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A. Darrasse K. Panagiotou O. Roussel M. Soria
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Abstract

This paper is devoted to uniform generation of words produced by regular specifications

containing shuffle operators. We provide a Boltzmann sampler with complexity linear in the

size of the output, where complexity is measured in the number of real-arithmetic operations

and evaluations of generating functions.

1 Introduction

Enumeration and classification of structures specified by simple combinatorial grammars have been
intensively studied during the last decade, via methods of analytic combinatorics [FS08], relying
on algebraic and analytic properties of generating functions. For structures specifiable in terms of
the basic combinatorial operators of union, product, set and cycle, issues of sampling uniformly
at random are theoretically and algorithmically well understood, and fair implementations have
also been designed, so that huge objects can be produced. The recursive method, based on
enumeration sequences [NW75, ?], allows for uniformly generating structures of a given exact size
in subquadratic complexity [DZ99]. On the other hand, Boltzman model, relying on the evaluation
of generating functions [DFLS04, FFP07] provides samplers with linear complexity, by relaxing
the constraint of exact size.

The class of regular languages is classically defined as the smallest class of languages containing
the finite sets and closed under the operations of union, product and sequence. Thus the classical
specifications of Regular languages belongs to the Boltzman models of random generation.

The Shuffle Product is an important and useful operator on languages, both for its structural
properties and its applications (see e.g. [FGT92, DGG+06, MZ08]). The shuffle of two words α
and β consists of the set of all words obtained by mixing in all possible ways letters of α and β
while preserving their order inside α and β. The shuffle operation can be more generally applied
to languages: the shuffle of two languages A and B is the set of all shuffles of words in A and B.

The shuffle product of regular langages is still a regular language, so that sampling is possible,
via rephrasing the specification, or giving an automaton description for example. But the shuffle
product as it is defined, cannot be handled in the classical Boltzman frame. In this paper we
adress this problem and consider not only top-level shuffle product, but more generally regular
specifications containing shuffle operators. Our contribution is the design of Boltzman generation
algorithms with linear complexity for approximate size sampling.

Before presenting our approach, let us mention other existing methods for the random gener-
ation of regular languages with shuffle [DGG+06]: the brute force algorithm for the shuffle of r
languages, constructs the shuffle product of the corresponding finite automata, and the complex-
ity of random generation is exponential in the number of automata; the recursive method can be
adapted to generate words of shuffle products almost uniformly at random, with linear complexity.

Here we describe an alternative method relying on Boltzman sampling and generating func-
tions. The main difficulty is to deal at the same time with both ordinary and exponential gen-
erating functions. To languages are naturally associated ordinary generating functions : A(z) =∑

anzn, where an is the number of words of size n. However the shuffle product only translates

nicely in terms of exponential generating functions Â(z) =
∑

anzn/n!: the exponential generating
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functions of the shuffle product of languages is the product of the exponential generating functions
of its components.

Regarding Boltzman samplers, these two worlds correspond to different probabilities for ran-
dom generation : in the case of an ordinary Boltzman sampler, a word γ of size n is gbiasenerated
with a probability wich is proportional to an exponential of its size : P (γ) = xn

A(x) , whereas in the

case of an exponential Boltzman sampler, the probability is proportional to an exponential of the
size, divided by the factorial of the size : P (γ) = xn

n! bA(x)
.

The ordinary and exponential generating function of a language are related by the Laplace-
Borel transform; using this transform, it is easy to introduce a density measure for biaising an
exponential Boltzman sampler into an ordinary Boltzman sampler. Unfortunately the inverse
transformation leads to an impossible problem of moments. We can think of using Boltzman
sampling for Hadamard product [?], since an exponential generating function Â(z) expresses as
the Hadamard product of A(z) and exp(z), but the complexity of generation is surlinear, due to
rejection.

Our solution is to make a topdown decomposition according to the specification of the language,
and construct an exponential Boltzman sampler from biased exponential Boltzman samplers for
its components. The central idea in all our algorithms is that of biasing: when a Boltzman sampler
for a class A is undoable, we construct a Boltzman sampler for a derived class B and then bias,
with a probabilistic value, the parameter of the Boltzman sampler for B, in order to get back to
a uniform generation on A.

Outline In Section 2 we review some well-known results about Boltzmann sampling and regu-
lar languages, and describe how this can be used to construct appropriate sampling algorithms.
Section 3 introduces our main tool, which essentially says that we can sample according to the
Boltzmann distribution, provided that we have an algorithm that generates words according to a
biased distribution; in particular, we show how to bias an exponential Boltzman sampler for any
combinatorial class, in order to obtain an ordinary Boltzman sampler. In Section 4 we present
for all involved combinatorial constructions (union, product, sequence, and shuffle) appropriate
biased Boltzmann samplers. Finally section 5 addresses some implementation issues and closes
with a combinatorial interpretation of our algorithms.

2 Regular Languages and Boltzmann Sampling

We review a few basic results about regular languages, their specification and their generation.
Regular languages can be described non-recursively in terms of three basic combinatorial opera-
tions (union, product and sequence), and we present Boltzmann samplers for these operations.

2.1 Regular languages

Let A,B be two languages. We say that C is the disjoint union of A and B, in symbols C = A+B,
if A ∩ B = ∅ and C = {w : w ∈ A or w ∈ B}. So, C contains every word in A and B. Similarly,
we say that C is the product of A and B, in symbols C = A×B, if C = {w v : w ∈ A and v ∈ B}.
Finally, we say that C is a sequence of A’s, if A 6= ∅ and C = {wi : w ∈ A and i ∈ N}. The
following well-known theorem says that all regular languages can be defined non-recursively in
terms of the above three operations.

Theorem 2.1. Let A be a regular language. Then A can be defined by a non-recursive specification
involving the operations of disjoint union, product, and sequence. In particular, there are regular
languages A1, . . . ,As such that A = A1 and for all 2 ≤ i ≤ s the language Ai is either finite,
or the disjoint union Aj + Aj′ where j, j′ > i, or the product Aj × Aj′ where j, j′ > i, or the
sequence Seq(Aj) where j > i.

In this paper, our focus is on regular languages, where in addition we allow the shuffle operation.
Let Σ denote a finite alphabet. We will denote by Σ∗ the set of all words (including the empty
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one) containing letters only from Σ. Moreover, we will write uv for the concatenation of any two
words u, v ∈ Σ∗. The shuffle product of u, v ∈ Σ∗ is defined as

u ⊔⊔ v = {u1v1u2v2 . . . unvn : u = u1 . . . un, v = v1 . . . vn,∀1 ≤ i ≤ n : ui, vi ∈ Σ∗}

Analogously, the shuffle product of two languages A and B — in symbols C = A ⊔⊔B — is,
if the alphabets of A and B are disjoint, the language A ⊔⊔B = {u ⊔⊔w : u ∈ A, w ∈ B}. It is
well-known that the class of regular languages is closed under the shuffle operator.

In the present work, we not only consider the shuffle as an operator on languages, but also as
a grammar production rule to define languages.

2.2 Ordinary Boltzmann Samplers for Regular Languages

The (ordinary) generating function of a language A is the sum A(z) =
∑

w∈A z|w| =
∑

n∈N
anzn,

where |w| is the length of the word, and an is the number of words in A of length n. In the case
where there exists an unambiguous grammar to describe a regular language, one can automatically
generate equations satisfied by generating function directly from the grammar:

C = 1 = {ε} =⇒ C(z) = 1
C = Z =⇒ C(z) = z
C = A+ B =⇒ C(z) = A(z) + B(z)
C = A× B =⇒ C(z) = A(z)B(z)
C = Seq(A) =⇒ C(z) = (1−A(z))−1

Generating functions of formal languages are now a very established tool for algorithm analysis
(see [FS08] for many references).

The ordinary Boltzmann distribution on C with parameter x is defined by

Px(γ) =
x|γ|

C(x)
(2.1)

if the above expression is well-defined. We say that an algorithm ΓC(x) is a Boltzmann sampler
for C if the output distribution is equivalent to Px.

We now review very briefly how ordinary Boltzmann samplers can be constructed for regular
languages, and we refer the reader to [DFLS04, FFP07] for a detailed discussion.

Let us begin with the case that C is the disjoint union of A and B. Then, a ordinary Boltzmann
sampler ΓC(x) for C flips a coin with an appropriate probability, and depending on the outcome
it either generates a word from either A or B.

Algorithm 1 ΓC(x) : Boltzmann sampler ΓC for C = A+ B

Input: A real number x
Output: An object γ ∈ C = A+ B with probability Px(γ)
Require: 0 ≤ x < ρC

if Bernoulli
(

A(x)
B(x)

)
then return ΓA(x) else return ΓB(x) end if

If C is given by the product of A and B, then a Boltzmann sampler initiates two independent
calls to ΓA(x) and ΓB(x), and concatenates the resulting words.

Algorithm 2 ΓC(x) : Boltzmann sampler ΓC for C = A× B

Input: A real number x
Output: An object γ ∈ C = A× B with probability Px(γ)
Require: 0 ≤ x < ρC

return ΓA(x) · ΓB(x)
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If A 6= ∅, then the sequence construction can be described recursively in terms of disjoint
union and product. Particularly, if 1 denotes the language that contains the empty word only,
then C = Seq(A) = 1 + A × C. This can be used to combine the two samplers given above in
order to obtain a sampler for the sequence construction (notice that an alternative sampler for
the sequence construction consists in drawing the number of copies of A according to a geometric
law, and then draw them independently).

Algorithm 3 ΓC(x) : Boltzmann sampler ΓC for C = Seq(A)

Input: A real number x
Output: An object γ ∈ C = Seq(A) with probability Px(γ)
Require: 0 ≤ x < ρC

if Bernoulli
(

1
C(x)

)
then return ε else return ΓA(x) · ΓC(x) end if

Using the results from [DFLS04, FFP07] we immediately get the following statement.

Theorem 2.2. Suppose that a language C is given by a finite specification involving the construc-
tions of disjoint union, product, and sequence. Then, the Boltzmann generator ΓC(x) assembled
from the specification of C given by the procedures above has a complexity, measured in the number
of real-arithmetic operations, that is linear in the size of the generated string.

Usually in random sampling, one wants to control the size: either generate an object of exact
size n uniformly at random; or allow a relative tolerance ε on the size: an object of size N ∈
[n(1 − ε), n(1 + ε)] has to be generated uniformly at random in its size class. Size control is
made by repeatedly using a Boltzmann sampler and rejecting until an object of satisfactory size is
obtained. The original paper [DFLS04] also provides general results of complexity for controlled-
size, depending on the nature of the generating functions of the combinatorial classes. In particular:

Theorem 2.3. For regular languages, Boltzmann samplers ensures linear real-arithmetic com-
plexity, when a non-zero tolerance on size is allowed.

3 Exponential-like Boltzmann Samplers, a.k.a ElBS

In this section we propose a general tool, that allows us to sample according to the (ordinary)
Boltzmann distribution (2.1) by sampling from a different distribution, which we call exponential-
like. Informally, in the exponential model, each object of size n is assigned a weight that is
proportional to 1/n!.

3.1 Exponential-like generating fuctions

Let us begin with introducing some notation. Let A be a class of combinatorial objects, An

the subclass of objects of size n and an its cardinality. We define the following exponential-like
generating functions:

Â(x) = Â(0)(x) =
∑

n≥0

an

n!
xn and Â(k)(x) =

d

dx
Â(k−1)(x) =

∑

n≥k

an

(n− k)!
xn−k

Barely speaking, the generating function Â(k) counts the objects in class A with their weight
shifted by a value k. In other words, to get the actual weight of an object γ, we use a tare weight
of k.

Note that if A(x) has a non-zero radius of convergence, then the functions Â(k)(x) are entire,

i.e. define functions that are analytic everywhere on the complex plane. Moreover, note that Â(x)
is given by the well-known Laplace transform

A(x) =
∑

n≥0

anxn =

∫ ∞

0

Â(xu)e−udu (3.1)
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With this notation at hand, let the exponential-like Boltzmann distribution with parameter x and
order k on A be defined by

Px,k(γ) =

{
0 if |γ| < k

x|γ|−k

(|γ|−k)! bA(k)(x)
if |γ| ≥ k

(3.2)

In complete analogy to ordinary Boltzmann samplers, we say that an algorithm Γ̂A(x, k) is
an (x, k)-exponential-like Boltzmann sampler, if the output distribution is equivalent to (3.2).

Moreover, whenever we write Γ̂A(x) we will silently assume that k = 0.
As an illustration, we give the (x, k)-exponential-like Boltzmann samplers for the empty word,

and for an atom. Notice that, in the following sections, because of consistent choices of k, the
probability of getting an error is 0, in both algorithms.

Algorithm 4 Γ̂1(x, k): Exponential-like Boltzmann sampler for 1

Input: A real number x
Output: The word ε with probability Px,k(ε)
Require: 0 ≤ x

if k = 0 then return the empty word ε else return error end if

Algorithm 5 Γ̂Z(x, k) : Exponential-like Boltzmann sampler for Z

Input: A real number x
Output: A letter z with probability Px,k(z)
Require: 0 ≤ x

if k ≤ 1 then return the letter z else return error end if

3.2 Transformation into OBS

In this section, we prove that, starting from a exponential-like Boltzmann sampler Γ̂C(x) for a

class C, one can easily get an ordinary Boltzmann sampler ΓC(x) for C, by computing Γ̂C(ux),
with a probabilistic value for u.

Let x be such that C(x) <∞; we define δCx , which is a probability distribution on [0,+∞)

δCx(u) =
Ĉ(xu)

C(x)
e−u (3.3)

Let RC
x be a random variable drawn according to the distribution defined by δCx . Then the following

simple algorithm shows how sampling according to the (ordinary) Boltzmann distribution can be
reduced to sampling from the corresponding exponential-like distribution.

Algorithm 6 ΓC(x): Boltzmann sampler for ΓC being given Γ̂C

Input: A real number x
Output: An object γ ∈ C with probability Px(γ)
Require: 0 ≤ x < ρC

1. RC
x ← draw

(
δCx
)

2. return Γ̂C(xRC
x)

Proposition 3.1. The algorithm ΓC(x) is an ordinary Boltzmann sampler for C.

Proof. Let γ ∈ C be such that |γ| = n. Then,

P (ΓC(x) = γ) = E

(
P

(
Γ̂C(xRC

x) = γ
))

=

∫ ∞

0

P

(
Γ̂C(xu) = γ

)
δCx(u)du

Note that P

(
Γ̂C(xu) = γ

)
= (xu)n

n! bC(xu)
, so that the above expression is equal to xn

C(x) .
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Remark. Notice that the inverse transformation is impossible, since there is no probability
measure with moments 1/n!

4 ElBS for regular languages with shuffle

In this section we construct exponential-like Boltzmann samplers for regular languages with shuffle.
In particular, we show that, assuming we are given the two ElBS Γ̂A and Γ̂B, then we can deduce
the ElBS Γ̂(A+ B), Γ̂(A× B) and Γ̂(Seq(A)).

4.1 Shuffle

We first consider the shuffle construction, and construct an exponential-like Boltzmann sampler
for the shuffle of two languages.

From the definition of the shuffle operation on languages recalled in section2, it is easy to show
(see e.g.[FGT92]) that if C = A ⊔⊔B, where the alphabets of A and B are disjoint. Then

Ĉ(x) = Â(x)B̂(x). (4.1)

In the following, we shall need an algorithm for generating a random shuffle of two given words:

Algorithm 7 shuffle(u, v): Shuffle algorithm for two given words

Input: Two words u and v
Output: A word drawn uniformly from u ⊔⊔ v
Require: The alphabets of u and v are disjoints
1. Choose uniformly at random |u| out of |u|+ |v| positions
2. return the word w corresponding to the shuffle of u and v according to these positions

Clearly, if we assume that u and v contain distinct letters, shuffle(u, v) generates all
(
|u|+|v|

|u|

)

strings in u ⊔⊔ v with the same probability.
In order to sample from the shuffle of two languages we need to express the involed distribution,

obtained by differentiating k times equation (4.1). Let DC
k,x be a random variable with distribution

P
(
DC

k,x = ℓ
)

=
1

Ĉ(k)(x)

(
k

ℓ

)
Â(ℓ)(x)B̂(k−ℓ)(x) where ℓ ∈ {0, . . . , k}

With this notation at hand, an (x, k)-exponential-like Boltzmann sampler for the shuffle of two
languages is given by the following algorithm.

Algorithm 8 Γ̂C(x, k): Exponential-like Bolzmann sampler for C = A ⊔⊔B

Input: A real x and an integer k
Output: A word γ from C = A ⊔⊔B with probability Px,k(γ)
Require: 0 ≤ x < ρC and k ∈ N

1. ℓ← draw
(
DC

k,x

)

2. γA ← Γ̂A(x, ℓ)

3. γB ← Γ̂B(x, k − ℓ)
4. nA ← |γA| and nB ← |γB|
5. Let bAeA = γA where |bA| = ℓ
6. Let bBeB = γB where |bB| = k − ℓ
7. b← shuffle(bA, bB)
8. e← shuffle(eA, eB)
9. return the word be
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Proposition 4.1. The algorithm Γ̂C(x, k) is an (x, k)-exponential-like Boltzmann sampler for C,
where C = A ⊔⊔B, and the alphabets of A and B are disjoint.

Proof. Let γ ∈ C \ (C0 ∪ · · · ∪ Ck−1), and let us write γ = b e, where |b| = k. The definition of the
shuffle product implies that there are unique γA ∈ A and γB ∈ B such that γ is obtained from γA
and γB by shuffling, i.e. by selecting nA specific positions out of n = nA + nB positions, where we
place the letters of γA. In particular, there is a unique 0 ≤ ℓ ≤ k such that b contains the first ℓ
letters of γA, and the remaining letters are the first k − ℓ letters from γB.

The above considerations imply that Γ̂C(x, k) outputs γ if and only if i) the random vari-

able DC
k,x evaluates to ℓ, ii) Γ̂A(x, ℓ) generates γA, iii) Γ̂B(x, k − ℓ) generates γB, iv) the shuffle

of bA, bB is b and finally, v) the shuffle of eA, eB is e. Since i) – v) are all independent events,

P

(
Γ̂C(x, k) = γ

)
= P

(
DC

k,x = ℓ
)

P

(
Γ̂A(x, ℓ) = γA

)
P

(
Γ̂B(x, k − ℓ) = γB

)
·

1
(
k
ℓ

)
1

(
n−k

nA−ℓ

)

As Γ̂A(x, ℓ) and Γ̂B(x, k − ℓ) are exponential-like Boltzmann samplers, we infer that the above
probability is equal to

(
k
ℓ

)
Â(ℓ)(x)B̂(k−ℓ)(x)

Ĉ(k)(x)

xnA−ℓ

(nA − ℓ)!Â(ℓ)(x)

xnB−(k−ℓ)

(nB − (k − ℓ))!B̂(k−ℓ)(x)
·

1
(
k
ℓ

)
1

(
n−k

nA−ℓ

)

This readily simplifies to xn−k

(n−k)! bC(k)(x)
and the proof is completed.

4.2 Disjoint Union

We construct an exponential-like Boltzmann sampler for a language C defined as the disjoint
union of two other languages, i.e. C = A+ B. . The exponential-like generating function satisfies
Ĉ(z) = Â(z) + B̂(z), and the sampler works very similar to the ordinary case.

Algorithm 9 Γ̂C(x, k): Exponential-like Bolzmann sampler for C = A+ B

Input: A real x and an integer k
Output: A word γ from C = A+ B with probability Px,k(γ)
Require: 0 ≤ x < ρC and k ∈ N

if Bernoulli
(

bA(k)(x)
bC(k)(x)

)
then return Γ̂A(x, k) else return Γ̂B(x, k) end if

Proposition 4.2. The algorithm Γ̂C(x, k) is an (x, k)-exponential-like Boltzmann sampler for C,
where C = A+ B, and A ∩ B = ∅.

Proof. Γ̂C(x, k) outputs γ ∈ A iff the Bernoulli choice succeeds, and Γ̂A(x, k) returns γ. So,

P

(
Γ̂C(x, k) = γ

)
=

Â(k)(x)

Ĉ(k)(x)
·

x|γ|−k

(|γ| − k)!Â(k)(x)
=

x|γ|−k

(|γ| − k)!C(k)(x)

as claimed. The proof for the case γ ∈ B is completely analogous.

4.3 Product

Let a language C be product of two other languages, i.e. C = A × B. The description of an
exponential-like Boltzmann sampler for this construction relies on expressing the exponential-like
generating functions, and the involved probabilities. We first state a standard in the context of
Laplace transforms, which will be repeatedly used in this section.

Lemma 4.3. Let p, q ∈ N, x ≥ 0. Then

∫ x

0

(x− t)ptq dt =
p!q!

(p + q + 1)!
xp+q+1.
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Lemma 4.4. Suppose that C = A× B. Then Ĉ(x) = |A0| B̂(x) +

∫ x

0

Â′(x− t)B̂(t) dt, and more

generally Ĉ(k)(x) =

k∑

ℓ=0

|Aℓ|B̂
(k−ℓ)(x) +

∫ x

0

Â(k+1)(x− t)B̂(t) dt.

Proof. First, admit the first of these two equations, and argue that

Ĉ(x) =
∂

∂x

∫ x

0

Â(x− t)B̂(t) dt = |A0|B̂
(0)(x) +

∫ x

0

Â(1)(x− t)B̂(t) dt

By differentiating both sides of the above equation k times with respect to x yields immediately
the second equation of the lemma.

Let us now prove the first equation. First of all, note that the definition of C implies that

Ĉ(x) =
∑

n≥0

cn

n!
xn, where cn = [xn]C(x) =

n∑

s=0

asbn−s (4.2)

Moreover,
∫ x

0

Â(x−t)B̂(t) dt =

∫ x

0

∑

n≥0

n∑

s=0

as

s!

bn−s

(n− s)!
(x−t)stn−s dt =

∑

n≥0

n∑

s=0

as

s!

bn−s

(n− s)!

∫ x

0

(x−t)stn−s dt

By applying Proposition 4.3 to the last integral, where we set p = s and q = n− s, we infer that
∫ x

0

Â(x− t)B̂(t) dt =
∑

n≥0

(
n∑

s=0

asbn−s

(n + 1)!

)
xn+1

The proof completes by differentiating and comparing this expression with (4.2).

Before we construct an exponential-like Boltzmann sampler for the product of two languages
we need to express the involved distributions. Let P C

k,x be a discrete random variable drawn
according to the distribution

P
(
P C

k,x = ℓ
)

=
1

Ĉ(k)(x)
·

{
|Aℓ|B̂

(k−ℓ)(x) if ℓ ∈ {0, . . . , k}∫ x

0
Â(k+1)(x− t)B̂(t) dt if ℓ = k + 1

Moreover, let BC
k,x be a continuous random variable whose probability density function is

t 7→
Â(k+1)(x− t)B̂(t)

∫ x

0
Â(k+1)(x− u)B̂(u) du

where 0 ≤ t ≤ x (4.3)

With the above notation at hand, an exponential-like Boltzmann sampler for C works as follows.

Algorithm 10 Γ̂C(x, k): Exponential-like Bolzmann sampler for C = A× B

Input: A real x and an integer k
Output: A word γ from C = A× B with probability Px,k(γ)
Require: 0 ≤ x < ρC and k ∈ N

1. ℓ← draw
(
P C

k,x

)

2. if 0 ≤ ℓ ≤ k then

3. Draw γA ∈ Aℓ uniformly
4. γB ← Γ̂B(x, k − ℓ)
5. else

6. t← draw
(
BC

k,x

)

7. γA ← Γ̂A(x− t, k + 1)

8. γB ← Γ̂B(t, 0)
9. end if

10. return the word γAγB

8



Proposition 4.5. The algorithm Γ̂C(x, k) is an (x, k)-exponential-like Boltzmann sampler for C,
where C = A× B.

Proof. Let γ ∈ C. Then there are unique γA ∈ A and γB ∈ B such that γ = γA γB. We shall begin
with the case ℓ = |γA| ≤ k. The definition of Γ̂C(x, k) implies that, with probability 1, it returns γ

if and only if: (i) P C
k,x = ℓ, (ii) a uniform random string from Aℓ is γA, and (iii) Γ̂B(x, k − ℓ)

generates γB. So that

P

(
Γ̂C(x, k) = γ

)
=
|Aℓ|B̂

(k−ℓ)(x)

Ĉ(k)(x)
·

1

|Aℓ|
· P
(
Γ̂B(x, k − ℓ) = γB

)

Since Γ̂B is an exponential-like Boltzmann sampler we readily infer that the above probability is

B̂(k−ℓ)(x)

Ĉ(k)(x)
·

x|γB|−(k−ℓ)

(|γB| − (k − ℓ))!B̂(k−ℓ)(x)

Note that |γB|−(k−ℓ) = (|γ|−|γA|)−(k−ℓ) = |γ|−k. By plugging this into the above expression

we see that Γ̂C(x, k) is indeed a Boltzmann sampler whenever |γA| ≤ k.

Let us now treat the case |γA| > k. There, Γ̂C(x, k) generates γ if and only if: (i) P C
k,x =

k + 1, (ii) Γ̂A(x − BC
k,x, k + 1) = γA, where BC

k,x is distributed as in (4.3), and (iii) Γ̂B(BC
k,x, 0)

generates γB. Let us abbreviate N =
∫ x

0
Â(k+1)(x− t)B̂(t) dt and B = BC

k,x. We deduce then that

P

(
Γ̂C(x, k) = γ

)
=

N

C(k)(x)
· E
(
P

(
Γ̂A(x−B, k + 1) = γA

)
P

(
Γ̂B(B) = γB

))
(4.4)

where the expectation is taken over the random choice of B. Since Γ̂A and Γ̂B are exponential-like
Boltzmann samplers we infer that for any 0 ≤ t ≤ x

P

(
Γ̂A(x− t, k + 1) = γA

)
P

(
Γ̂B(t) = γB

)
=

(x− t)|γA|−(k+1)t|γB|

(|γA| − (k + 1))!(|γB|)!

1

Â(k+1)(x− t)B̂(t)

Using (4.3) we thus may infer that the expectation in (4.4) equals

1

N

1

(|γA| − (k + 1))!|γB|!

∫ x

0

(x− t)|γA|−(k+1)t|γB| dt

By applying Proposition 4.3 with p = |γA|− (k+1) and q = |γB| we infer that the integral is equal
to xp+q+1/(p + q + 1)!, and the fact that p + q + 1 = |γA|+ |γB| − k = |γ| − k implies with (4.4)

that P

(
Γ̂C(x, k) = γ

)
=

x|γ|−k

(|γ| − k)!Ĉ(k)(x)
, as claimed.

4.4 Sequence

Suppose that a language is given by the sequence construction, i.e. C = 1 + A × C, where we
assume that A0 = ∅. An exponential-like Boltzmann sampler for C can be easily composed from
the results in the previous sections.

By applying Lemma 4.4 and using the fact A0 = ∅ we infer that Ĉ(k)(x) satisfies the relation

Ĉ(k)(x) =
∂k

∂xk
1 +

k∑

ℓ=1

|Aℓ|Ĉ
(k−ℓ)(x) +

∫ x

0

Â(k+1)(x− t)Ĉ(t) dt

Let SC
k,x be a random variable with distribution

P
(
SC

k,x = ℓ
)

=
1

Ĉ(k)(x)
·






∂k

∂xk 1 if ℓ = 0

|Aℓ|Ĉ
(k−ℓ)(x) if ℓ ∈ {1, . . . , k}∫ x

0
Â(k+1)(x− t)Ĉ(t) dt if ℓ = k + 1
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Moreover, let BC
k,x be a random variable as in (4.3), where the function B̂ is replaced by Ĉ. Then

an exponential-like Boltzmann sampler for the sequence construction is given by:

Algorithm 11 Γ̂C(x, k): Exponential-like Bolzmann sampler for C = Seq(A)

Input: A real x and an integer k
Output: A word γ from C = Seq(A) with probability Px,k(γ)
Require: 0 ≤ x < ρC and k ∈ N

1. ℓ← draw
(
SC

k,x

)

2. if ℓ = 0 then

3. return ε
4. else if 1 ≤ ℓ ≤ k then

5. Draw γA ∈ Aℓ uniformly
6. γC ← Γ̂C(x, k − ℓ)
7. else

8. t← draw
(
BC

k,x

)

9. γA ← Γ̂A(x− t, k + 1)

10. γC ← Γ̂C(t, 0)
11. end if

12. return the word γAγC

Proposition 4.6. The algorithm Γ̂C(x, k) is an (x, k)-exponential-like Boltzmann sampler for C,
where C is given by C = Seq(A).

4.5 Boltzmann Sampler for Regular Languages with Shuffle

Putting everything together, we can now state our main result.

Theorem 4.7. Suppose that C is a regular language with shuffle. Then, there is a Boltzmann
generator ΓC(x) with a complexity measured in the number of real-arithmetic operations and eval-
uations of generating functions that is linear in the size of the generated string. Moreover, ΓC(x)
can be implemented in terms of O(s2) samplers, where s is the number of languages appearing in
the specification of C.

Proof. By applying Lemma 3.1 we infer that it is enough to show the conclusion for a sampler
Γ̂C(x, k), where x ∈ (0,∞) and k ∈ N, with output distribution as in (3.2).

Then the proof is essentially the same as in [DFLS04]: we have a unique parse tree for each
word, linear in its size, and on each vertex we make one choice.

To complete the proof we show that ΓC(x) can be implemented in terms of O(s2) samplers,
where s is the number of languages appearing in the specification of C. Note that it is enough to
show the same statement for Γ̂C(x). Let C1, . . . , Cs, where C1 = C, be the languages appearing in
the specification of C, and suppose that for every i ≥ 2 the language Ci is either finite or it depends
only on Ci+j , where j > 0. Then, a closer inspection of the samplers of sections 4 reveals that a
(x, k)-exponential-like Boltzmann sampler for Ci makes use only of (x′, ℓ)-exponential-like samplers
for Ci+1, . . . , Cs, where x′ ∈ R, and ℓ ≤ k + 1. So, the largest q for which an (x, q)-exponential-like
sampler will be used is s, and this completes the proof of the theorem.

Finally the complexity for controlling the size is also the same as in the classical case [DFLS04]:

Corollary 4.8. The approximate sampling of regular with shuffle languages is linear in the size
of the generated output.
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5 Concluding remarks and work in progress

This paper presents a linear time method for the random generation of regular specifications
including shuffle. The main idea is to modify the Boltzmann parameter according to a well-
chosen density, in order to modify the size distribution of the output (without any bias on a given
size, so that uniformity is preserved). Thus transforming a Boltzman generator for combinatorial
structures with a given distribution of sizes, into a Boltzman generator for the same combinatorial
objects, with a different distribution of sizes. This idea can be adapted to other contexts, such as
differential specifications [?].

We finally discuss two topics that constitute a completion and an extension of this work,
concerning the implementation issues and the combinatorial interpretation.

5.1 Experimentation and algorithmic issues

The implementation of the previous algorithms is quite straightforward. We managed to write a
fully functionnal prototype using Maple. The major problem which needed to be addressed is a way
to draw the various random variables according to nonstandard density functions. Fortunately, as
our random variables are either discrete and with finite support, or with a non-implicit probability
function, Maple is able to draw automatically according to these given distributions.

Hence, we are able with our prototype to ask Maple to draw according to a given specification.
Consider for example the following extract from a worksheet :

> S:=Shuffle(Seq(Union(a, b)), Prod(c, d)):

> OGF(S)(z) assuming (z<1/2);

z2

(1− 2z)(1− 4z + 4z2)

> Gamma(S)(0.4);

abaabaacbaabdbaa

The main problem here is that this prototype is quite slow. Indeed, Maple has to carry all the
computations (including a massive utilisation of differentiations, convolutions and integrations) on
a symbolic level back and forth the worlds of ordinary and exponential generating functions. How-
ever, since we are dealing with regular languages only here, all the ordinary generating functions
are rational functions, even if their exponential counterparts are much more complex.

So, an idea to improve the speed could be to avoid, during the calculations, the shift from
ordinary world to exponential, then from exponential to ordinary. Precisely, one could assume
that the input generating functions are given in partial fraction decomposition, and deduce the
output in the form of a rational fraction. For example, suppose that C = A× B and

A(x) =
NA(x)

DA(x)
; B(x) =

NB(x)

DB(x)
; C(x) =

NC(x)

DC(x)

with NX , DX ∈ R[X] for any X ∈ {A,B, C}. Then, we would need a simple algorithm for deducing
the actual values of NC and DC from those of NA, DA, NB and DB. We do have an answer when
all the poles of A and B are simples, and there the development of this idea is a work in progress.

5.2 Combinatorial interpretation

In this section, we are going to show how to interpret combinatorialy the construction of the al-
gorithms presented in section 4. To do so, we will first reinterpret the exponential-like Boltzmann
samplers of section 3.

One can interpret differently the generating function Â. Rather than an alternative exponential
generating function for class A, we can see it as the usual exponential generating function of a
well-defined labelled class built upon A. Indeed we define here the canonicaly labelled class Â as

11



the class of words in A with the following unique labelling: the i-th letter receives the label i.
Then, we have that ElGF(A) = EGF(Â).

For example, if A = {ab, bb} then Â = {a1b2, b1b2} and we have OGF(A)(z) = 2z2 while

ElGF(A)(z) = 2 z2

2! = z2 = EGF(Â)(z).

Furthermore, the derivation operation on exponential-like generating functions can be seen
combinatorily as the derivation on species (see [BLL98]). More simply, in our context, we can

view a word in Â(k) as a word in A with an increasing labelling starting from the (k + 1)-th

position. With our previous example, we have Â(1) = {ab1, bb1} and Â(2) = {ab, bb}. Their EGF

is A(1)(z) = 2z and A(2)(z) = 2. Note that A = Â(2), but A(z) 6= A(2)(z). As usual with labelled
classes, the actual size of an object is nothing but the number of labels it holds.

One should notice that Γ̂A = ΓÂ, the latest Γ being the usual exponential Boltzmann sampler.
The advantage of going through this whole new world is that the shuffle product of unlabelled
classes is transformed into the usual labelled product on the corresponding canonicaly labelled

classes. In other words, we have Â ⊔⊔B = Â ⋆ B̂.
For example, if A = {ab} and C = {c}, then Â = {a1b2} and B̂ = {c1}. Next, we have

Â ⋆ B̂ = {(a1b2, c3), (a1b3, c2), (a2b3, c1)} = {a1b2c3, a1c2b3, c1a2b3} = Â ⊔⊔B.

The issue rising here is that we can’t translate the specification for A to a specification for Â
involving only operators handled by the Boltzmann samplers framework. Indeed, if C = A × B,
then the corresponding canonicaly labelled class Ĉ can only be expressed as Ĉ = Â ⊙ B̂ where
⊙ is the ordinal product on labelled structures — more precisely on linear species as explained
in [BLL98] — defined comprehensively as follows: if Â = {a1b2, b1b2a3} and B̂ = {c1d2}, then

Â ⊙ B̂ = {a1b2c3d4, b1b2a3c4d5}: we concatenate the words of the two classes, and shift the labels
of the second part.

In order to get the generating function of the ordinal product of Â and B̂ as given in lemma 4.4,

we use the relation EGF
(
Â ⊙ Ẑ ⊙ B̂

)
(z) =

∫ z

0
Â(z− t)B̂(t) dt given in [BLL98] and the transfor-

mation
Â ⊙ B̂ = Â(1) ⊙ Ẑ ⊙ B̂ + Â0 ⋆ B̂ (5.1)

This last relation being true by a simple case analysis: for objects of size 0 in A, the labelled
product is equivalent to the labelled product. And for any object of size > 0, it can be uniquely
decomposed as itself without it first label, and one isolated label. We now can translate any spec-
ification of a regular language into a specification of canonicaly labelles objects with derivatives.

In order to construct the Γ̂ sampler for regular languages, we can use the usual exponential
Boltzmann samplers extended with ordinal product and derivatives. We will travel through the
algorithms of section 4.

Algorithm 8 is not much more than the classic Boltzmann sampler for labelled product where
we independantly draw an element from each component of the product (lines 2 and 3). Le rest
of the algorithm simply deals with the labelling of the final object, where the shuffle really takes
place.

Algorithm 9 is exactly the classic Bolzmann sampler for disjoint union, where we choose with
a Bernoulli law one of the two components of the sum.

The algorithm 10 for the ordinal product follows the transformation 5.1 and its k-th derivative:(
Â ⊙ B̂

)(k)

= Â(k+1) ⊙ Ẑ ⊙ B̂ + Â
(k)
k ⋆ B̂(0) + · · · + Â

(0)
0 ⋆ B̂(k). All but the first case of the sum

are recursively dealt with; the first one is a special case of a product, where we bias the two calls
for the generator of the constituents using a well-chosen random variable.

Eventually, for algorithm 11, we use the recursive definition of sequence, and the two previous
algorithms.
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