N

N

Validation of Mixed Signal-Alpha Real-Time Systems
through Affine Calculus on Clock Synchronisation
Constraints

Irina Smarandache, Thierry Gautier, Paul Le Guernic

» To cite this version:

Irina Smarandache, Thierry Gautier, Paul Le Guernic. Validation of Mixed Signal-Alpha Real-Time
Systems through Affine Calculus on Clock Synchronisation Constraints. World Congress on Formal
Methods in the Development of Computing Systems (FM’99), Sep 1999, Toulouse, France. pp.1364-
1383, 10.1007/3-540-48118-4 22 . hal-00548887

HAL Id: hal-00548887
https://hal.science/hal-00548887
Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00548887
https://hal.archives-ouvertes.fr

Validation of Mixed SIGNAL-ALPHA Real-Time
Systems through Affine Calculus on Clock
Synchronisation Constraints

Irina M. Smarandache!, Thierry Gautier?, and Paul Le Guernic?

! The University of Reading, Department of Computer Science
Whiteknights, PO Box 225, Reading RG6 6AY, United Kingdom
Tel.: (44) 118 931 8611 (7626), Fax: (44) 118 975 1994
I.M.Smarandache@reading.ac.uk
2 IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

Thierry.Gautier@irisa.fr, Paul.LeGuernic@irisa.fr

Abstract. In this paper we present the affine clock calculus as an exten-
sion of the formal verification techniques provided by the SIGNAL lan-
guage. A SIGNAL program describes a system of clock synchronisation
constraints the consistency of which is verified by compilation (clock cal-
culus). Well-adapted in control-based system design, the clock calculus
has to be extended in order to enable the validation of SIGNAL-ALPHA ap-
plications which usually contain important numerical calculations. The
new affine clock calculus is based on the properties of affine relations in-
duced between clocks by the refinement of SIGNAL-ALPHA specifications
in a codesign context. Affine relations enable the derivation of a new set
of synchronisability rules which represent conditions against which syn-
chronisation constraints on clocks can be assessed. Properties of affine
relations and synchronisability rules are derived in the semantical model
of traces of SIGNAL. A prototype implementing a subset of the synchro-
nisability rules has been integrated in the SIGNAL compiler and used for
the validation of a video image coding application specified using SIGNAL
and ALPHA.

1 Introduction

Real-time systems, and more generally reactive systems [4], are in continuous
interaction with their environment. Therefore, they must respond in time to
external stimuli. Moreover, real-time systems must be safe, thus one would wish
to prove their correctness. Time constraints and safety are two important aspects
to be considered in the design of a real-time application.

Real-time systems may be constrained by very tight real-time deadlines.
Moreover, a hardware implementation of parts of these systems is sometimes
required, to meet specific constraints for instance. An example is an application
consisting of numerical calculations performed iteratively on large structures of
regular multidimensional data. In this case, a hardware/software implementation
may be envisaged, in which the numerical calculations are conveyed to hardware

for efficiency reasons, while the control relating these parts is implemented in
software.

In general, designing a mixed hardware/software real-time system requires a
rigorous methodology that comprises methods and tools addressing, among oth-
ers, system specification and validation, optimal code generation and hardware
synthesis. These aspects are dealt with in codesign [7] [9] which denotes the spec-
ification, validation and implementation of an application which consists both
of a hardware part, in the form of a set of specialised integrated circuits, and a
software part implemented on general programmable processors. The idea is to
explore various possible implementations of hardware/software systems in order
to improve their performance and to ensure the respect of cost constraints.

1.1 Real-Time System Codesign

System codesign is a complex process which can be decomposed into three main
activities [7]: 1. The cospecification of an application at various levels of abstrac-
tion; 2. The validation of a specification by formal verification or simulation, also
known as cosimulation; 3. The hardware/software partitioning of an application,
the evaluation of a partitioning from the point of view of the time constraints
and cost, the generation of executable code, the synthesis of hardware, and the
production of the interface between hardware and software, i.e cosynthesis. A
lot of work has been done, the purpose of which was to define a well-structured
methodology for codesign [7] [11] [19]. An important point was generally the
description of both hardware and software using the same language, like for in-
stance VHDL enhanced with mechanisms for calling C functions [14], or high-level
languages like C, C++ or FORTRAN extended with facilities for the description
of hardware systems [10]. These approaches enable the programming of both the
hardware and software parts of a system in a unique framework and their vali-
dation by simulation. However, they cannot guarantee system correctness. This
aspect can be much improved by using formal languages for system specification,
refinement of specifications towards lower levels of abstraction (implementation)
and validation of the various specifications by formal verification.

Defining a complete methodology of codesign requires addressing other rel-
evant problems, most of them concerning cosynthesis. Among these problems
there are the automatic partitioning into hardware and software, the synthesis
of hardware and the generation of optimal code for software implementation.

The work presented in this paper is part of a more general effort for building
a hybrid framework in which the SIGNAL [12] [13] and ALPHA [20] languages can
be used for real-time system codesign.

1.2 Cospecification and Cosimulation of SIGNAL-ALPHA Systems

SIGNAL is a synchronous [4] language developed for the specification, validation
and implementation of real-time systems. SIGNAL variables represent finite or
infinite sequences of values (data) which can be filtered or merged before being
submitted to classical boolean or mathematical operations. A clock is implicitly

associated with each SIGNAL variable: it represents a set of temporal indices
which denote the logical instants where the variable is present and has a value.
The semantics of a SIGNAL program can be described by a system of constraints
(relations) on clocks and values, which is constructed and verified for consistency
during compilation. The verification of the clock constraints is called clock cal-
culus. The SIGNAL environment is enhanced with tools for C [5] and VHDL [3]
code generation and formal verification of dynamic properties [2].

In its present form, SIGNAL is well-adapted for the design of control-based
real-time systems. Firstly, this is due to its limitations concerning the treatment
of computations on multidimensional data such as matrices. Only simple algo-
rithms can be expressed in SIGNAL and no significant optimisation is performed
at the level of the generation of executable C or VHDL code concerning vectors.
In contrast with SIGNAL, the ALPHA language has been developed primarily for
the specification and implementation of algorithms on multidimensional data.
Such algorithms can be described in ALPHA using affine recurrence equations
over convex polyhedral domains [20] and be further transformed for optimal
hardware or software implementation on parallel or sequential architectures [21].

Given their complementary properties, the SIGNAL and ALPHA languages
can be used jointly for the design of real-time systems containing important
numerical calculations on multidimensional data and control: numerical compu-
tations are expressed in ALPHA and the control is conveyed to SIGNAL. When the
real-time requirements of the system are very tight, a mixed hardware/software
implementation may be envisaged. In [9] we propose a hybrid framework for the
combined use of SIGNAL and ALPHA in real-time system codesign. In order for
this framework to be operational, it is necessary to interface SIGNAL and ALPHA
programs both at the functional and architectural level. The former corresponds
to a high-level mathematical representation of an algorithm in ALPHA, while the
latter contains a set of new temporal indices corresponding to the execution of
the algorithm on a parallel or sequential architecture.

In SIGNAL-ALPHA systems, the refinement of an ALPHA program from a
functional level to an architectural level oriented toward a particular implemen-
tation also induces a refinement of the temporal indices in SIGNAL. The new
time indices are obtained through affine transformations on the instants of time
of the initial SIGNAL specification. Consider clocks ¢ and ¢; in SIGNAL which
are identical at the functional level (they are also denoted as synchronous). Af-
ter refinement, their relative position is such that clock ¢; can be obtained by
an affine transformation applied to clock c¢: the instants of time of ¢ and ¢y,
denoted respectively T" and T3, can be described by a pair of affine functions
T={nt+¢p |teT}, Ty ={dt +p2 |t € T}, on the same set of instants 7.
With ¢ = @y — 1, we will say that clock ¢; is obtained by an (n, @, d)-affine
transformation applied to clock ¢, where n,d € IN* the set of strictly positive
integers and ¢ € Z the set of integers. Clocks ¢ and ¢; are also said to be in an
(n, v, d)-affine relation.

Clocks obtained by affine transformation may be re-synchronised at the ar-
chitectural level. As an example, consider clocks ¢, ¢; and ¢; which are identical

in the SIGNAL functional specification. At the architectural level, clocks ¢; and
c2 have been transformed such that ¢, ¢; and ¢, ¢; are respectively in affine
relations of parameters (ni,p1,d1) and (ns, ps2,ds). Whether clocks ¢; and ¢y
can be re-synchronised depends on the properties of the affine relations which
are induced from the values of (n1,p1,d;) and (ns, @2, ds). Moreover, the rela-
tions between ¢, ¢; and respectively, ¢, ¢o may be expressions on (n, ¢, d)-affine
relations constructed using operations like composition, union, etc. In this case,
the re-synchronisation of clocks ¢; and ¢, depends on the properties of these
operations.

The SIGNAL clock calculus performs the verification of clock synchronisation
constraints using a set of synchronisability rules, i.e. conditions against which
these constraints can be assessed. The current clock calculus depends on boolean
equation resolution methods [5] [1] which have been successfully used for the val-
idation of numerous control-based real-time applications. However, in order to
validate mixed SIGNAL-ALPHA systems as presented above, it is necessary to ex-
tend the current clock calculus with a set of synchronisability rules deduced from
the properties of (n, ¢, d)-affine relations. The new set of rules defines the affine
clock calculus, which constitutes the main topic of this paper. We explore the
space of (n, o, d)-affine relations and study to which extent it is closed under the
main operations that can be performed on affine relations. Following this study,
we define a set of synchronisability rules which, although incomplete, enables
the validation of the principles underlying the cospecification and cosimulation
using SIGNAL and ALPHA. The semantical model of traces of SIGNAL [12] [16]
constitutes the support for the study of the properties of affine relations and for
the definition of the new synchronisability rules.

1.3 Organisation of the Paper

In Section 2 we present the integration of SIGNAL and ALPHA for system code-
sign. Section 3 is the central core of this paper and is dedicated to the definition
and implementation of the affine clock calculus. The main concepts useful for
this purpose are progressively introduced: these are the model of traces of the
SiGNAL language, the properties of affine relations on clocks, the set of synchro-
nisability rules induced by the latter, and finally the necessary elements for the
integration of the affine clock calculus in the compiler. The affine clock calculus
has been applied to the cospecification and cosimulation of a video image coding
application; this is briefly illustrated in Section 4. In the same section we discuss
in which way the SIGNAL and ALPHA environments may further contribute to
the development of a complete codesign methodology based on both languages.
Finally, in Section 5 we present conclusions and perspectives of our work.

2 SigNAL and ALPHA in Real-Time System Codesign

Figure 1 summarizes the main elements of the environments around SIGNAL and
A1LPHA that make both languages well-adapted for real-time system codesign.

SIGNAL and ALPHA programs represent mathematical notations for the proper-
ties of the processes they define. The system of constraints on clocks and values
associated with a SIGNAL program is transformed by compilation into a synchro-
nised data flow graph (SDFG). This data structure constitutes the support for
executable code generation (C or VHDL) or verification of dynamic properties
using the formal tool SIGALI [2].

The ALPHA compiler includes a powerful type checking mechanism based on
the structure of an ALPHA variable as a function over convex polyhedra. The
syntax tree obtained after compilation can be directly translated into C code for
functional simulation, or it can be transformed into a subset of ALPHA called AL-
PHAOQ which exhibits the details of a parallel or sequential implementation. The
syntax tree in ALPHAO form can be further translated in C or VHDL executable
code or directly mapped on a netlist [21].

The interface between SIGNAL and ALPHA is based on the fact that both
languages can be translated in C and executed for functional simulation. Fur-
thermore, SIGNAL offers the possibility to call external processes: such a process
can be the specification of an algorithm in a language other than SIGNAL. A
particular type of an external process is a function, the execution of which is
considered instantaneous from the point of view of SIGNAL. A SIGNAL function
can be a predefined or a user-defined C function.

ALPHA: system
SIGNAL: system of affine recurrence

of constraints on clocks

equations

Control Numerical treatments

Fig. 1. SIGNAL and ALPHA in system codesign.

2.1 Functional Cospecification and Cosimulation

Being a synchronous language, SIGNAL is based on the following hypotheses [4]:
1. All actions (communications and calculations) in a system have zero logical

duration (the elapsed time is represented by the precedence of successive values
on a same data flow); 2. Two or more actions can take place at the same logical
instant, such actions being termed “simultaneous”. From the point of view of
the logical temporal properties of a system, only succession and simultaneity
of instants are of interest. Although their exact time values are not considered,
note however that they will be considered for a given implementation. The pro-
cess associated with a SIGNAL program represents thus a succession of logical
instants, with each instant being associated one or more actions considered of
zero logical duration and involving process variables present at that instant.

Consider for example a coding system for sequences of video images at 34
Mbits/s [8]. A system of this type consists of a set of numerical treatments
applied iteratively on images of the same dimension. Images are divided into
luminance and chrominance blocks and treatments are applied to each block.
Numerical treatments consist mainly of algorithms for inter and intra image
coding which require operations like a discrete cosine transformation (DcT). In
order to illustrate the interfacing between SIGNAL and ALPHA, we have isolated
from the coding application a simple SIGNAL program and have illustrated the
associated process in Fig. 2. It consists of a DCT operation applied in sequence to
different values A; of the matrix of pixels A present at each logical instant of time
t;. The matrix A corresponds to a block of luminance or chrominance of an image.
The DcT can be expressed in SIGNAL as B := Dct(A), where DCT is actually an
external process. The DCT is a time consuming algorithm, particularly for large
matrices or when applied to images containing a large number of blocks. In order
to improve the overall performance of the coding application, one would wish
to execute each instance B; := Dct(A;) on a parallel integrated architecture as
derived by the ALPHA environment.

The DcCT can be easily described in ALPHA. The SIGNAL-ALPHA cospecifica-
tion and cosimulation of the new system is made possible at the functional level
as follows (see Fig. 2): 1. The ALPHA system is translated in executable C code;
2. The C function ALPHA_C obtained at step 1 represents the external process
implementing the DT in SIGNAL. The function ALPHA_C'is considered instan-
taneous in SIGNAL; the clocks of the matrices A and B, denoted respectively by
¢ and ¢, are therefore synchronous. The overall system is thus represented as
a SIGNAL specification executing instantaneously the functional description of
the ALPHA specification. The system can be validated in the SIGNAL environ-
ment by formal verification (compilation, model checking with SIGALI) and/or
simulation.

2.2 Implementation-oriented Cospecification and Cosimulation

A mixed SIGNAL-ALPHA specification at the functional level may be refined in
order to take into consideration the details of a particular implementation. The
ALPHA program of Section 2.1 describing a DCT may be submitted to a sequence
of transformations for a parallel or sequential implementation. These transfor-
mations guarantee the equivalence of the final specification, noted ALPHA’ in
Fig. 3, with the initial ALPHA system of Fig. 2. The system ALPHA’ contains

system ALPHA — finction ALPHA C

to t ta
| c, o e, ¢ e, ¢
Bo:= Det(As) Bi = Det(A1) Bz= Det(Az)
ALPHA C ALPHA C ALPHA C

process SIGNAL

Fig. 2. SIGNAL-ALPHA interface at functional level.

the time indices corresponding to a particular scheduling of the DCT operation.
In Fig. 3 these time indices are represented as the diagonal sets of micro-instants
pt! associated with each macro-instant t;.

The SIGNAL specification has to be refined accordingly in order to enable the
validation of the overall system. Therefore, the micro-instants of time of ALPHA’
are taken into consideration in the new process SIGNAL’ and described as the
sets of instants pSt), uSti, etc. (see Fig. 3). The C function ALPHA’_C has
been derived from ALPHA’ and transformed in order to describe the sequence
of operations performed at each micro-instant of time.

system ALPHA —> function ALPHA’ C

i i
o BSto q #Sh g
i
Ao B, M B, A
—_—

process SIGNAL™ 4 ALPHA" C ALPHA™ C

Fig. 3. SIGNAL-ALPHA interface at architectural level.

The regularity of ALPHA values manifests itself in SIGNAL in several ways.
First, the sets of micro-instants uSty, uStt, etc. have the same cardinality. Also,
successive values for B are provided at specific micro-instants between any two
successive macro-instants ¢; and ¢;41 in a regular manner. This situation is il-
lustrated in Fig. 4 where the clocks of matrices A and B, denoted respectively
by ¢ and ¢;, are defined by the following instants of time: ¢ = {0,9, 18, ...} and
¢ = {6,15,...} (after providing the values B; at the instants of time defined by
c1, the architecture implementing the operation B; := Dct(A;) may execute fur-
ther computations like initialisations for the next operation B,y := Dct(A;41)).

0123456 78 910

Fig. 4. Illustration of an affine relation.

In Fig. 4, clock ¢’ is defined by the set of instants {0,1,2,3,4,5,...}. It can
be noticed that clocks ¢ and c¢; are placed in a regular manner on the sup-
port clock ¢': their relative position is such that ¢; has been obtained through
an (9,6,9)-affine transformation applied to ¢. By definition, clock ¢; is the re-
sult of an (n, ¢, d)-affine transformation applied to clock c if it can be obtained
from ¢ through steps 1 and 2 as follows: 1. Constructing a new clock ¢’ as the
union of ¢ with the set of instants obtained by introducing n — 1 fictive in-
stants between any two successive instants of ¢ (and —¢ fictive instants before
the first instant of ¢ when ¢ is negative). 2. Defining the clock ¢; as the set
of instants {dt + ¢ | t € '}, with ¢/ = {t | t € IN} (in other words, counting ev-
ery d instant, starting with the ¢! instant of ¢/, or with the first instant of
¢’ when ¢ is negative). Clocks ¢ and ¢; are then said to be in an (n,¢,d)-
affine relation. The above definition can be expressed in an equivalent form
as follows: clocks ¢ and ¢; are in (n,, d)-affine relation if there exists a clock
¢ such that ¢ and c¢; can be respectively expressed using the affine functions
At.(nt + 1) and At.(dt 4+ p2), with ps — @1 = ¢, with respect to the time in-
dicesof ¢: ¢/ ={t |t e N}, c={nt+¢ |[tec},ca ={dt+p2 |t €}

Properties on affine relations can be exploited in order to verify that
clocks are synchronisable, that is, their sets of instants can be identified (re-
synchronised). Consider (Fig. 2) a SIGNAL program which executes two succes-
sive DCT operations at each macro-instant ¢;, one on a luminance block of an
image, noted B := Dct(A), and the second one on the next block of red chromi-
nance of the same image, described by D := Dct(C).

Each DcT function is expressed in ALPHA at the functional level and further
refined according to a particular implementation. The SIGNAL specification is
refined accordingly and we obtain the timing diagrams of Fig. 5: the clocks of A
and C are synchronous and equal to ¢, the clocks of B and D are respectively
c1 and ¢z, and the clocks ¢’ and ¢” describe the instants of the excution of the
Dcr functions on a potential architecture derived in the ALPHA environment.

In the functional SIGNAL-ALPHA specification, clocks ¢, ¢; and ¢y were syn-
chronous (see Section 2.1 for details). After refinement of the time indices in
the SIGNAL-ALPHA specification, the clocks ¢; and ¢z should be re-synchronised
in order to preserve the temporal properties of the whole application. Whether
the re-synchronisation of ¢; and cs is possible given their relative position as
illustrated in Fig. 5, or after further adjustments of their time indices, can be
decided based on the properties of the affine relations existing between ¢, ¢;

0 6 9 15 18
c cl| c cl| c
C
oot
SIGNAL” 0 3 7 10 14
c o, c ¢, c
4
EEREIEEEEREEE
Cc’\ C C
KRR TEEEE TN
AN PR IR a
N NI] IR VA
C=C, C=¢,

Fig. 5. Synchronisable clocks in the context of codesign with SIGNAL and ALPHA.

and ¢, ¢y respectively. Clocks ¢, ¢; and ¢, ¢y are respectively in (9,6,9) and
(7,3, 7)-affine relation in the process SIGNAL’. The relation existing between
the triplets (9,6,9) and (7, 3,7) guarantees the equivalence of the corresponding
affine relations. This will be detailed in Section 3. Informally, the equivalence of
the above affine relations expresses the fact that the relative positions of clocks
c and ¢y, respectively ¢ and ¢y, are identical. Based on this observation, clocks
c1 and c2 can be identified without contradicting the temporal behaviour of the
other clocks in the SIGNAL program. The instants of time of clocks ¢’ and ¢
situated between two successive instants of ¢ and ¢; (or ¢2) are independent and
can be positioned with respect to each other in various manners; in Fig. 5 we
have illustrated one possibility. Therefore, ¢; and ¢, can be re-synchronised; we
say that ¢; and ¢ are synchronisable.

The aim of the affine clock calculus discussed in Section 3 is to define neces-
sary and sufficient conditions for clock synchronisability based on the properties
of affine relations on clocks. These conditions are expressed as a set of synchro-
nisability rules and are derived in the semantical model of traces of SIGNAL.
Section 3 begins with an introdution to these concepts.

3 Affine Calculus on Clocks in SIGNAL

Figure 6 introduces the reader to the semantics of traces [12] [16] of SIGNAL.
The most important concepts in SIGNAL are: 1. the signal, which denotes a
variable of the language and represents a finite or infinite sequence of values;
2. the clock, a variable associated with each signal which represents the set of
logical instants where the values of the signal are present. SIGNAL operators
manipulate signals by imposing implicit or explicit constraints on their values
and clocks. Constraints on clocks are usually expressed as identities between

clock expressions constructed using the operators of intersection (A), union (V)
or difference (\). Clocks can be also subsets of other clocks defined as samplings
by boolean conditions. When no condition is explicitly or implicitly stated on a
pair of clocks, they are independent.

process SIGNAL < Cy = Cy = C;

P

Fig. 6. Illustration of SIGNAL semantics of traces.

A S1GNAL program describes a real-time system, which is in continuous inter-
action with its environment. Input values are transformed corresponding to the
actions of a given specification and the results are provided to the environment.
This situation is illustrated in Fig. 6 in the case of a program manipulating in-
puts z and y and providing output z depending on the values of z and y. In case
z is the addition of x and y, signals x, y and z are implicitly constrained by the
+ operator in SIGNAL to have the same clocks ¢, = ¢, = c..

The configurations F' and F" illustrated in Fig. 6 correspond to two different
executions of the SIGNAL program, involving sequences x;, y; and z; and respec-
tively «f, yi and z]. The set of all possible configurations, called traces, which
can be exhibited during the execution of a SIGNAL program, defines completely
the process P associated with the program. Consider A a subset of the set B of
signals manipulated by a program. A trace may contain instants with no action
involving signals from A. However, each instant of this type contains actions
which involve other signals from the set B\ A. Given a subset A of signals, a flow
on A is a trace with at least one action involving signals from A for each logical
instant. In the particular case of Fig. 6, if we consider the subset of signals to
be {z,y, z}, the traces illustrated are actually flows.

More generally, the process P associated with a SIGNAL program is a set of
flows on the variables of the program. Each flow F' in P is constrained by a system
of equations on the clocks and values of signals manipulated by P. Equations
on values can be further expressed in the abstract form of a data dependency
graph (an example of a data dependency graph is illustrated in Fig. 6 for the +

operator). Besides the clock calculus, the compiler verifies data consistency by
checking the absence of cycles in the data dependency graph. In the next section
however, we will concentrate mainly on the clock calculus.

3.1 Clock calculus & Synchronisability

The clock calculus is equivalent to the resolution of a system of clock equations.
For example:

CcC=C
d=(c1Ne2) Ve (1)
= CI

can be a system derived from a SIGNAL program which manipulates clocks ¢, ¢,
¢1 and co. In this simple system, ¢; and (¢1 A ¢c2) V ¢; have clearly to be proved
equivalent, which is an immediate consequence of the axioms of the boolean
lattice. The space of clocks associated with a SIGNAL program is a boolean lattice
[6] the properties of which are extensively used for the proof of equivalences. The
resolution of the system is performed by triangularisation of the system [5] [1].

Given a boolean signal Cd, its clock, denoted dd, can be partitioned into the
clock [C'd] where the signal C'd is present and true and the clock [-Cd] where Cd
is present and false (the clocks [Cd] and [~Cd] represent samplings by boolean
conditions). The relations between clocks C'd, [Cd] and [-Cd] are expressed by
the partition equations below:

[Cd] v [~Cd] = Cd @)
[Cd] A [-Cd] =0

The axioms of the boolean lattice together with the partition equations induce
on the space of clocks a lattice of an order < “coarser” than the order < of
the boolean lattice [5]. Clocks can be boolean formulas constructed either with
samplings by boolean conditions [C'd], [~Cd] or with free variables of the boolean
lattice. The properties of the lattice of order < are actually used during the
triangularisation of any system of clock equations.

The axioms of the lattice < represent a system of synchronisability rules in
the sense described below. Clocks ¢ and ¢’ are synchronisable in the process P,

P
which is denoted by ¢ ® ¢, if there exists a flow F in P in which ¢ and ¢’ are
synchronous:

P
cocd e IFePctd (3)

(we note ¢ L ¢ the fact that ¢ and ¢’ are synchronous in F).
Whenever the property expressed by equation 3 is valid for each flow F in P,

the clocks ¢ and ¢ are said to be synchronous in P, which is denoted by ¢ L
This definition can be expressed as follows:

cEd oVFePctd (4)

Unless explicitly constrained through the SIGNAL program, clocks ¢ and ¢’ are
completely independent in the associated P process. Therefore, their relative
position can be such that in some flows F' in P they are identical, while in some
other flows F' in P their instants interleave in an arbitrary manner: obviously,
if ¢ and ¢ are independent in P, they are synchronisable. When the relative
position of clocks ¢ and ¢ is implicitly or explicitly constrained by the SIGNAL
operators, flows F' in P are subsequently constrained and the synchronisability
of ¢ and ¢’ depends on these constraints.

In order to better understand the use of the synchronisability rules, consider
for example a process P derived from a SIGNAL program Prg in which clocks ¢
and ¢’ are defined by the first two equations of the system (1):

cC=C
d=(c1Ne2) Ve (5)

Program Prg may be transformed into Prg’ in which an additional constraint
has been expressed on clocks ¢ and ¢': ¢ = ¢’ (in the SIGNAL-ALPHA context, Pryg
could be part of a transformed SIGNAL-ALPHA specification, as seen above, and
Prg' the same specification, in which clocks are resynchronised). Consider the
process P’ corresponding to the program Prg’. The system of clock equations
associated with Prg' is (1). Given the set of flows F' C P such that ¢ L d,
VF € F', it results P’ = F'. Therefore, verifying the consistency of (1), which is
equivalent to testing that clocks ¢ and ¢’ are equivalent in P’, is further equivalent
to testing the synchronisability of ¢ and ¢’ in P. The rule (¢1 Aca) Ver = ¢ from

the boolean lattice is indeed a synchronism rule: (c1 A ¢c2) V ¢ £ ¢ for every
process P. The same axiom holds for the process P associated with Prg. And

thus (1 Aea) Ve 5 c1, since synchronism implies synchronisability. Therefore
in the example, 7' is not empty and it can be concluded that P’ is consistent
from the point of view of the constraints expressed on its clocks.

The rules of the lattice < represent synchronisability rules: each identity

f1 = f2, with f1, fo boolean formulas on clocks, is equivalent to fi £ f2 which

implies f; 5 fo for every process P. These rules can be further extended using
the properties of the affine relations between clocks. Figure 5 illustrates this idea:
if P is the process associated with the program SIGNAL’, the configuration in
which clocks ¢; and ¢, coincide represent a flow F' € P such that ¢; £ ¢y. Thus, ¢;
and ¢ are synchronisable in P. The reason here is that the (9,6,9) and (7,3, 7)-
affine relations existing respectively between ¢, ¢; and ¢, ¢, are equivalent. In the
next section, we define the affine relation associated with a flow and a process
and further explicitate the concept of equivalence of affine relations.

3.2 Affine Relations in SIGNAL

Givenn,d € IN* and ¢ € Z fixed, clocks ¢ and ¢; are in (n, ¢, d)-affine relation in
the flow F—which is denoted ¢ R{;’%d) c1or (c,c1) € R{;W’d)—if the relative

position of ¢ and ¢; in F can be induced by an (n, ¢, d)-affine transformation as
defined in Section 2.2.

Clocks ¢ and ¢; are in (m,¢,d)-affine relation in process P, denoted
¢ Rl oy €1 O (¢,c1) € R, 4, if they are in (1, p, d)-affine relation in each
flow F of P, i.e. c Rf‘;h%d) c1, VF € P. Flows and processes are defined over the
set of variables they manipulate. For a given set A4, a flow F on A is a member of
the set of flows F4 that can be constructed with the variables of A. In a similar
manner, a process P on A belongs to the set of processes on A4, i.e. P € Py.
Because of the finite nature of the sets of variables associated with flows and

processes, affine relations can be defined as finite sets as follows:

VE € Fa, Rl g ={(cc) € Ax A eRE i) (6)
VP € Fa, RE, g = {(ec) €Ax A eRE i) ()

Consider the process P € Pyc ., ,} defined as follows:
P={F€Fric,cylc R5117<p1,d1) c1,c R{;Z’wzm) e} (8)

(induced by a SIGNAL program that manipulates only the clocks ¢, ¢; and ¢3).
From the definition of an affine relation associated with a process it results

P P . .
c R(n1,w1,d1) ¢, and ¢ R(n%w%dz) cs. Clocks ¢; and ¢y are synchronisable in P

if there exists F' € P satisfying ¢; £ c2. Consider F; € P satisfying ¢; L Ca.

Obviously ¢ R{';il,@lydl) c1 and ¢ Rf;jz,w,dz) c2. Being identical in F§, clocks ¢;
Fy

and ¢z can be replaced with each other and therefore ¢ R) € implies

(n1,01,d1
c Rf;il o1.dy) C2 and ¢ Rf;iz o) €2 implies ¢ Rf;iz oa.ds) C1- It results therefore
that Rgihw,ah) = Rg;vwm) = {(¢,c1), (¢,¢2)}. In conclusion, a necessary con-

Fs

dition for clocks ¢; and ¢y to be synchronisable in P is that R and

(n1,p1,d1)
f;;’wm) be equivalent. In the case of the process P defined by (8), it can be
proved that this condition is also sufficient.

The equivalence of affine relations depends on the closure properties of the
space of affine relations with respect to the main operations that can be applied
to it. These are either union, intersection or difference induced by the homonym
operations on clocks, or general operations on relations like inverse and com-
position [15]. In the next section we propose a study of these properties in the
semantical model of traces of SIGNAL.

3.3 Properties on Affine Relations & Synchronisability Rules

The semantics of traces. Consider a finite set of signals A. The set of all
possible flows defined on A is denoted F4. Subsets of flows from F4 can be
grouped in processes which are members of the set P4 of all processes that can
be defined on A. A SIGNAL program on A defines a process P € Py; each flow

F' € P satisfies some constraints imposed by the SIGNAL operators on the clocks
and values of the signals from A.

SiaNAL disposes of four basic operators (kernel) which are sufficient for the
construction of any program regardless of its complexity. Kernel operators are
combined through composition and restriction in order to build programs. The
composition and restriction of programs induce naturally the corresponding op-
erations on processes and flows. Intuitively, the restriction of a flow F' to a set
of variables A" C A is the flow IT4 (F) which contains only those instants of F'
with actions involving signals from A'.

Concerning processes, the main operations are defined as follows. Given a set
of variables A" C A, the restriction of P € P4 to A’ (the projection of P on A')
contains the flows F' € P manipulating exclusively variables of A’:

Iy (P)={F € Fy | F' = o (F),VF € P} (9)

The composition of processes P, € P4, and P, € P4,, with Ay, As arbitrary
sets of variables, is defined by:

P P ={FeFy ya, | Ha(F) € P14 (F) € P} (10)

The following lemma describes the necessary and sufficient conditions—
stated as IT4,(P) C Q—for a property valid in the process @ to be also also
in P:

Lemma 1. VP € Py, VQ € Pa,, As C Ay,
,(P)CQ&P|Q=P (11)

In other words, given the hypothesis described by the left hand side of (11), @
expresses a property valid also in P.

Properties on affine relations. Operations specific to relations in general,
like inverse () and composition *, can be applied to affine relations [15]. As an
example, consider a process P € P ¢, c,,c;} With clocks ¢, ¢, ¢2 and c3 satisfying

¢ R{;lwth 1, ¢ R{;27¢27d2) ¢z and ¢ R, ., c3. Obviously, it results that

c Rﬁu,w,ch) * R(nmw’@) c2 and the synchronisability of ¢ and ¢3 depends on
properties of the composition. When the space of affine relations is closed under
composition, the test of the synchronisability of ¢; and c3 reduces itself to the
verification of the equivalence of affine relations.

Affine relations can be further combined through union U,, intersection N,
and difference \, induced by the homonym operations on clocks (V, A, \). A sim-
ilar argument as before conducts to the necessity of studying closure properties
of these operators with respect to the space of affine relations.

Here is a brief presentation of the main steps and results obtained in the
study of affine relations.

Equivalence of Affine Relations. An equivalence relation, noted ~, can be defined
between triplets (n, ¢, d) as follows: (n,p,d) ~ (n',¢', d") iff either nd’ = n'd and
ny' = n', for G | ¢ (ie., G is a divisor of ¢) and G' | ¢', or nd’ = n'd and
[ﬂ%} = [‘“%] Ve N, dt+p > 0,for G fpand G' [, with G = ged(n, d)
the greatest common divisor of n and d, G' = gcd(n',d') and [z] the integer
part of x € IN. The equivalence of affine relations depends exclusively on the
values of the associated triplets (n, ¢, d) [17]:

Proposition 1.
VFEeFae (npd) ~ (n,¢,d) (12)

F —_ F
R(n,np,d) - R(n',zp',d')’

Canonical Form. In order to reduce the complexity of the test of the equivalence
~, we have then defined a canonical form (ncp, por,dcor) for a triplet (n, p,d)
[18] as follows:

Proposition 2.

Qs
> Qs
s
e
+

=

ul\’)

Q.

a) G| o= (nor,pcr,dcr) = (&

b) G [= (ncr,¢cr,dor) = (2 (13)

Consequently, the canonical form of Rf; o) 18 Rgch, vopdep) and the ver-

ification of the identity of two affine relations is thus reduced to the verification
that two triplets of integers are identical:

Proposition 3.
Rinoty = Riw oy & (ncr,ocr,dor) = (nor, 9or, dor) (14)

Operations on affine relations. If any expression on affine relations could be
rewritten as an affine relation, the verification of clock synchronisability would
consist only in a test of equivalence on affine relations as above. But it has been
observed that this was not the case in general. The closure property is true
for the inverse of an affine relation. Also, the affine relation R{;’m is neutral
with respect to composition. However, the closure property is lost when dealing
with composition. The composition of two general affine relations Rgz 0.d) and
RF r I !
(n',¢",d")
been possible to identify in the space of the affine relations Rf‘; o.d) @ subspace

does not generally produce an affine relation. Nevertheless, it has

consisting of relations of the form Rg o) with ¢ > 0, in which the closure
property is true. Following this observation, we have distinguished two cases, as
detailed in the sequel.

Properties of affine relations Rfl o.d)? with ¢ > 0. It has been demonstrated [16]
that the space of affine relations Rg 0.d)? although closed under composition *

and intersection N,., is not closed under union U, and difference \,. It is there-
fore necessary to define necessary and sufficient conditions for the equivalence

of arbitrary expressions constructed with affine relations of the form Rg% d)
using composition, union, intersection and difference. Given the complexity of
the space of expressions on affine relations Rﬁ .d) and the necessity of efficient
algorithms for testing their equivalence, the question of the existence of a canon-
ical form appears. Our attempt to provide a canonical form using exclusively the
U, operator—based on the observation that any expression in this space can be

rewritten as a union of affine relations Rﬁ o d)—has failed because of the infinite

number of possibilities in which a relation Rg ,d) AN be rewritten as a union of
affine relations of the same type. However, in [16] we propose a relative normal
form which reduces partially the complexity of the equivalence calculus.

Properties of general affine relations R{;’%d). Deciding that two arbitrary ex-
pressions on general affine relations are equivalent is a difficult problem. An
initial step may be to isolate subsets of triplets (n,p,d) and (n',¢’,d') which
respect the condition that the result of the operation R{;,%d) op, Rf;ﬂ,w’,d’)’
with op, € {x,U,,N;,\;}, is an affine relation. In [16] we propose a subset
of such triplets {(n,¢,d), (n',¢',d")}, for which the above property is true, for
the composition. Computing this subset {(n, p,d), (n',¢’,d’)} is an NP-complete
problem. Future work may consider the applicability of heuristic search methods
for this computation. Another open problem is the study of the properties of the
union U, intersection N, and difference \, of general affine relations.

Synchronisability rules. The main results concerning the particular affine
relations Rﬁ% 4> With ¢ > 0, and the general ones RE 0, have respectively
permitted the induction of a set of synchronism rules and a set of synchronisabil-
ity rules. These rules actually represent a set of conditions which are necessary
and sufficient for the synchronism and respectively the synchronisability of two
clocks.

An example of synchronism rule is given below. Consider the process P €
Precren,es) defined by:

P = {F € .7:{0701702703} | C R{i C27C RF 63} (15)

F
) e e Ry (1,05,ds)

,91,d1 1,p2,d2)

Obviously ¢ Rg,m, i) €1y €1 RE ¢y and ¢ REY ¢s. The calculus

(1,02,d2) (1,03,d3)

: F : F F — RF

on affine relations R , ;) induces R)y * R = R\ p14dipadids)
P — RP

,©1,d1) * R(17§027d2) - R(17¢1+d1§027d1d2)'

P . .
Therefore ¢ R(Lm tdvps,dids) €2 and ¢ and c¢3 are synchronisable if and only

. P _ P . .. P
if R(17<p1+d1<p27d1d2) = R(L%’dg). With Propositions 2 and 3, R(l,w1+d1wz,d1dz)

and Rg va.dy) A€ equivalent if and only if (1,¢; 4+ dip2,d1dz) and (1, @3,ds3)
are identical, that is, ¢1 + d1p2 = 3 and d1ds = ds. This result is expressed in

the following synchronism rule:

,P1,d1 ,p2,d2)

which is valid also for processes: Rﬁ

Proposition 4. VP € Picci oy With ¢, ¢, ca and c3 satisfying
c Rﬁ#’hdl) c1, C1 Rﬁ,wz,dz) ¢y andc Rg’%’da) cs, the following equivalences are

verified:

P -
Ccy ©c3 & {glldjilgj =3 } & Co 2 C3 (16)

In Fig. 7 the particular case o1 =6, d; = 2, 9o =1, dy = 2, and p3 = 8§,
ds = 4 is illustrated. It can be observed that clock ¢; is an affine sampling of
phase ¢; and period d; on clock c. Clock ¢ is defined similarly by an affine
sampling of parameters 2 and dy on ¢;. The same clock ¢, can be obtained by
an affine sampling of 3 and ds on ¢; the clock ¢z constructed in this manner is
synchronous, and therefore synchronisable, with cs.

Following a sequence of steps similar as for Proposition 4, we have derived
a system of synchronism rules which is minimal; it enables the verification of
the synchronisability of two arbitrary clocks related by an expression on affine
relations Rﬁ% a0y with ¢ > 0. The results concerning the equivalence of general

affine relations Rf; o) summarized by Propositions 1, 2 and 3, and the partial
result on composition of general affine relations, have allowed the derivation of
a set of synchronisability rules which are sufficient for the validation of SIGNAL
programs for which the single operation performed on affine relations is composi-
tion. Further work should be dedicated to the study of the union U,., intersection

N, and difference \, of general affine relations.

0 6 § 910 12 14 16 18

8 12 16

Fig. 7. Illustration of Proposition 4.

3.4 Implementation of the Affine Clock Calculus

A prototype implementing the synchronisability rules introduced in Section 3.3
has been integrated with the existing clock calculus and used for the validation
of the SIGNAL-ALPHA interface on the video image coding application intro-
duced in Section 2. In Section 3.1 we have explained that the existing (boolean)

clock calculus relies on the properties of the lattice < existing on the space of
clocks, and that it is equivalent to a system of synchronisability rules. The im-
plementation of the affine clock calculus is briefly described now. By choosing
an appropriate implementation of a general affine relation R& o.d) 3 detailed

in [16], the considered clock expressions contain formulas constructed only with
affine clocks, that is, affine samplings of specified phase and period on a given
basis clock. Thus, the order <, defined by

Zarr ={(c1,e2)| i 2 0,di > LR = EXP(.., R . ayr--) aREea} (17)

with EXP a general expression on affine relations, induces on the space of affine
clocks a lattice structure. The system of equations on affine clocks associated
with a SIGNAL program is solved by triangularisation. When the equivalence of
two clock expressions has to be demonstrated, synchronisability rules such that
deduced in Section 3.3 are applied. Finally, for the integration of the affine and
boolean clock calculus, each synchronisability rule which has been deduced in a
process () € Pa,, is used in a larger context P € Py,, with Ay C Ay, satisfying
II4,(P) C Q. Following Lemma 1, the synchronisability rule is also valid in P.

4 Application

The affine clock calculus has been used for the validation of the video image
coding application described in Section 2. This application contains an important
control part, which has been programmed in SIGNAL, and operations like the
Dct, which have been expressed in ALPHA. The application has been specified
and simulated at both functional and architectural levels as described in Section
2. In the coding system described in [8], each image is decomposed into a fixed
number of macro-blocks, each macro-block consisting of one block of luminance
and two blocks of chrominance (red and blue). At the architectural level, we
have refined the ALPHA specifications of the DCTs corresponding to the blocks
of luminance and red chrominance of a macro-block. These temporal refinements
have been expressed in SIGNAL by means of two general affine relations between
clocks ¢, ¢; and ¢, ¢o as illustrated in Fig. 5. The synchronisability of ¢; and ¢,
has been verified by compilation and the entire SIGNAL-ALPHA system has been
simulated in C.

Most of the operations involved in image coding applications are critical from
the point of view of execution time or resources. Therefore, a codesign approach
can be considered. The affine clock calculus represents an important element
in defining a complete codesign methodology based on the SIGNAL and ALPHA
languages. Besides the cospecification and cosimulation of an application, using
SIGNAL and ALPHA in a codesign framework is interesting since it offers solu-
tions to other codesign problems such as the automatic synthesis of specialised
circuits for regular algorithms, or the generation of optimal code for the soft-
ware implementation of both calculations and control. Concerning the latter,
one might consider the hardware/software partitioning of an application corre-
sponding to the partitioning into SIGNAL and ALPHA subsystems. Therefore,

ALPHA processes would be implemented in hardware by automatic synthesis,
while SIGNAL processes would be translated into C code for general purpose
architectures. However, the proposed partitioning is not unique and automatic
hardware/software partitioning remains an open problem, as it is the implemen-
tation of the hardware/software interface.

5 Conclusion

The joint use of the SIGNAL and ALPHA languages in hardware/software codesign
has introduced the problem of the validation of mixed SIGNAL-ALPHA specifica-
tions both at the functional and architectural levels. The refinement of SIGNAL-
ALPHA specifications towards the architectural level and their subsequent val-
idation necessitates the extension of the formal clock calculus implemented in
the SIGNAL compiler. This paper presents the new affine clock calculus based
on the properties of affine relations induced between clocks by the refinement of
SIGNAL-ALPHA specifications. The properties of affine relations are studied in
the semantical model of traces of the SIGNAL language, but can be extended to
any general model with similar characteristics. Based on this study, a new set
of synchronisability rules is defined and integrated with the set already imple-
mented by the existing formal clock calculus.

The affine clock calculus is relevant for the definition and implementation
of a codesign methodology using the SIGNAL and ALPHA languages. Techniques
for real-time system validation (formal verification, simulation) available in the
SIGNAL and ALPHA environments can be used for cospecification and cosimu-
lation. Both environments also have tools for automatic generation of optimal
implementations which can be used in a complementary manner for hardware
synthesis and/or implementation on general architectures. Further work should
be devoted to the complete integration of the SIGNAL and ALPHA languages
thus making possible the use of the most adapted formalism and environment
for a given application.

References

1. Amagbegnon T., Besnard L., Le Guernic P.: Arborescent Canonical Form of
Boolean Ezxpressions. INRIA Research Report 2290, IRISA/INRIA - Rennes,
France, 1994

2. Amagbegnon T., Le Guernic P., Marchand H., Rutten E.: The SIGNAL
dataflow methodology applied to a production cell. TRISA Research Report 917,
IRISA/INRIA - Rennes, France, 1995

3. Belhadj M.: “Using VHDL for Link to Synthesis Tools”. Proceedings of the North
Atlantic Test Workshop, June 1994, Nmes, France

4. Benveniste A., Berry G.: “Real-Time systems design and programming”, Proceed-
ings of the IEEE, September 1991, 79, (9)

5. Besnard L.: Compilation de SIGNAL : horloges, dpendances, environnement, PhD
Thesis, University of Rennes 1, France, September 1992

6. Birkhoff G.: Lattice Theory, AMS colloquium publications, 1973

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

De Micheli G.: “Computer-Aided Hardware-Software Codesign”, IEEE Micro,
August 1994, 14, (4)

ETSI (European Telecommunication Standards Institute) Specification of Compo-
nent T'V codecs 32-45 Mbit/s. December 1990

Gautier T., Le Guernic P., Quinton P., Rajopadhye S., Risset T., Smarandache I.:
“Projet CAIRN: conception d’architectures partir de SIGNAL et ALPHA” CODE-
SIGN Conception conjointe logiciel-matriel, Eyrolles, Collection Technique et Sci-
entifique des Tlcommunications, 1998

Gupta R.K., Coelho C.N., De Micheli G.: “Program Implementation Schemes for
Hardware-Software Systems” Computer, January 1994, pp. 48-55

Kalavade A., Lee E.A.: “A Hardware-Software Codesign Methodology for Dsp
Applications” IEEE Design & Test of Computers, September 1993, 10, (3), pp.
16-28

Le Guernic P., Gautier T.: “Data-Flow to von Neumann: the SIGNAL Approach”,
Advanced Topics in Data-Flow Computing, (Gaudiot J.-L. and Bic L., 1991), pp.
413-438

Le Guernic P., Gautier T., Le Borgne M., Le Maire C.: “Programming Real-time
Applications with SIGNAL”, Proceedings of the IEEE, September 1991, 79, (9), pp.
1321-1336

Salinas M.H., Johnson B.W., Aylor J.H.: “Implementation-Independent Model of
an Instruction Set Architecture in VHDL” IEEE Design € Test of Computers,
September 1993, 10, (3), pp. 42-54

Sanderson J.G.: A Relational Theory of Computing, Springer Verlag 1980, 80,
Goss G. and Hartmanis J.

Smarandache I.: Transformations affines d’horloges : application au codesign de
systémes temps-réel en utilisant les langages SIGNAL et ALPHA, PhD Thesis, Uni-
versity of Rennes 1, France, October 1998

Smarandache I., Le Guernic P.: “Affine Transformations in SIGNAL and
Their Applications in the Specification and Validation of Real-Time Systems”
Transformation-Based Reactive Systems Development, Proceedings of the 4th In-
ternational AMAST Workshop on Real-Time Systems and Concurrent and Dis-
tributed Software, Palma, Spain, LNCS 1231, Springer Verlag, 1997
Smarandache I., Le Guernic P.: A Canonical Form for Affine Relations in SIGNAL.
INRIA Research Report 3097, IRISA/INRIA - Rennes, France, 1997

Thomas D.E., Adams J.K., Schmit H.: “A Model and Methodology for Hardware-
Software Codesign” IEEE Design € Test of Computers, September 1993, 10, (3),
pp. 6-15

Wilde D.: The ALPHA Language. IRISA Research Report 827, IRISA/INRIA -
Rennes, France, 1994

Wilde D., Sié O.: Regular array synthesis using ALPHA. IRISA Research Report
829, IRISA/INRIA - Rennes, France, 1994

