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Abstract

We address the non-redundant random generation of k words of length n from a context-
free language. Additionally, we want to avoid a predefined set of words. We study the limits
of a rejection-based approach, whose time complexity is shown to grow exponentially in k

in some cases. We propose an alternative recursive algorithm, whose careful implementa-
tion allows for a non-redundant generation of k words of size n in O(kn log n) arithmetic
operations after the precomputation of Θ(n) numbers. The overall complexity is therefore
dominated by the generation of k words, and the non-redundancy comes at a negligible cost.

1 Introduction

The random generation of combinatorial objects has many direct applications in areas rang-
ing from software engineering [1] to bioinformatics [12]. It can help formulate conjectures on
the average-case complexity of algorithms, raises new fundamental mathematical questions, and
directly benefits from new discoveries of its fundamental objects. These include, but are not
limited to, generating functionology, arbitrary precision arithmetics and bijective combinatorics.
Following the so-called recursive framework introduced by Wilf [15], very elegant and general
algorithms for the uniform random generation have been designed [8] and implemented. Many
optimizations of this approach been developed, using specificities of certain classes of combina-
torial structures [10], or floating-point arithmetics [3]. More recently a probabilistic approach to
this problem, the so-called Boltzmann generation [6], has drawn much attention both because its
very low memory complexity and its underlying theoretical beauty.

For many applications, it is necessary to drift away from the uniform models. A striking
example lies in the most recent paradigm for the in silico analysis of the RNA molecule’s folding.
Instead of trying to predict a structure of minimal free-energy, current approaches tend to focus
on the ensemble properties of achievable conformations, assuming a Boltzmann probability distri-
bution [4]. Random generation is then performed, and complex structural features are evaluated
in a statistical manner. In order to capture such features, a general non-uniform scheme was
proposed by Denise et al [2], based on the concept of weighted context-free grammars. Recursive
random generation algorithms were derived, with time and space complexities similar to that of
the uniform ones [8].

In the weighted probability distribution, the probability ratio between the most and least fre-
quent words sometimes grows exponentially on the size of the generated objects. Therefore it is a
natural question to address the non-redundant random generation of combinatorial objects,
that is the generation of a set of distinct objects. By contrast to the general case, this aspect
of random generation has, to our best knowledge, only been addressed through the introduction



of the PowerSet construct by Zimmermann [17]. An algorithm in Θ(n2) arithmetic operations,
or a practical Θ(n4) complexity in this case, was derived for recursive decomposable structures.
The absence of redundancy in the set of generated structures was achieved respectively through
rejection or an unranking algorithms. While the former is discussed later on in the document,
the latter cannot be transposed directly to the case of weighted languages, since the assumption
that different integral ranks correspond to different objects does not hold. Furthermore, the al-
gorithm cannot immediately account for an initial set of forbidden words, short of computing an
intersection grammar, a computationally intensive process that would further induce large time
and memory constants.

In this paper, we address the non-redundant generation of words from a context-free language,
generated while avoiding a pre-defined inclusive set F . First, we define some concepts and
notations, which allows us to rephrase the random generation process as a step-by-step walk.
Then, we investigate the efficiency of a rejection-based approach to our problem. We show that,
although well-suited for the uniform distribution, the rejection approach can yield high average-
case complexities for large sets of forbidden words. In the weighted case, we show that the
complexity of the rejection approach can grow exponentially on the number of desired sequences.
Finally, we introduce a new algorithm, based on a recursive approach, which generates k sequences
of length n while avoiding a set F at the cost of O(kn log(n)) arithmetic operations after a
precomputation in Θ((n+ |F|)n) arithmetic operations.

2 Concepts and notations

2.1 Context-free grammars

We remind some formal definitions on context-free grammars and Chomsky Normal Form (CNF).
A context-free grammar is a 4-tuple G = (Σ,N ,P ,S) where

• Σ is the alphabet, i.e. a finite set of terminal symbols.

• N is a finite set of non-terminal symbols.

• P is the finite set of production rules, each of the form N → X , for N ∈ N any non-terminal
and X ∈ {Σ ∪N}∗.

• S is the axiom of the grammar, i. e. the initial non-terminal.

A grammar G is then said to be in Chomsky Normal Form (CNF) iff the rules associated to
each non-terminal N ∈ N are either:

• Product case: N → N ′ . N ′′

• Union case: N → N ′ | N ′′

• Terminal case: N → t

for N,N ′, N ′′ ∈ N non-terminal symbols and t ∈ Σ a terminal symbol. In addition, the axiom
S ∈ N is allowed to derive the empty word ε only if S does not appear in the right-hand side of
any production.

Let L(N) be the language associated to N ∈ N , that is the set of words on terminal symbols,
accessible through a sequence of derivations starting from N . Then the language L(G) generated
by a grammar G = (Σ,N ,P ,S) is defined to be the language L(S) associated with its axiom S.
It is a classic result that any context-free grammar G can be transformed into a grammar G′ in
Chomsky Normal Form (CNF) such that L(G) = L(G′). Therefore, we will define our algorithm
on CNF grammars, but will nevertheless illustrate its behavior on a compact, non-CNF, grammar
for Motzkin words. Indeed the normalization process introduces numerous non-terminals even
for the most trivial grammars.
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Figure 1: Trees of all walks associated with Motzkin words of size n ∈ [1, 6] generated by the
grammar S → a S b S | c S | ε under a leftmost first derivation policy.

2.2 Fixed-length languages descriptions: Immature words

We call mature word a sequence of terminal symbols. More generally, we will call immature

a word that contains both terminal and non-terminal symbols, thus potentially requiring some
further processing before becoming a mature word. We will denote L⊳(N) the set of immature
words accessible from a non-terminal symbol N and extend this notion to L⊳(G) the immature
words accessible from the axiom of a grammar G. It is noteworthy that L(G) ⊂ L⊳(G).

We can then attach required lengths to the symbols of an immature word. For instance,
in the grammar for Motzkin words from figure 1, c a S4 b S0 will be a specialization of the
immature word c a S b S, where the words generated from the first (resp. second) instance of
the non-terminal S are required to have length 4 (resp. 0). Formally, this amounts to taking into
consideration couples of the form (ω,n) where ω is an immature word, and n ∈ N

|ω| is a vector
of sizes for words generated from the different symbols of ω. We naturally extend the notion of
language associated with an immature word to these couples in the following way:

L(ω,n) =

|ω|
∏

i≥1

L(ωi,ni)

The length vector n associated with an immature word ω may be omitted in the rest of the
document for the sake of simplicity.

2.3 Random generation as a random walk in language space

An atomic derivation, starting from a word ω = ω′ . N . ω′′ ∈ {Σ ∪ N}∗, is the application of
a production N → X to ω that replaces N by the right-hand side X of the production, which
yields ω ⇒ ω′.X.ω′′. Let us call derivation policy a deterministic strategy that points, in an
immature word, the first non-terminal to be rewritten through an atomic derivation. Formally,
in the context of a grammar G, a derivation policy is a function φ : L(G)∪L⊳(G) → N∪{∅} such



that
φ : ω ∈ L(G) → ∅

ω′ ∈ L⊳(G) → i ∈ [1, |ω′|]

A sequence of atomic derivations is then said to be consistent with a given derivation

policy if the non-terminal rewritten at each step is the one pointed by the policy. A side effect
of this somewhat verbose notion is that it provides a convenient framework for defining the
unambiguity of a grammar without any reference to parse trees.

Definition 2.1. Let G = (Σ,N ,P ,S) be a context-free grammar and φ a derivation policy acting
on G. The grammar G is said unambiguous if and only, for each ω ∈ L(G), there exists only one
sequence of atomic derivations that is consistent with φ and produces ω from S.

The derivation leading to a mature word ω ∈ L(G) in a grammar G can then be associated
in a one-to-one fashion with a walk in the space of languages associated with immature words,
or parse walk, taking steps consistent with a given derivation policy φ. More precisely, such
walks starts from the axiom S of the grammar. From a given immature word X ∈ L⊳(G), the
derivation policy φ points at a position k := φ(X), where a non-terminal Xk can be found. The
parse walk can then be prolonged using one of the derivations acting on Xk (See Figures 1 and 2).

2.4 Weighted context-free grammars

Definition 2.2 (Weighted Grammar [2]). Aweighted grammar Gπ is a 5-tuple Gπ = (π,Σ,N ,P ,S)
where Σ, N , P and S are the members of a context-free grammar, and π : Σ → R is a weighting
function, that associates a real-valued weight πt to each terminal symbol t.

This notion of weight naturally extends to a mature word w in a multiplicative fashion, i.e.

such that π(w) =
∏|w|

i=1 πwi
. From this, we can define a π-weighted probability distribution

over a set of words L, such that the probability associated with ω ∈ L is

P(w | π) =
π(w)

∑

w′∈L
π(w′)

In the rest of the document, we may use π(ω) instead of π(L(ω,n)) to denote the total weight of
all words derivable from an immature word ω with associated lengths n.

3 Efficiency of a rejection approach for the non-redundant

generation

We address the uniform generation of a non-redundant set of words from a language L with
forbidden words F ⊂ L. A rejection approach for this problem consists in drawing words
at random in an unconstrained way, rejecting those previously sampled until k distinct words
are generated, as prescribed by Zimmermann [17] in the case of recursive specifications. For the
generation of words from context-free languages, we refer to previous works of Flajolet et al [8, 6],
or Denise et al [3] that achieves a O(n1+ε) complexity through highly non-trivial floating-point
arithmetics.

3.1 The uniform case

Theorem 3.1. Let L be a context-free language, n ∈ N
+ a positive integer and F ⊂ Ln a

set of forbidden words. Then the rejection approach for the non-redundant uniform random

generation of k words of size n from L has average-case complexity in O
((

|Ln|
|Ln|−|F|

)

n1+εk log k
)

.



Proof. In the uniform model when F = ∅, the number of attempts necessary to the generation of
the i-th word only depends on i and is independent from prior events. Thus the random variable
Xn,k that contains the total number of trials for the generation of k words of size n is such that

E(Xn,k) =

k−1
∑

i=0

ln
ln − i

= ln(Hln −Hln−k)

where ln := |Ln| is the number of words of size n in the language and Hi the harmonic number of
order i, as pointed out by Flajolet et al [9]. It follows that E(Xn,k) is trivially increasing with k,
while remaining upper bounded by kHk ∈ Θ(k log(k)) when k = ln (Coupon collector problem).
Since the expected number of rejections due to a non-empty forbidden set F remains the same
throughout the generation, and does not have any influence over the generated sequences, it can

be considered independently and contributes to a factor |Ln|
|Ln|−|F| . Finally, each generation takes

time O(n1+ε), independently from both the generated sequence and the cardinality of Ln.

The complexity of a rejection approach to this problem is then mainly linear, unless the set
F overwhelms the language generated by the grammar. In this case, the generation can become
linear in the cardinality of Ln, that is exponential in n for most languages. Furthermore, the
worst-case time complexity of this approach remains unbounded.

3.2 Weighted context-free languages

By contrast with the uniform case, the rejection approach to the non-redundant random gen-
eration for weighted context-free languages can yield an exponential complexity, even
when starting from an empty set of forbidden words F = ∅. Indeed, the weighted distribution
can specialize into a power-law distribution on the number of occurrences of the terminal symbol
having highest weight, leading to an exponentially-growing number of rejections.
Example: Consider the following grammar, generating the language a∗b∗ of words starting with
an arbitrary number of a, followed by any number of b:

S → a . S | T

T → b . T | ε

We adjoin a weight function π to this grammar, such that π(b) := α > 1 and π(a) := 1. The
probability of the word ωm := an−mbm among Sn is then

P(ωm) =
π(ωm)

∑

ω∈L(S)
|ω|=n

π(ω)
=

αm

∑n

i=0 α
i
=

αm+1 − αm

αn+1 − 1
< αm−n.

Now consider the set Vn,k ⊂ Sn of words having less than n−k occurrences of the symbol b. The
probability of generating a word from Vn,k is then

P(Vn,k) =

n−k
∑

i=0

P(ωn−k−i) =
αn−k+1 − 1

αn+1 − 1
< α−k

The expected number of generations before a sequence from Vn,k is generated is then lower-
bounded by αk. Since any non-redundant set of k sequences issued from Sn must contain at least
one sequence from Vn,k, then the average-case time complexity of the rejection approach is in
Ω(nαk), that is exponential in k the number of words.

One may argue that the previous example is not very typical of the rejection algorithm’s
behavior on a general context-free language, since the grammar is left linear and consequently
defines a rational language. By contrast, it can be shown that, under a natural assumption, no
word can asymptotically contribute up to a significant proportion of the distribution in simple
type grammars.
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Figure 2: Snapshot of a step-by-step random scenario for a Motzkin word of length 6, generated
while avoiding F . From abS4, the recursive approach prescribes that the probabilities associated
with candidate derivations must be proportional to the overall weights for resulting immature
words. Additionally, we need to subtract the contributions of F to these immature words, which
yields probabilities (p1, p2, p3, p4).

Theorem 3.2. Let Gπ = (π,Σ,N ,S,P) be a weighted grammar of simple type1. Let ω0
n be

the word of length n generated from Gπ with highest probability (i.e. weight) in the π-weighted
distribution. Additionally, let us assume that there exists α, κ ∈ R

+ positive constants such that
π(ω0

n) −→
n→∞

καn.

Then the probability of ω0 tends to 0 when n → ∞:

P(ω0 | π) =
π(ω0)

π(L(Gπ)n)
−→
n→∞

0

Proof. From the Drmota-Lalley-Woods theorem [5, 11, 16], we know that the generating func-
tion of a simple type grammar has a square-root type singularity, and its coefficients admits an
expansion of the form κβn

n
√
n
(1+O(1/n)). This property holds in the case of weighted context-free

grammars, where the coefficients are now the overall weights Wn := π(L(Gπ)n). Since ω0
n is

contributing to Wn, then π(ω0
n) ≤ π(L(Gπ)n) and therefore β > α.

Lastly it can be shown that, for any fixed length n, the set of words M having maximal
number of occurrences of a given symbol t have total probability 1 when π(t) → ∞. It follows
that sampling more than |M| words can be extremely time-consuming if one of the weights
dominates the others by several orders of magnitude.

4 Step-by-step approach to the non-redundant random gen-

eration

Instead of approaching the random generation from context-free languages by considering non-
terminal symbols as independent generators [8, 2], we consider the random generation sce-

1A grammar of simple type is mainly a grammar whose dependency graph is strongly-connected and whose
number of words follow an aperiodic progression (See [7] for a more complete definition). Such a grammar can
easily be found for the avatars of the algebraic class of combinatorial structures (Dyck words, Motzkin paths, trees
of fixed degree,...), all of which can be interpreted as trees.



narios as random (parse) walks. This allows to determine to which of the local alternatives to
subtract the contributions of forbidden (or already generated) words.

4.1 The algorithm

We propose the following Algorithm A, which from

• a weighted grammar Gπ = (π,Σ,N ,P ,S),

• an immature word (ω,n),

• and a set of forbidden words F ∈ L((ω,n)),

draws at random a word L(ω,n)/F with respect to a π-weighted distribution:

1. If ω is a mature word
then if n = (1, . . . , 1) and ω /∈ F then return ω else Error.

2. Let N∗
m be the non-terminal pointed by φ in ω, such as ω = ω′.N∗

m.ω′′ and kπ be the total
weight of words from F generated from ω.

3. Choose a derivation ω ⇒ ω′Xω′′ with the following probabilities, depending on the type of
N∗:

• N∗ → N ′ | N ′′: Let kπN ′ be the sum of weights for words from F generated from
ω′.N ′

m.ω′′, then

P(X = N ′
m) =

π(L(ω′.N ′
m.ω′′))− kπN ′

π(L(ω)) − kπ
= 1− P(X = N ′′

m)

• N∗ → N ′ . N ′′: Let kπi be the sum of weights for words from F generated from
ω′.N ′

i .N
′′
m−i.ω

′′.

P(X = N ′
i .N

′′
m−i) =

π(L(ω′.N ′
i .N

′′
m−i.ω

′′))− kπi
π(L(ω)) − kπ

, i ∈ [1,m− 1]

• N∗ → t: If m = 1 then P(X = t) = 1 else Error.

4. Iterate from step 1.

Proposition 4.1. Let Gπ = (π,Σ,N ,S,P) be a weighted grammar, ω ∈ {Σ∪N}∗ be an immature
word and n ∈ N

|ω| be a vector of sizes associated with positions of ω.
Then Algorithm A draws a mature word at random according to the π-weighted distribution from
L(ω,n)\F or throws an Error if L(ω,n) = ∅.

Proof. The previous claim can be proved very quickly by induction on the number k of required
executions of line 1 before a mature word is issued:
Base: The k = 0 case corresponds to an already mature word ω, for which the associated
language is limited to {ω}. As ω is generated by line 1 iff ω /∈ F then the claimed result holds in
that case.
Inductive step: Assuming that the theorem holds for k ≥ n, we investigate the probabilities of
emission for words that require k = n + 1 derivations. Let N∗

m be the non-terminal pointed by
φ, then:

• N∗ → N ′ | N ′′: Assume that the derivation N∗
m ⇒ N ′

m is chosen w.p.
π(L(ω′.N ′

m
.ω′′))−kπ

N′

π(L(ω))−kπ .

Then the induction hypothesis applies and a word x is generated from L(ω′.N ′
m.ω′′)\F in



the π-weighted distribution. In this distribution applied to L(ω′.N ′
m.ω′′)\F , the probability

of x is then

P(x | ω′.N ′
m.ω′′) =

π(x)

π(L(ω′.N ′
m.ω′′)\F)

=
π(x)

π(L(ω′.N ′
m.ω′′))− π(L(ω′.N ′

m.ω′′) ∩ F)

=
π(x)

π(L(ω′.N ′
m.ω′′))− kπN ′

The overall probability of x starting from N∗
m is then

P(x) =
π(L(ω′.N ′

m.ω′′))− kπN ′

π(L(ω)) − kπ
·

π(x)

π(L(ω′.N ′
m.ω′′))− kπN ′

=
π(x)

π(L(ω)) − kπ
=

π(x)

π(L(ω)\F)

This property also holds if N ′′
m is chosen, after pointing out that

(kπN ′′ = kπ − kπN ′) ⇒

(

1− P(X = N ′
m) =

π(L(ω′.N ′′
m.ω′′))− kπN ′

π(L(ω)) − kπ

)

• N∗ → N ′ . N ′′: For any i ∈ [1,m − 1], a partition N∗
m ⇒ N ′

i . N ′′
m−i is chosen w.p.

π(L(ω′.N ′

i
.N ′′

m−i
.ω′′))−kπ

i

π(L(ω))−kπ . Then the induction hypothesis applies and a word x is generated

from L(ω′.N ′
i .N

′′
m−iω

′′)\F in the π-weighted distribution. In this distribution applied to
L(ω′.N ′

i .N
′′
m−i.ω

′′)\F , the probability of x is then

P(x | ω′.N ′
i .N

′′
m−i.ω

′′) =
π(x)

π(L(ω′.N ′
i .N

′′
m−i.ω

′′)\F)

=
π(x)

π(L(ω′.N ′
i .N

′′
m−i.ω

′′))− π(L(ω′.N ′
i .N

′′
m−i.ω

′′) ∩ F)

=
π(x)

π(L(ω′.N ′
i .N

′′
m−i.ω

′′))− kπi

The overall probability of x starting from N∗
m is then

P(x) =
π(L(ω′.N ′

i .N
′′
m−i.ω

′′))− kπi
π(L(ω)) − kπ

·
π(x)

π(L(ω′.N ′
i .N

′′
m−i.ω

′′))− kπi

=
π(x)

π(L(ω)) − kπ
=

π(x)

π(L(ω)\F)

• N∗ → t: The probability of any word x issued from ω is that of the word issued from

ω′.t.ω′′, that is π(x)
π(L(ω′.t.ω′′)\F) =

π(x)
π(L(ω)\F) by the induction hypothesis.

This algorithm then performs random generation of k distinct words from a (weighted) context-
free language by setting the initial immature word to Sn the axiom of Gπ , adding the freshly
generated sequence to F at each step.

5 Complexities and data structures

The algorithm’s complexity depends critically on efficient strategies and data structures for:
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Figure 3: Prefix tree built from the subset F = {caccbc, abaccb, abcccc} of Motzkin words of
size 6, using weights π(a) = π(b) = 1 and π(c) = 2. Generation (a) of a new word abcacb and
update (b) of the contributions of F to the immature words involved in the generation.

1. The weights of languages associated with immature words.

2. The contributions kπ of forbidden (or already generated) words associated with each im-
mature word (ω,n)

3. The investigation of the different partitions N∗
m ⇒ N ′

i . N
′′
m−i in the case of product rules.

4. Big numbers arithmetics.

5.1 Weights of immature languages

Proposition 5.1. Let (ω,n) be an immature word and its associated length vector, whose weight
π(ω,n) is known.
Then a pre-computation involving Θ(n) arithmetic operations makes it possible to compute in
O(1) arithmetic operations the weight of any word (ω′,n′) atomically derived from (ω,n) .

Proof. In order to compute π(ω,n), we first compute the total weights of languages associated
with each non-terminalN for all sizes up to n =

∑

ni∈n
ni, as done by the traditional approach [2].

This can be done in Θ(n) arithmetic operations, thanks to the holonomic nature of the generating
functions at stake. Indeed, the coefficients of an holonomic function obey to a linear recurrence
with polynomial coefficients, which can be algorithmically determined (Using the Maple package
GFun [13], for instance).

We can in turn use these values to compute on the fly the weights of immature words of
interest. Namely, while rewriting an immature word ω := α.N∗

k .β into ω′ := α.X.β through a
derivation N∗

k ⇒ X , the new weight π(ω′) is given by

π(ω′) = π(α.X.β) =
π(α)π(X)π(β)π(N∗

k )

π(N∗
k )

=
π(ω)π(X)

π(N∗
k )

where X contains at most two terms (CNF) and therefore a constant number of arithmetic
operations is involved.

5.2 A prefix tree for forbidden words

Proposition 5.2. Let F be a set of words characterized by their parse walks2. Let T be a prefix
tree built from the parse walks from F in Θ(|F|.n) arithmetic operations. Then for any immature

2Starting from an unparsed raw set of forbidden words F will require some additional parsing, which can be
performed in Θ(|F|.n3) by a CYK-type algorithm.



word ω reached during a random scenario, the contribution kπ := π(L(ω)∩F) of forbidden words
can be computed in O(1) arithmetic operations. Furthermore, updating T through the addition of
a generated word can be performed in Θ(n) arithmetic operations.

Proof. Thanks to the unambiguity of the grammar, a mature word v ∈ L belongs to the language
generated from an immature one ω ∈ L⊳ iff ω is found on the parse walk of v. Therefore we
gather the parse walks associated with forbidden words F into a prefix tree, additionally storing
at each node the total weight of all words accessible from it. It is then possible to traverse the
prefix tree during the generation, read the values of kπ for candidate derivations on the children
of the current node.

The update of the prefix tree after a generation can be performed in Θ(n) arithmetic oper-
ations in two phases, as illustrated by Figure 3: First, a top-down stage adds nodes for each
immature word traversed during the generation (a); Then, a bottom-up stage will propagate the
weight of the sampled mature word to his ancestors (b).

Finally, it is remarkable that many of the internal nodes in the trees have degree 1, which
means that their value for kπ is just a copy of their child’s own. Since in any tree the number of
internal nodes of degree at least two is strictly smaller than the total number of leaves, then the
number of different values for kπ is bounded by 2 ∗ |F|. It follows that the memory needed to
store the prefix tree will scale like O(n|F|), even if the encoding of each kπ requires Θ(n) bits of
storage.

5.3 Miscellaneous

For point 3, we can use the so-called Boustrophedon strategy, which allows for an O(n log(n))
arithmetic operations generation in the worst case scenario. Since we only restrict the generation
set to authorized (or not previously generated) words, such a property should hold in our case.

For point 4, it is reasonable, for all practical purpose, to assume that the weights are going
to be expressed as rational numbers. Multiplying these weights by the least common multiple of
their denominators yields a new set of integral weights inducing the same probability distribution,
thus arbitrary precision integers can be used. The numbers will scale like O(αn) for some explicit
α, since the resulting language is context-free, and operations performed on such numbers will
take time O(n log(n) log log(n)) [14], while the space occupied by their encoding is in O(n).

5.4 Summary

Let n ∈ N
+ be the overall length for generated words, k ∈ N

+ the number of distinct generated
words and F the initial set of forbidden parse walks:

• The time-complexity of Algorithm A is in Θ(kn log(n)) arithmetic operations in the
worst case scenario, after a pre-processing in Θ(|F|n+ n) arithmetic operations.

• The memory complexity is in Θ(n) numbers for the pre-processing, plus Θ((|F|+ k)n)
bits for the storage of the prefix tree.

• For rational-valued weights, using arbitrary arithmetics, the associated bit-complexities are
in respectively Θ(kn2 log(n)) for time and Θ((|F|+ k + n)n) for memory.

• Lastly, starting from an empty forbidden set F = ∅ yields a generation in Θ(kn2 log(n)) for
time and Θ(kn+n2) for memory, complexities similar to that of the possibly redundant

traditional approach [2, 8].

6 Conclusion and perspectives

We addressed the random generation of non-redundant sets of sequences from context-free lan-
guages, while avoiding a predefined set of words. We first investigated the efficiency of a rejection



approach. Such an approach was found to be acceptable in the uniform case. By contrast, for
weighted languages, we showed that for some languages the expected number of rejections would
grow exponentially on the desired number of generated sequences. Furthermore, we showed that
in typical context-free languages and for fixed length, the probability distribution can be dom-
inated by a small number of sequences. We proposed an alternative algorithm solution for this
problem, based on the so-called recursive approach. The correctness of the algorithm was demon-
strated, and its efficient implementation discussed. This algorithm was showed to achieve the
generation of a non-redundant set of k structures with a time-complexity in O(kn2 log(n)), while
using O(kn+ n2) bits of storage. These complexities hold in the worst-case scenario, are almost
unaffected by to the weights function used, and are equivalent to that of the traditional, possibly
redundant, generation of k words using previous approaches.

One natural extension of the current work concerns the random generation of the more general
class of decomposable structures [8]. Indeed, such aspects like the pointing and unpointing oper-
ator are not explicitly accounted for in the current work. Furthermore, the generation of labeled
structures might be amenable to similar techniques in order to avoid a redundant generation. It
is unclear however how to extend the notion of parse tree in this context. Isomorphism issues
might arise, for instance while using the unranking operator.

Following the remark that the random generation from reasonable specifications is a numer-
ically stable problem [3], we could envision using arbitrary precision arithmetics to achieve a
O(kn1+ε) complexity. Such a feature could accelerate an implementation of this algorithm, for
instance in the software GenRGenS [12] that already supports the formalism of weighted gram-
mars. Another direction for an efficient implementation of this approach would be to investigate
the use of Boltzmann samplers [6].

Moreover, the influence of the number of desired sequences, the length and the weights over the
complexity of a rejection based approach deserves to be further characterized. Namely, are there
simple-type grammars giving rise to an exponential complexity on k ? Can phase transition-like
phenomena be observed for varying weights ?
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