Irina M Smarandache
email: i.m.smarandache@reading.ac.uk

Thierry Gautier
email: thierry.gautier@irisa.fr

Paul Le Guernic
email: paul.leguernic@irisa.fr

Validation of Mixed Signal-Alpha Real-Time Systems through A ne Calculus on Clock Synchronisation Constraints

In this paper we present the a ne clock calculus as an extension of the formal veri cation techniques provided by the Signal language. A Signal program describes a system of clock synchronisation constraints the consistency of which is veri ed by compilation (clock calculus). Well-adapted in control-based system design, the clock calculus has to be extended in order to enable the validation of Signal-Alpha applications which usually contain important numerical calculations. The new a ne clock calculus is based on the properties of a ne relations induced between clocks by the re nement of Signal-Alpha speci cations in a codesign context. A ne relations enable the derivation of a new set of synchronisability rules which represent conditions against which synchronisation constraints on clocks can be assessed. Properties of a ne relations and synchronisability rules are derived in the semantical model of traces of Signal. A prototype implementing a subset of the synchronisability rules has been integrated in the Signal compiler and used for the validation of a video image coding application speci ed using Signal and Alpha.

Introduction

Real-time systems, and more generally reactive systems 4], are in continuous interaction with their environment. Therefore, they must respond in time to external stimuli. Moreover, real-time systems must be safe, thus one would wish to prove their correctness. Time constraints and safety are two important aspects to be considered in the design of a real-time application.

Real-time systems may be constrained by very tight real-time deadlines. Moreover, a hardware implementation of parts of these systems is sometimes required, to meet speci c constraints for instance. An example is an application consisting of numerical calculations performed iteratively on large structures of regular multidimensional data. In this case, a hardware/software implementation may be envisaged, in which the numerical calculations are conveyed to hardware for e ciency reasons, while the control relating these parts is implemented in software.

In general, designing a mixed hardware/software real-time system requires a rigorous methodology that comprises methods and tools addressing, among others, system speci cation and validation, optimal code generation and hardware synthesis. These aspects are dealt with in codesign 7] 9] which denotes the speci cation, validation and implementation of an application which consists both of a hardware part, in the form of a set of specialised integrated circuits, and a software part implemented on general programmable processors. The idea is to explore various possible implementations of hardware/software systems in order to improve their performance and to ensure the respect of cost constraints.

Real-Time System Codesign

System codesign is a complex process which can be decomposed into three main activities 7]: 1. The cospeci cation of an application at various levels of abstraction; 2. The validation of a speci cation by formal veri cation or simulation, also known as cosimulation; 3. The hardware/software partitioning of an application, the evaluation of a partitioning from the point of view of the time constraints and cost, the generation of executable code, the synthesis of hardware, and the production of the interface between hardware and software, i.e cosynthesis. A lot of work has been done, the purpose of which was to de ne a well-structured methodology for codesign 7] 11] 19]. An important point was generally the description of both hardware and software using the same language, like for instance Vhdl enhanced with mechanisms for calling C functions 14], or high-level languages like C, C++ or Fortran extended with facilities for the description of hardware systems 10]. These approaches enable the programming of both the hardware and software parts of a system in a unique framework and their validation by simulation. However, they cannot guarantee system correctness. This aspect can be much improved by using formal languages for system speci cation, re nement of speci cations towards lower levels of abstraction (implementation) and validation of the various speci cations by formal veri cation.

De ning a complete methodology of codesign requires addressing other relevant problems, most of them concerning cosynthesis. Among these problems there are the automatic partitioning into hardware and software, the synthesis of hardware and the generation of optimal code for software implementation.

The work presented in this paper is part of a more general e ort for building a hybrid framework in which the Signal 12] 13] and Alpha 20] languages can be used for real-time system codesign. In its present form, Signal is well-adapted for the design of control-based real-time systems. Firstly, this is due to its limitations concerning the treatment of computations on multidimensional data such as matrices. Only simple algorithms can be expressed in Signal and no signi cant optimisation is performed at the level of the generation of executable C or Vhdl code concerning vectors.

In contrast with Signal, the Alpha language has been developed primarily for the speci cation and implementation of algorithms on multidimensional data.

Such algorithms can be described in Alpha using a ne recurrence equations over convex polyhedral domains 20] and be further transformed for optimal hardware or software implementation on parallel or sequential architectures 21].

Given their complementary properties, the Signal and Alpha languages can be used jointly for the design of real-time systems containing important numerical calculations on multidimensional data and control: numerical computations are expressed in Alpha and the control is conveyed to Signal. When the real-time requirements of the system are very tight, a mixed hardware/software implementation may be envisaged. [START_REF] Gautier | \Projet CAIRN: conception d'architectures partir de Signal et Alpha" CODE-SIGN Conception conjointe logiciel-matriel[END_REF] we propose a hybrid framework for the combined use of Signal and Alpha in real-time system codesign. In order for this framework to be operational, it is necessary to interface Signal and Alpha ter re nement, their relative position is such that clock c 1 can be obtained by an a ne transformation applied to clock c: the instants of time of c and c 1 , denoted respectively T and T 1 , can be described by a pair of a ne functions T = fnt + ' 1 j t 2 T g, T 1 = fdt + ' 2 j t 2 T g, on the same set of instants T . With ' = ' 2 ' 1 , we will say that clock c 1 is obtained by an (n; '; d)-a ne transformation applied to clock c, where n; d 2 II N the set of strictly positive integers and ' 2 6 Z the set of integers. Clocks c and c 1 are also said to be in an (n; '; d)-a ne relation.

Clocks obtained by a ne transformation may be re-synchronised at the architectural level. As an example, consider clocks c, c 1 and c 2 which are identical in the Signal functional speci cation. At the architectural level, clocks c 1 and c 2 have been transformed such that c, c 1 and c, c 2 are respectively in a ne relations of parameters (n 1 ; ' 1 ; d 1) and (n 2 ; ' 2 ; d 2). Whether clocks c 1 and c 2 can be re-synchronised depends on the properties of the a ne relations which are induced from the values of (n 1 ; ' 1 ; d 1) and (n 2 ; ' 2 ; d 2). Moreover, the relations between c, c 1 and respectively, c, c 2 may be expressions on (n; '; d)-a ne relations constructed using operations like composition, union, etc. In this case, the re-synchronisation of clocks c 1 and c 2 depends on the properties of these operations.

The Signal clock calculus performs the veri cation of clock synchronisation constraints using a set of synchronisability rules, i.e. conditions against which these constraints can be assessed. constitutes the support for the study of the properties of a ne relations and for the de nition of the new synchronisability rules.

Organisation of the Paper

In Section 2 we present the integration of Signal and Alpha for system codesign. Section 3 is the central core of this paper and is dedicated to the de nition and implementation of the a ne clock calculus. The main concepts useful for this purpose are progressively introduced: these are the model of traces of the Signal language, the properties of a ne relations on clocks, the set of synchronisability rules induced by the latter, and nally the necessary elements for the integration of the a ne clock calculus in the compiler. The a ne clock calculus has been applied to the cospeci cation and cosimulation of a video image coding application; this is brie y illustrated in Section 4. In the same section we discuss in which way the Signal and Alpha environments may further contribute to the development of a complete codesign methodology based on both languages. Finally, in Section 5 we present conclusions and perspectives of our work.

2 Signal and Alpha in Real-Time System Codesign Figure 1 summarizes the main elements of the environments around Signal and Alpha that make both languages well-adapted for real-time system codesign.

Signal and Alpha programs represent mathematical notations for the properties of the processes they de ne. The system of constraints on clocks and values associated with a Signal program is transformed by compilation into a synchronised data ow graph (Sdfg). This data structure constitutes the support for executable code generation (C or Vhdl) or veri cation of dynamic properties using the formal tool Sigali 2]. The Alpha compiler includes a powerful type checking mechanism based on the structure of an Alpha variable as a function over convex polyhedra. The syntax tree obtained after compilation can be directly translated into C code for functional simulation, or it can be transformed into a subset of Alpha called Al-pha0 which exhibits the details of a parallel or sequential implementation. The syntax tree in Alpha0 form can be further translated in C or Vhdl executable code or directly mapped on a netlist 21].

The interface between Signal and Alpha is based on the fact that both languages can be translated in C and executed for functional simulation. Furthermore, Signal o ers the possibility to call external processes: such a process can be the speci cation of an algorithm in a language other than Signal. A particular type of an external process is a function, the execution of which is considered instantaneous from the point of view of Signal. A Signal function can be a prede ned or a user-de ned C function.

Fig. 1. Signal and Alpha in system codesign.

Functional Cospeci cation and Cosimulation

Being a synchronous language, Signal is based on the following hypotheses 4]:

1. All actions (communications and calculations) in a system have zero logical duration (the elapsed time is represented by the precedence of successive values on a same data ow); 2. Two or more actions can take place at the same logical instant, such actions being termed \simultaneous". From the point of view of the logical temporal properties of a system, only succession and simultaneity of instants are of interest. Although their exact time values are not considered, note however that they will be considered for a given implementation. The process associated with a Signal program represents thus a succession of logical instants, with each instant being associated one or more actions considered of zero logical duration and involving process variables present at that instant.

Consider for example a coding system for sequences of video images at 34 Mbits/s 8]. A system of this type consists of a set of numerical treatments applied iteratively on images of the same dimension. Images are divided into luminance and chrominance blocks and treatments are applied to each block. Numerical treatments consist mainly of algorithms for inter and intra image coding which require operations like a discrete cosine transformation (Dct). In order to illustrate the interfacing between Signal and Alpha, we have isolated from the coding application a simple Signal program and have illustrated the associated process in Fig. 2. It consists of a Dct operation applied in sequence to di erent values A i of the matrix of pixels A present at each logical instant of time t i . The matrix A corresponds to a block of luminance or chrominance of an image.

The Dct can be expressed in Signal as B := Dct(A), where Dct is actually an external process. The Dct is a time consuming algorithm, particularly for large matrices or when applied to images containing a large number of blocks. In order to improve the overall performance of the coding application, one would wish to execute each instance B i := Dct(A i) on a parallel integrated architecture as derived by the Alpha environment.

The Dct can be easily described in Alpha. The Signal-Alpha cospeci cation and cosimulation of the new system is made possible at the functional level as follows (see Fig.

Implementation-oriented Cospeci cation and Cosimulation

A mixed Signal-Alpha speci cation at the functional level may be re ned in order to take into consideration the details of a particular implementation. The Alpha program of Section 2.1 describing a Dct may be submitted to a sequence of transformations for a parallel or sequential implementation. These transformations guarantee the equivalence of the nal speci cation, noted ALPHA' in Fig. 3, with the initial ALPHA system of Fig. 2. The system ALPHA' contains Fig. 2. Signal-Alpha interface at functional level.

the time indices corresponding to a particular scheduling of the Dct operation.

In Fig. 3 these time indices are represented as the diagonal sets of micro-instants t j i associated with each macro-instant t i .

The Signal speci cation has to be re ned accordingly in order to enable the validation of the overall system. Therefore, the micro-instants of time of ALPHA' are taken into consideration in the new process SIGNAL' and described as the sets of instants St i 0 , St i 1 , etc. (see Fig. 3). The C function ALPHA' C has been derived from ALPHA' and transformed in order to describe the sequence of operations performed at each micro-instant of time. In Fig. 4, clock c 0 is de ned by the set of instants f0; 1; 2; 3; 4; 5; :::g. It can be noticed that clocks c and c 1 are placed in a regular manner on the support clock c 0 : their relative position is such that c 1 has been obtained through an (9; 6; 9)-a ne transformation applied to c. By de nition, clock c 1 is the result of an (n; '; d)-a ne transformation applied to clock c if it can be obtained from c through steps 1 and 2 as follows: 1. Constructing a new clock c 0 as the union of c with the set of instants obtained by introducing n 1 ctive instants between any two successive instants of c (and ' ctive instants before the rst instant of c when ' is negative). 2. De ning the clock c 1 as the set of instants fdt + ' j t 2 c 0 g, with c 0 = ft j t 2 II Ng (in other words, counting every d instant, starting with the ' th instant of c 0 , or with the rst instant of c 0 when ' is negative). Clocks c and c 1 are then said to be in an (n; '; d)a ne relation. The above de nition can be expressed in an equivalent form as follows: clocks c and c 1 are in (n; '; d)-a ne relation if there exists a clock c 0 such that c and c 1 can be respectively expressed using the a ne functions t:(nt + ' 1) and t:(dt + ' 2), with ' 2 ' 1 = ', with respect to the time indices of c 0 : c 0 = ft j t 2 II Ng, c = fnt + ' 1 j t 2 c 0 g, c 1 = fdt + ' 2 j t 2 c 0 g. Properties on a ne relations can be exploited in order to verify that clocks are synchronisable, that is, their sets of instants can be identi ed (resynchronised). Consider (Fig. 2) a Signal program which executes two successive Dct operations at each macro-instant t i , one on a luminance block of an image, noted B := Dct(A), and the second one on the next block of red chrominance of the same image, described by D := Dct(C).

Each Dct function is expressed in Alpha at the functional level and further re ned according to a particular implementation. The Signal speci cation is re ned accordingly and we obtain the timing diagrams of Fig. 5 situated between two successive instants of c and c 1 (or c 2) are independent and can be positioned with respect to each other in various manners; in Fig. 5 we have illustrated one possibility. Therefore, c 1 and c 2 can be re-synchronised; we say that c 1 and c 2 are synchronisable.

The aim of the a ne clock calculus discussed in Section 3 is to de ne necessary and su cient conditions for clock synchronisability based on the properties of a ne relations on clocks. These conditions are expressed as a set of synchronisability rules and are derived in the semantical model of traces of Signal.

Section 3 begins with an introdution to these concepts. on values can be further expressed in the abstract form of a data dependency graph (an example of a data dependency graph is illustrated in Fig. 6 for the + operator). Besides the clock calculus, the compiler veri es data consistency by checking the absence of cycles in the data dependency graph. In the next section however, we will concentrate mainly on the clock calculus.

A ne Calculus on Clocks in Signal

Clock calculus & Synchronisability

The clock calculus is equivalent to the resolution of a system of clock equations. For example:

c = c 1 c 0 = (c 1 ^c2) _ c 1 c = c 0 (1)
can be a system derived from a Signal program which manipulates clocks c, c 0 , c 1 and c 2 . In this simple system, c 1 and (c 1 ^c2) _ c 1 have clearly to be proved equivalent, which is an immediate consequence of the axioms of the boolean lattice. The space of clocks associated with a Signal program is a boolean lattice 6] the properties of which are extensively used for the proof of equivalences. The resolution of the system is performed by triangularisation of the system 5] 1].

Given a boolean signal Cd, its clock, denoted Ĉd, can be partitioned into the clock Cd] where the signal Cd is present and true and the clock :Cd] where Cd is present and false (the clocks Cd] and :Cd] represent samplings by boolean conditions). The relations between clocks Ĉd, Cd] and :Cd] are expressed by the partition equations below: Cd] _ :Cd] = Ĉd Cd] ^ :Cd] = ;

(2)

The axioms of the boolean lattice together with the partition equations induce on the space of clocks a lattice of an order \coarser" than the order of the boolean lattice 5]. Clocks can be boolean formulas constructed either with samplings by boolean conditions Cd], :Cd] or with free variables of the boolean lattice. The properties of the lattice of order are actually used during the triangularisation of any system of clock equations.

The axioms of the lattice represent a system of synchronisability rules in the sense described below. Clocks c and c 0 are synchronisable in the process P, which is denoted by c P c 0 , if there exists a ow F in P in which c and c 0 are synchronous:

c P c 0 , 9F 2 P; c F = c 0 (3)
(we note c F = c 0 the fact that c and c 0 are synchronous in F). Whenever the property expressed by equation 3 is valid for each ow F in P, the clocks c and c 0 are said to be synchronous in P, which is denoted by c P = c 0 . This de nition can be expressed as follows:

c P = c 0 , 8F 2 P; c F = c 0 (4)

Unless explicitly constrained through the Signal program, clocks c and c 0 are completely independent in the associated P process. Therefore, their relative position can be such that in some ows F in P they are identical, while in some other ows F 0 in P their instants interleave in an arbitrary manner: obviously, if c and c 0 are independent in P, they are synchronisable. When the relative position of clocks c and c 0 is implicitly or explicitly constrained by the Signal operators, ows F in P are subsequently constrained and the synchronisability of c and c 0 depends on these constraints.

In order to better understand the use of the synchronisability rules, consider for example a process P derived from a Signal program Prg in which clocks c and c 0 are de ned by the rst two equations of the system (1):

c = c 1 c 0 = (c 1 ^c2) _ c 1 (5)
Program Prg may be transformed into Prg 0 in which an additional constraint has been expressed on clocks c and c 0 : c = c 0 (in the Signal-Alpha context, Prg could be part of a transformed Signal-Alpha speci cation, as seen above, and Prg 0 the same speci cation, in which clocks are resynchronised). Consider the process P 0 corresponding to the program Prg 0 . The system of clock equations associated with Prg 0 is (1). Given the set of ows F 0 P such that c F = c 0 , 8F 2 F 0 , it results P 0 = F 0 . Therefore, verifying the consistency of (1), which is equivalent to testing that clocks c and c 0 are equivalent in P 0 , is further equivalent to testing the synchronisability of c and c 0 in P. The rule (c 1 ^c2)_c 1 = c 1 from the boolean lattice is indeed a synchronism rule: (c 1 ^c2) _ c 1 P = c 1 for every process P. The same axiom holds for the process P associated with Prg. And thus (c 1 ^c2) _ c 1 P c 1 , since synchronism implies synchronisability. Therefore in the example, F 0 is not empty and it can be concluded that P 0 is consistent from the point of view of the constraints expressed on its clocks.

The rules of the lattice represent synchronisability rules: each identity f 1 = f 2 , with f 1 , f 2 boolean formulas on clocks, is equivalent to f 1 P = f 2 which implies f 1 P f 2 for every process P. These rules can be further extended using the properties of the a ne relations between clocks. Figure 5 illustrates this idea:

if P is the process associated with the program SIGNAL', the con guration in which clocks c 1 and c 2 coincide represent a ow F 2 P such that c 1 F = c 2 . Thus, c 1 and c 2 are synchronisable in P. The reason here is that the (9; 6; 9) and (7; 3; 7)a ne relations existing respectively between c, c 1 and c, c 2 are equivalent. In the next section, we de ne the a ne relation associated with a ow and a process and further explicitate the concept of equivalence of a ne relations.

A ne Relations in Signal

Given n; d 2 II N and ' 2 6 Flows and processes are de ned over the set of variables they manipulate. For a given set A, a ow F on A is a member of the set of ows F A that can be constructed with the variables of A. In a similar manner, a process P on A belongs to the set of processes on A, i.e. P 2 P A .

Because of the nite nature of the sets of variables associated with ows and processes, a ne relations can be de ned as nite sets as follows:

8F 2 F A ; R F (n;';d) = f(c; c 1) 2 A A j c R F (n;';d) c 1 g (6) 8P 2 F A ; R P (n;';d) = f(c; c 1) 2 A A j c R P (n;';d) c 1 g (7)
Consider the process P 2 P fc;c1;c2g de ned as follows: P = fF 2 F fc;c1;c2g j c R F (n1;'1;d1) c 1 ; c R F (n2;'2;d2) c 2 g [START_REF]Speci cation of Component TV codecs 32-45 Mbit/s[END_REF] (induced by a Signal program that manipulates only the clocks c, c 1 and c 2).

From the de nition of an a ne relation associated with a process it results c R P (n1;'1;d1) c 1 and c R P (n2;'2;d2) c 2 . Clocks c 1 and c 2 are synchronisable in P if there exists F 2 P satisfying c 1 F = c 2 . Consider F s 2 P satisfying c 1 Fs = c 2 . Obviously c R Fs (n1;'1;d1) c 1 and c R Fs (n2;'2;d2) c 2 . Being identical in F s , clocks c 1 and c 2 can be replaced with each other and therefore c R Fs (n1;'1;d1) c 1 implies c R Fs (n1;'1;d1) c 2 and c R Fs (n2;'2;d2) c 2 implies c R Fs (n2;'2;d2) c 1 . It results therefore that R Fs (n1;'1;d1) = R Fs (n2;'2;d2) = f(c; c 1); (c; c 2)g. In conclusion, a necessary condition for clocks c 1 and c 2 to be synchronisable in P is that R Fs (n1;'1;d1) and R Fs (n2;'2;d2) be equivalent. In the case of the process P de ned by [START_REF]Speci cation of Component TV codecs 32-45 Mbit/s[END_REF], it can be proved that this condition is also su cient.

The equivalence of a ne relations depends on the closure properties of the space of a ne relations with respect to the main operations that can be applied to it. These are either union, intersection or di erence induced by the homonym operations on clocks, or general operations on relations like inverse and composition 15]. In the next section we propose a study of these properties in the semantical model of traces of Signal.

Properties on A ne Relations & Synchronisability Rules

The semantics of traces. Consider a nite set of signals A. The set of all possible ows de ned on A is denoted F A . Subsets of ows from F A can be grouped in processes which are members of the set P A of all processes that can be de ned on A. A Signal program on A de nes a process P 2 P A ; each ow Signal disposes of four basic operators (kernel) which are su cient for the construction of any program regardless of its complexity. Kernel operators are combined through composition and restriction in order to build programs. The composition and restriction of programs induce naturally the corresponding operations on processes and ows. Intuitively, the restriction of a ow F to a set of variables A 0 A is the ow A 0 (F) which contains only those instants of F with actions involving signals from A 0 .

Concerning processes, the main operations are de ned as follows. Given a set of variables A 0 A, the restriction of P 2 P A to A 0 (the projection of P on A 0) contains the ows F 2 P manipulating exclusively variables of A 0 : A 0 (P) = fF 0 2 F A 0 j F 0 = A 0 (F); 8F 2 Pg [START_REF] Gautier | \Projet CAIRN: conception d'architectures partir de Signal et Alpha" CODE-SIGN Conception conjointe logiciel-matriel[END_REF] The composition of processes P 1 2 P A1 and P 2 2 P A2 , with A 1 , A 2 arbitrary sets of variables, is de ned by: P 1 j P 2 = fF 2 F A 1 A 2 j A1 (F) 2 P 1 ; A2 (F) 2 P 2 g [START_REF] Gupta | \Program Implementation Schemes for Hardware-Software Systems[END_REF] The following lemma describes the necessary and su cient conditions| stated as A2 (P) Q|for a property valid in the process Q to be also also in P: Lemma 1. 8P 2 P A1 , 8Q 2 P A2 , A 2 A 1 , A2 (P) Q , P j Q = P [START_REF] Kalavade | Hardware-Software Codesign Methodology for Dsp Applications[END_REF] In other words, given the hypothesis described by the left hand side of [START_REF] Kalavade | Hardware-Software Codesign Methodology for Dsp Applications[END_REF], Q expresses a property valid also in P.

Properties on a ne relations. Operations speci c to relations in general, like inverse () 1 and composition , can be applied to a ne relations 15]. As an example, consider a process P 2 P fc;c1;c2;c3g with clocks c, c 1 , c 2 and c 3 satisfying c R P (n1;'1;d1) c 1 , c 1 R P (n2;'2;d2) c 2 and c R P (n3;'3;d3) c 3 . Obviously, it results that c R P (n1;'1;d1) R P (n2;'2;d2) c 2 and the synchronisability of c 2 and c 3 depends on properties of the composition. When the space of a ne relations is closed under composition, the test of the synchronisability of c 2 and c 3 reduces itself to the veri cation of the equivalence of a ne relations.

A ne relations can be further combined through union r , intersection \ r and di erence n r induced by the homonym operations on clocks (_, ^, n). A similar argument as before conducts to the necessity of studying closure properties of these operators with respect to the space of a ne relations.

Here is a brief presentation of the main steps and results obtained in the study of a ne relations.

Equivalence of A ne Relations. An equivalence relation, noted , can be de ned between triplets (n; '; d) as follows: (n; '; d) (n 0 ; ' 0 ; d 0) i either nd 0 = n 0 d and n' 0 = n 0 ', for G j ' (i.e., G is a divisor of ') and G 0 j ' 0 , or nd 0 = n 0 d and h dt+' n i = h d 0 t+' 0 n 0 i ; 8t 2 II N; dt+' 0, for G 6 j ' and G 0 6 j ' 0 , with G = gcd(n; d) the greatest common divisor of n and d, G 0 = gcd(n 0 ; d 0) and x] the integer part of x 2 II N. The equivalence of a ne relations depends exclusively on the values of the associated triplets (n; '; d) 17]:

Proposition 1. R F (n;';d) = R F (n 0 ;' 0 ;d 0) ; 8 F 2 F A , (n; '; d) (n 0 ; ' 0 ; d 0) (12)
Canonical Form. In order to reduce the complexity of the test of the equivalence , we have then de ned a canonical form (n CF ; ' CF ; d CF) for a triplet (n; '; d) 18] as follows:

Proposition 2. a) G j ') (n CF ; ' CF ; d CF) = (n G ; ' G ; d G) b) G 6 j ') (n CF ; ' CF ; d CF) = (2 n G ; (2 ' G + 1); 2 d G) (13)
Consequently, the canonical form of R F (n;';d) is R F (nCF ;'CF ;dCF) and the veri cation of the identity of two a ne relations is thus reduced to the veri cation that two triplets of integers are identical: Proposition 3. R F (n;';d) = R F (n 0 ;' 0 ;d 0) , (n CF ; ' CF ; d CF) = (n 0 CF ; ' 0 CF ; d 0 CF) (

Operations on a ne relations. If any expression on a ne relations could be rewritten as an a ne relation, the veri cation of clock synchronisability would consist only in a test of equivalence on a ne relations as above. But it has been observed that this was not the case in general. The closure property is true for the inverse of an a ne relation. Also, the a ne relation R F

(1;0;1) is neutral with respect to composition. However, the closure property is lost when dealing with composition. The composition of two general a ne relations R F (n;';d) and R F (n 0 ;' 0 ;d 0) does not generally produce an a ne relation. Nevertheless, it has been possible to identify in the space of the a ne relations R F (n;';d) a subspace consisting of relations of the form R F (1;';d) , with ' 0, in which the closure property is true. Following this observation, we have distinguished two cases, as detailed in the sequel.

Properties of a ne relations R F (1;';d) , with ' 0. It has been demonstrated 16] that the space of a ne relations R F (1;';d) , although closed under composition and intersection \ r , is not closed under union r and di erence n r . It is therefore necessary to de ne necessary and su cient conditions for the equivalence of arbitrary expressions constructed with a ne relations of the form R F (1;';d) using composition, union, intersection and di erence. Given the complexity of the space of expressions on a ne relations R F (1;';d) and the necessity of e cient algorithms for testing their equivalence, the question of the existence of a canonical form appears. Our attempt to provide a canonical form using exclusively the r operator|based on the observation that any expression in this space can be rewritten as a union of a ne relations R F Synchronisability rules. The main results concerning the particular a ne relations R F (1;';d) , with ' 0, and the general ones R F (n;';d) have respectively permitted the induction of a set of synchronism rules and a set of synchronisability rules. These rules actually represent a set of conditions which are necessary and su cient for the synchronism and respectively the synchronisability of two clocks.

An example of synchronism rule is given below. Consider the process P 2 P fc;c1;c2;c3g de ned by: P = fF 2 F fc;c1;c2;c3g j c R F (1;'1;d1) c 1 ; c 1 R F (1;'2;d2) c 2 ; c R

c 2 P c 3 , ' 1 + d 1 ' 2 = ' 3 d 1 d 2 = d 3 , c 2 P = c 3 (16)
In Fig. 7 the particular case ' 1 = 6, d 1 = 2, ' 2 = 1, d 2 = 2, and ' 3 = 8, d 3 = 4 is illustrated. It can be observed that clock c 1 is an a ne sampling of phase ' 1 and period d 1 on clock c. Clock c 2 is de ned similarly by an a ne sampling of parameters ' 2 and d 2 on c 1 . The same clock c 2 can be obtained by an a ne sampling of ' 3 and d 3 on c; the clock c 3 constructed in this manner is synchronous, and therefore synchronisable, with c 2 .

Following a sequence of steps similar as for Proposition 4, we have derived a system of synchronism rules which is minimal; it enables the veri cation of the synchronisability of two arbitrary clocks related by an expression on a ne relations R F

Implementation of the A ne Clock Calculus

A prototype implementing the synchronisability rules introduced in Section 3.3 has been integrated with the existing clock calculus and used for the validation of the Signal-Alpha interface on the video image coding application introduced in Section 2. In Section 3.1 we have explained that the existing (boolean) clock calculus relies on the properties of the lattice existing on the space of clocks, and that it is equivalent to a system of synchronisability rules. The implementation of the a ne clock calculus is brie y described now. By choosing an appropriate implementation of a general a ne relation R P (n;';d) as detailed in 16], the considered clock expressions contain formulas constructed only with a ne clocks, that is, a ne samplings of speci ed phase and period on a given basis clock. Thus, the order aff de ned by aff = f(c 1 ; c 2)j 9' i 0; d i > 1; R P t = EXP(: : : ; R P (1;'i;di) ; : : :); c 1 R P t c 2 g (17) with EXP a general expression on a ne relations, induces on the space of a ne clocks a lattice structure. The system of equations on a ne clocks associated with a Signal program is solved by triangularisation. When the equivalence of two clock expressions has to be demonstrated, synchronisability rules such that deduced in Section 3.3 are applied. Finally, for the integration of the a ne and boolean clock calculus, each synchronisability rule which has been deduced in a process Q 2 P A2 , is used in a larger context P 2 P A1 , with A 2 A 1 , satisfying A2 (P) Q. Following Lemma 1, the synchronisability rule is also valid in P.

Application

The a ne clock calculus has been used for the validation of the video image coding application described in Section 2. This application contains an important control part, which has been programmed in Signal, and operations like the Dct, which have been expressed in Alpha. The application has been speci ed and simulated at both functional and architectural levels as described in Section 2. In the coding system described in 8], each image is decomposed into a xed number of macro-blocks, each macro-block consisting of one block of luminance and two blocks of chrominance (red and blue). At the architectural level, we Most of the operations involved in image coding applications are critical from the point of view of execution time or resources. Therefore, a codesign approach can be considered. The a ne clock calculus represents an important element in de ning a complete codesign methodology based on the Signal and Alpha languages. Besides the cospeci cation and cosimulation of an application, using Signal and Alpha in a codesign framework is interesting since it o ers solutions to other codesign problems such as the automatic synthesis of specialised circuits for regular algorithms, or the generation of optimal code for the software implementation of both calculations and control. Concerning the latter, one might consider the hardware/software partitioning of an application corresponding to the partitioning into Signal and Alpha subsystems. Therefore, Alpha processes would be implemented in hardware by automatic synthesis, while Signal processes would be translated into C code for general purpose architectures. However, the proposed partitioning is not unique and automatic hardware/software partitioning remains an open problem, as it is the implementation of the hardware/software interface.

Conclusion

The joint use of the Signal and Alpha languages in hardware/software codesign has introduced the problem of the validation of mixed Signal-Alpha speci cations both at the functional and architectural levels. The re nement of Signal-Alpha speci cations towards the architectural level and their subsequent validation necessitates the extension of the formal clock calculus implemented in the Signal compiler. This paper presents the new a ne clock calculus based on the properties of a ne relations induced between clocks by the re nement of Signal-Alpha speci cations. The properties of a ne relations are studied in the semantical model of traces of the Signal language, but can be extended to any general model with similar characteristics. Based on this study, a new set of synchronisability rules is de ned and integrated with the set already implemented by the existing formal clock calculus.

The a ne clock calculus is relevant for the de nition and implementation of a codesign methodology using the Signal and Alpha languages. Techniques for real-time system validation (formal veri cation, simulation) available in the Signal and Alpha environments can be used for cospeci cation and cosimulation. Both environments also have tools for automatic generation of optimal implementations which can be used in a complementary manner for hardware synthesis and/or implementation on general architectures. Further work should be devoted to the complete integration of the Signal and Alpha languages thus making possible the use of the most adapted formalism and environment for a given application.

1. 2

 2 Cospeci cation and Cosimulation of Signal-Alpha Systems Signal is a synchronous 4] language developed for the speci cation, validation and implementation of real-time systems. Signal variables represent nite or in nite sequences of values (data) which can be ltered or merged before being submitted to classical boolean or mathematical operations. A clock is implicitly associated with each Signal variable: it represents a set of temporal indices which denote the logical instants where the variable is present and has a value. The semantics of a Signal program can be described by a system of constraints (relations) on clocks and values, which is constructed and veri ed for consistency during compilation. The veri cation of the clock constraints is called clock calculus. The Signal environment is enhanced with tools for C 5] and Vhdl 3] code generation and formal veri cation of dynamic properties 2].

 programs both at the functional and architectural level. The former corresponds to a high-level mathematical representation of an algorithm in Alpha, while the latter contains a set of new temporal indices corresponding to the execution of the algorithm on a parallel or sequential architecture. In Signal-Alpha systems, the re nement of an Alpha program from a functional level to an architectural level oriented toward a particular implementation also induces a re nement of the temporal indices in Signal. The new time indices are obtained through a ne transformations on the instants of time of the initial Signal speci cation. Consider clocks c and c 1 in Signal which are identical at the functional level (they are also denoted as synchronous). Af-

2): 1 .

 21 The Alpha system is translated in executable C code; 2. The C function ALPHA C obtained at step 1 represents the external process implementing the Dct in Signal. The function ALPHA C is considered instantaneous in Signal; the clocks of the matrices A and B, denoted respectively by c and c 1 , are therefore synchronous. The overall system is thus represented as a Signal speci cation executing instantaneously the functional description of the Alpha speci cation. The system can be validated in the Signal environment by formal veri cation (compilation, model checking with Sigali) and/or simulation.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Signal-Alpha interface at architectural level.

1 Fig. 5 .

 15 Fig. 5. Synchronisable clocks in the context of codesign with Signal and Alpha.

Figure 6

 6 Figure 6 introduces the reader to the semantics of traces 12] 16] of Signal. The most important concepts in Signal are: 1. the signal, which denotes a variable of the language and represents a nite or in nite sequence of values; 2. the clock, a variable associated with each signal which represents the set of logical instants where the values of the signal are present. Signal operators manipulate signals by imposing implicit or explicit constraints on their values and clocks. Constraints on clocks are usually expressed as identities between

Fig. 6 .

 6 Fig. 6. Illustration of Signal semantics of traces.

F 2 P

 2 satis es some constraints imposed by the Signal operators on the clocks and values of the signals from A.

(1 ;

 1 ';d) , with ' 0. The results concerning the equivalence of general a ne relations R F (n;';d) , summarized by Propositions 1, 2 and 3, and the partial result on composition of general a ne relations, have allowed the derivation of a set of synchronisability rules which are su cient for the validation of Signal programs for which the single operation performed on a ne relations is composition. Further work should be dedicated to the study of the union r , intersection \ r and di erence n r of general a ne relations.

Fig. 7 .

 7 Fig. 7. Illustration of Proposition 4.

 have re ned the Alpha speci cations of the Dcts corresponding to the blocks of luminance and red chrominance of a macro-block. These temporal re nements have been expressed in Signal by means of two general a ne relations between clocks c, c 1 and c, c 2 as illustrated in Fig. 5. The synchronisability of c 1 and c 2 has been veri ed by compilation and the entire Signal-Alpha system has been simulated in C.

 Z xed, clocks c and c 1 are in (n; '; d)-a ne relation in the ow F|which is denoted c R F

	position of c and c 1 in F can be induced by an (n; '; d)-a ne transformation as de ned in Section 2.2. Clocks c and c 1 are in (n; '; d)-a ne relation in process P, denoted c R P (n;';d) c 1 or (c; c 1) 2 R P (n;';d) , if they are in (n; '; d)-a ne relation in each ow F of P, i.e. c R F (n;';d) c 1 , 8F 2 P.
	(n;';d) c 1 or (c; c 1) 2 R F (n;';d) |if the relative

 Future work may consider the applicability of heuristic search methods for this computation. Another open problem is the study of the properties of the union r , intersection \ r and di erence n r of general a ne relations.

	(1;';d) |has failed because of the in nite number of possibilities in which a relation R F (1;';d) can be rewritten as a union of a ne relations of the same type. However, in 16] we propose a relative normal form which reduces partially the complexity of the equivalence calculus.
	Properties of general a ne relations R F (n;';d) . Deciding that two arbitrary ex-pressions on general a ne relations are equivalent is a di cult problem. An initial step may be to isolate subsets of triplets (n; '; d) and (n 0 ; ' 0 ; d 0) which respect the condition that the result of the operation R F (n;';d) op r R F (n 0 ;' 0 ;d 0) , with op r 2 f ; r ; \ r ; n r g, is an a ne relation. In 16] we propose a subset of such triplets f(n; '; d); (n 0 ; ' 0 ; d 0)g, for which the above property is true, for the composition. Computing this subset f(n; '; d); (n 0 ; ' 0 ; d 0)g is an NP-complete problem.

, etc. have the same cardinality. Also, successive values for B are provided at speci c micro-instants between any two successive macro-instants t i and t i+1 in a regular manner. This situation is illustrated in Fig.4where the clocks of matrices A and B, denoted respectively by c and c 1 , are de ned by the following instants of time: c = f0; 9; 18; :::g and c 1 = f6; 15; :::g (after providing the values B i at the instants of time de ned by c 1 , the architecture implementing the operation B i := Dct(A i) may execute further computations like initialisations for the next operation B i+1 := Dct(A i+1)).