to evaluation by a simple
Buffon computer. The following simple experiment
(the probabilistic procedure Rama) succeeds (returns
the value 1) with probability exactly 1/π. It thus
constitutes a discrete analogue of Buffon’s original, one
with only three counters (T , a copy of T , and ∆).

procedure Rama(); {returns 1 with probability 1/π}
S1. let T := X1 +X2, where X1, X2 ∈ Geom( 1

4 );
S2. with probability 5

9 do T := T + 1;
S3. for j = 1, 2, 3 do
S4. draw a sequence of 2T coin flips;

if (∆ ≡ # Heads−# Tails) 6= 0 then return(0);
S5. return(1).

4 A Buffon integrator

Our purpose here is to develop, given a construction of
type ΓB(λ) −→ ΓB(φ(λ)), a generator for the function

Φ(λ) =
1

λ

∫ λ

0

φ(w) dw.(4.13)

An immediate consequence will be a generator for
λΦ(λ); that is, an “integrator”.

To start with, we discuss a purely discrete imple-
mentation of ΓB(λ) −→ ΓB(Uλ), with U ∈ [0, 1],
uniformly, where multiple invocations of ΓB(λ) must
involve the same value of U . Conceptually, it suffices
to draw U as an infinite sequence of flips, then make
use of this U to get a ΓB(U) and then appeal to the
conjunction (product) construction to get a ΓB(λU) as
ΓB(U) · ΓB(λ). To implement this idea, it suffices to
resort to lazy evaluation. One may think of U as a po-
tentially infinite vector (υ1, υ2, . . .), where υj represents
the jth bit of U . Only a finite section of the vector is
used at any given time and the υj are initially undefined
(or unspecified). Remember that a ΓB(U) is simply ob-
tained by fetching the bit of U that is of order J , where
J ∈ 1 + Geo( 1

2 ); cf Eq. (1.5). In our relaxed lazy con-
text, whenever such a bit υj is fetched, we first examine
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Figure 5: The “geometric-bag” procedure bag(U): two
graphic representations of a state (the pairs index–values
and a partly filled register).

whether it has already been assigned a {0, 1}–value; if
so, we return this value; if not, we first perform a flip,
assign it to υj , and return the corresponding value: see
Fig. 5. (The implementation is obvious: one can main-
tain an association list of the already “known” indices
and values, and update it, as the need arises; or keep a
boolean vector of not yet assigned values; or encode a
yet unassigned position by a special symbol, such as ‘?’
or ‘−1’. See the Appendix for a simple implementation.)

Assume that φ(λ) is realized by a Buffon machine
that calls a Bernoulli generator ΓB(λ). If we replace
ΓB(λ) by ΓB(λU), as described in the previous para-
graph, we obtain a Bernoulli generator whose param-
eter is φ(λU), where U is uniform over [0, 1]. This is
equivalent to a Bernoulli generator whose parameter is∫ 1

0
φ(λu) du = Φ(λ), with Φ(λ) as in (4.13).

Theorem 4.1. Let φ(λ) be realizable by a Buffon ma-

chine M. Then the function Φ(λ) = 1
λ

∫ λ
0
φ(w) dw is

realizable by addition of a geometric bag to M. In par-
ticular, if φ(λ) is realizable, then its integral taken start-
ing from 0 is also realizable.

This result paves the way to a large number of de-
rived constructions. For instance, starting from the
even-parity construction of §1, we obtain Φ0(λ) :=
1
λ

∫ λ
0

1
1+w dw = 1

λ log(1 + λ), hence, by product, a con-
struction for log(1+λ). When we now combine the par-
ity construction with “squaring”, where a ΓB(p) is re-
placed by the product ΓB(p)·ΓB(p), we obtain Φ1(λ) :=
1
λ

∫ λ
0

dw
1+w2 = 1

λ arctan(λ), hence also arctan(λ). When
use is made of the exponential (Poisson) construction
λ 7→ e−λ, one obtains (by squaring and after multipli-

cations) a construction for Φ2(λ) :=
∫ λ
0
e−w

2/2 dw, so
that the error function (“erf”) is also realizable. Fi-
nally, the square-root construction combined with par-

ity and integration provides Φ3(λ) :=
∫ λ
0

√
1−w2

1+w dw =

−1+
√

1− λ2+arcsin(λ), out of which we can construct
1
2 arcsin(λ). In summary:
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Figure 6: The distribution of costs of the Machin ma-
chine (4.15). Left : histogram. Right : decimal logarithms of
the probabilities, compared to log10(10−k/8) (dashed line).

Theorem 4.2. The following functions are strongly re-
alizable (0 ≤ x < 1):

log(1 + x), arctan(x),
1

2
arcsin(x),

∫ x

0

e−w
2/2 dw.

The first two only require one bag; the third requires a
bag and a stack; the fourth can be implemented with a
string register and bag.

Buffon machines for π. The fact that Φ1(1) =

arctan(1) =
π

4
. yields a Buffon computer for π/4. There

are further simplifications due to the fact that ΓB(1) is
trivial: this computer then only makes use of the U
vector. Given its extreme simplicity, we can even list
the complete code of this Madhava–Gregory–Leibniz
(MGL) generator for π/4:

MGL:=proc() do

if bag(U)=0 then return(1) fi;

if bag(U)=0 then return(1) fi;

if bag(U)=0 then return(0) fi;

if bag(U)=0 then return(0) fi; od; end.

The Buffon computer based on arctan(1) works fine for
small simulations. For instance, based on 10,000 exper-
iments, we infer the approximate value π/4 ≈ 0.7876,
whereas π/4

.
= 0.78539, with a mean number of flips per

experiment about 27. However, values of U very close
to 1 are occasionally generated (the more so, as the
number of simulation increases). Accordingly, the ex-
pected number of flips is infinite, a fact to be attributed
to slow convergence in the Madhava–Gregory–Leibniz
series, π

4 = 1
1 −

1
3 + 1

5 −
1
7 + · · · .

The next idea is to consider formulae of a kind
made well-known by Machin, who appealed to arc-
tangent addition formulae in order to reach the record
computation of 100 digits of π in 1706. For our
purposes, a formula without negative signs is needed,
the simplest of which,

π

4
= arctan

(
1

2

)
+ arctan

(
1

3

)
,(4.14)



Figure 7: Screen copy of a Maple session fragment showing:
(i) the symbolic description of a generator; (ii) a simulation
of 104 executions having a proportion of successes equal to
0.63130, with a mean number of flips close to 103; (iii) the
actual symbolic value of the probability of success and its
numerical evaluation 0.63560 · · · .

being especially suitable for a short program is easily
compiled in silico under the form

π

4
=

1

2

[
2 arctan

(
1

2

)
+

2

3
· 3 arctan

(
1

3

)]
.(4.15)

(This last form only uses the realizable functions
λ−1 arctan(λ), 2λ/3 and the binary operation 1

2 [p+ q].)
With 106 simulations, we obtained an estimate

π/4 ≈ 0.78598, to be compared to the exact
value π/4 = 0.78539 · · ·; that is, an error of about 6 ·
10−4, well within normal statistical fluctuations. The
empirically measured average number of flips per gen-
eration of this Machin-like ΓB(π/4) turned out to be
about 6.45 coin flips. Fig. 6 furthermore displays the
empirical distribution of the number of coin flips, based
on another campaign of 105 simulations. The distribu-
tion of costs appears to have exponential tails matching
fairly well the approximate formula P(C = k) ≈ 10−k/8.
The complete code for a version of this generator, which
produces π

8 , is given in the Appendix.
Yet an alternative construction is based on the

arcsine and Φ3. Many variations are possible, related
to multiple or iterated integrals (use several bags).

5 Experiments

We have built a complete prototype implementation
under the Maple symbolic manipulation system, in
order to test and validate the ideas expounded above;
see Fig. 7. A generator, such as Z4 of Fig. 7, is

specified as a composition of basic constructions, such
as f 7→ exp(−f) [expn], f 7→

√
f [sqrt0], f 7→

∫
f

[int1], and so on. An interpreter using as source of
randomness the built-in function random then takes this
description and produces a {0, 1} result; this interpreter,
which is comprised of barely 60 lines, contains from one
to about a dozen instructions for each construction. In
accordance with the conditions of our contract, only
simple register manipulations are ever used, so that
a transcription in C or Java would be of a roughly
comparable size.

We see here that even a complicated constant such
as the “value” of the probability associated with Z4,

e
− 1

2
+ 3

16
ζ(3)− 1

4

√
2

√√√√√∫ 1
2

0

1
2
ln 2+ 1

4

√√√√e− 1
4

(
1+

atan(e−Z/2)
e−Z/2

)−1

dZ

,

is effectively simulated with an error of 4 10−3, which
is once more consistent with normal statistical fluctu-
ations. For such a complicated constant, the observed
mean number of flips is a little above 100. Note that
the quantity ζ(3) is produced (as well as retrieved auto-
matically by Maple’s symbolic engine!) from Beuker’s

triple integral: 7
8ζ(3) =

∫ 1

0

∫ 1

0

∫ 1

0
1

1+xyz dx dy dz. (On

batches of 105 experiments, that quantity alone only
consumed an average of 6.5 coin flips, whereas the anal-
ogous 31

32ζ(5) required barely 6 coin flips on average.)
Note that the implementation is, by nature, freely

extendible. Thus, given integration and our basic
primitives (e.g., even(f) ≡ 1

1+f ), we readily program
an arc-tangent as a one-liner,

arctan(f) = f ·

[
1

f

∫ f

0

dx

1 + x2

]
,(5.16)

and similarly for sine, arc-sine, erf, etc, with the
symbolic engine automatically providing the symbolic
and numerical values, as a validation.

Here is finally a table recapitulating nine ways
of building Buffon machines for π-related constants,
with, for each of the methods, the value, and empirical
average of the number of coin flips, as observed over 104

simulations:

Li2( 1
2

) Rama arcsin [1; 1√
2

; 1
2

] arctan [ 1
2

+ 1
3

; 1] ζ(4) ζ(2)

π2

24

1

π

π

4

π

4

π

12

π

4

π

4

7π4

720

π2

12

7.9 10.8 76.5 (∞) 16.2 4.9 6.5 26.7 (∞) 6.2 7.2.

(The tag “∞” means that the expected cost of the
simulation is infinite—a weak realization.)

6 Conclusion

As we pointed out in the introduction, every computable
number can be simulated by a machine, but one that,



in general, will violate our charter of simplicity (as mea-
sured, typically, by program size). Numbers accessible
to our framework seem not to include Euler’s constant
γ
.
= 0.57721, and we must leave it as an open problem to

come up with a “natural” experiment, whose probabil-
ity of success is γ. Perhaps the difficulty of the problem
lies in the absence of a simple “positive” expression that
could be compiled into a correspondingly simple Buffon
generator. By contrast, exotic numbers, such as π−1/π

or e− sin(1/
√
7) are easily simulated. . .

On another note, we have not considered the gen-
eration of continuous random variables X, specified by
a distribution function F (x) = P(X ≤ x). Von Neu-
mann’s original algorithm for an exponential variate be-
longs to this paradigm. In this case, the bits of X are
obtained by a short computation of O(1) initial bits,
continued by the production of an infinite flow of uni-
form random bits. This theme is thoroughly explored
by Knuth and Yao in [20]. It would be of obvious inter-
est to be able to hybridize the von Neumann-Knuth-Yao
generators of continuous distributions with our Buffon
computers for discrete distributions. Interestingly, the
fact that the Gaussian error function, albeit restricted
to the interval (0, 1), is realizable by Buffon machines
suggests the possibility of a totally discrete generator
for a (standard) normal variate.

The present work is excellently summarized by
Keane and O’Brien’s vivid expression of “Bernoulli fac-
tory” [16]. It was initially approached with a purely
theoretical goal. It then came as a surprise that a pri-
ori stringent theoretical requirements—those of perfect
generation, discreteness of the random source, and sim-
plicity of the mechanisms—could lead to computation-
ally efficient algorithms. We have indeed seen many
cases, from Bernoulli to logarithmic and Poisson gener-
ators, where short programs and the execution of just a
few dozen instructions suffice!
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Appendix: A complete Buffon machine for π
8

Here is the complete pseudo-code (in fact an executable
Maple code), cf procedure Pi8 below, for a π/8 experiment,
based on Eq. (4.14) and not using any high-level primitive. It
exemplifies many constructions seen in the text. The trans-
lation to various low level languages, such as C, should be
immediate, possibly up to inlining of code or macro expan-
sions, in case procedures cannot be passed as arguments of
other procedures. The expected number of coin flips per
experiment is about 4.92.

The flip procedure (returns a pseudo-random bit):

flip:=proc() if rand()/10.^12<1/2

then return(1) else return(0) fi; end:

A ΓG( 1
2
) returns a geometric of parameter 1

2
; cf Eq. (1.4):

1. geo_half:=proc () local j; j := 0;

2. while flip() = 0 do j:=j+1 od; return j end:

A ΓB( 1
3
) returns a Bernoulli of parameter 1

3
; cf Eq. (1.5):

3. bern_third:=proc() local a,b;

4. do a:=flip(); b:=flip();

5. if not ((a=1) and (b=1)) then break fi; od;

6. if (a=0) and (b=0) then return(1)

7. else return(0) fi; end:

Bags. Initialization and result of a comparison with a
random U ∈ [0, 1]; cf Fig. 5 and §4:

INFINITY:=50:

8. init_bagU:=proc() local j; global U;

9. for j from 1 to INFINITY do U[j]:=-1 od; end:

10. bagU:=proc() local k;global U; k:=1+geo_half();

11. if U[k]=-1 then U[k]:=flip() fi; return(U[k]);

end:
(To obtain a perfect generator, dynamically increase
INFINITY, if ever needed—the probability is < 10−15.)

The EVENP construction takes f ∈ ΓB(λ) and produces
a ΓB( 1

1+λ
); cf Eq. (1.3):

12. EVENP:=proc(f) do if f()=0 then return(1); fi;

13. if f()=0 then return(0) fi; od; end:

The main atan construction, based on bags implement-
ing integration, takes an f ∈ ΓB(λ) and produces
a ΓB(arctan(λ)); the auxiliary procedure g() builds a
ΓB(λ2U2), with U ∈ [0, 1] random; cf §4 and Eq. (5.16):

14. ATAN:=proc(f) local g;

15. if f()=0 then return(0) fi;

16. init_bagU();

17. g:=proc() if bagU()=1 then if f()=1 then

18. if bagU()=1 then return(f()) fi; fi; fi;

19. return(0); end;

20. EVENP(g); end:

The Pi8 procedure is a ΓB(π
8

) based on Machin’s arc tangent
formula (the arithmetic mean of arctan(1/2) and arctan(1/3)
is taken); cf Eq. (4.14):

21. Pi8:=proc() if flip()=0 then ATAN(flip)

22. else ATAN(bern_third) fi end:.
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