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Abstract

Scattering of acoustic waves from an inhomogeneous medium can be described by the Lippmann-
Schwinger integral equation. For scattering problems in free space, Vainikko proposed a fast spectral
solution method that exploits the convolution structure of this equation’s integral operator by us-
ing the fast Fourier transform. In a planar 3–dimensional waveguide, the integral operator of the
Lippmann-Schwinger integral equation fails to be a convolution. In this paper, we show that the
separable structure of the kernel nevertheless allows to construct fast spectral collocation methods
similar to Vainikko’s technique. The numerical analysis of this method requires smooth material pa-
rameters; if the material parameters are, say, discontinuous, no theoretical statement on convergence
is available. We show how to construct a Galerkin variant of Vainikko’s method for which a rigorous
convergence analysis is available even for discontinuous materials. For several distant scattering
objects inside the 3–dimensional waveguide this discretization technique leads to a computational
domain consisting of one large box containing all scatterers, and hence many unnecessary unknowns.
However, the integral equation can be reformulated as a coupled system with unknowns defined on
the different parts of the scatterer. Discretizing this coupled system by a combined spectral/multipole
approach yields an efficient method for waveguide scattering from multiple objects.

1 Introduction

Propagation of acoustic signals inside the ocean is the basis for several modern marine technologies like
SONAR (SOund Navigation And Ranging) and ocean-acoustic tomography. These techniques exploit
that acoustic waves with a frequency less than a few hundred Hertz propagate inside the sea without
(strong) attenuation. Consequently, low-frequency signals can propagate over huge distances along the
ocean. In this paper we propose a class of spectral (i.e., Fourier-based) volumetric integral equation
methods to compute such sound fields. We assume a couple of modeling assumptions on the ocean
environment: The ocean has a constant height h > 0; thus, the domain of interest is a waveguide
Ω = R2 × (0, h). We further restrict ourselves to linear propagation of time-harmonic waves modeled by
the Helmholtz equation

∆u + k2n2 u = f in Ω, (1)

where f is a source function with compact support, k > 0 is the constant wave number and n2 is the
refractive index. A further crucial assumption is that n2 = 1 outside some bounded and open set D,
meaning that n2 models a local perturbation inside a homogeneous waveguide. Following [4,24] we model
the ocean–air and ocean–seabed interfaces by sound soft and sound hard boundaries, respectively,

u = 0 on Γ− := {x ∈ R3 : x3 = 0}, and
∂u

∂x3
= 0 on Γ+ := {x ∈ R3 : x3 = h}. (2)

This model is reasonable for the description of underwater sound waves if the ocean depth and the
water temperature are not too large. A better model would assume a layered background medium where
the speed of sound depends on x3. The numerical methods that we develop are in principle able to
incorporate such an x3–dependence, but this development is out of the scope of this paper.
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The problem (1)–(2) only determines the field u in a unique way if we impose additionally a radiation
condition. To this end, we set

αm :=
π

2h
(2m − 1), km :=

√
k2 − α2

m for m ∈ N.

The square root in the latter definition is chosen such that km = i
√

α2
m − k2 for αm > k > 0. We assume

that km 6= 0 for all m ∈ N, which a kind of non-resonance condition. Let us additionally introduce the
following notation for a point x in the stratified waveguide Ω,

x = (x1, x2, x3)
⊤ =

(
x̃
x3

)
with x̃ =

(
x1

x2

)
.

Using this notation, one can expand u by separation of variables as u(x) =
∑∞

m=1 sin(αmx3)um(x̃) for
|x̃| > R, for some R > 0 large enough such that the supports of the source f and the contrast q = n2 − 1
are contained in {|x̃| < R}. In view of (1) the modes um need to satisfy ∆um + k2

mum = 0 for |x| > R.
Hence, as a radiation condition we impose Sommerfeld’s radiation condition,

lim
r→∞

r1/2

(
∂um

∂r
− ikmum

)
= 0, where r := |x̃|. (3)

There is an important connection between the source problem (1)–(3) and scattering problems. De-
note the medium’s contrast by q := n2−1. Consider an incident wave field ui that solves the homogeneous
Helmholtz equation in Ω subject to the boundary conditions (2). When ui hits the inhomogeneity in D
there arises a scattered field us such that the total field u = ui + us solves ∆u + k2n2u = 0 in Ω, and
both u and us satisfy the boundary conditions (2). Additionally, us satisfies the radiation conditions (3).
The source problem (1)–(3) hence describes the scattered field us for the special choice f = −k2qui.

Solving the waveguide scattering problem (1), (2) and (3) is equivalent to solve a volumetric integral
equation of the second kind, the so-called Lippmann-Schwinger integral equation. For scattering in
free space, one can exploit the convolution structure of the volume potential to construct fast spectral
collocation methods [12, 13, 25, 28] for the numerical solution of scattering problems. In contrast to
scattering in free space, the volume potential defined via the waveguide Green’s function G(x, y) is not
a convolution; G can for instance be represented as a series of convolution operators in x̃ weighted
by certain trigonometric polynomials in x3. This separable structure allows to construct fast spectral
integral equation methods for waveguide scattering problems via truncation and periodization of the
waveguide Green’s function in the lateral variables x̃. After periodization, a special class of trigonometric
polynomials becomes the eigenfunctions of the (periodized) volume potential (see Theorem 3.5). The
fast Fourier transform then allows to rapidly evaluate a spectral discretization of the potential and, using
iterative solution methods, thereby yields fast methods for waveguide scattering.

If q is a smooth function, this spectral collocation method yields high-order approximations of the
periodized Lippmann-Schwinger equation. However, if q is not smooth, no convergence analysis is avail-
able. To obtain rigorous convergence theory for non-smooth contrasts, we replace the spectral collocation
method by a spectral Galerkin method. We show that this new discretization can still be written in
an explicit discrete form, and that the method reaches optimal convergence rates in a range of Sobolev
spaces W s for s > 0, whereas the collocation method can only be analyzed for s > 3/2 (see Theorem 5.4).
The Galerkin method becomes more costly compared to the collocation method since it incorporates dis-
crete Fourier transforms of larger size compared with the collocation method. Basically, the reason is
that the product of two Fourier polynomials of degree l is a Fourier polynomial of degree 2l and hence
discrete Fourier transforms of larger size are needed to implement this product exactly. Our numerical
experiments indicate that the gain of accuracy of the Galerkin method at least corresponds to its larger
memory and time demands.

We also consider a special multiple scattering problem where the penetrable scatterer is composed of
several disconnected parts. Discretizing scattering problems for this geometry using the above approach
yields one large computational domain containing all the scattering objects, and hence a lot of unneces-
sary unknowns. However, for this special setting the volumetric integral equation can be reformulated
as a coupled system of integral equations where each component of the unknown is defined on one part
of the scatterer. Discretization of this coupled system reduces the number of unknowns compared to the
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original approach. The key for the efficient discretization of the coupling terms are diagonal approxi-
mations of the waveguide Green’s functions, relying on multipole expansions for complex wave numbers
and uniform estimates of Bessel functions. (See Theorem 7.5 for the final spectral/multipole method.)

Alternative computational methods to solve the scattering problem (1)–(3) include finite element
methods with a non-reflecting boundary conditions, see [6, 29] for recent developments. Such methods
have the advantage of local basis functions allowing for local and adaptive mesh refinement. On the
other hand, 3D computations using finite element methods yield large (sparse) system matrices that
require preconditioned iterative solution methods. The spectral integral approach presented here has
the advantage that the (full) system matrix is never set up, preconditioners are easily constructed, and
the system is solved by a simple fixed-point iteration. Since the integral equation is solved in the spectral
domain the implementation of the method is easy; especially, no singular integrals have to be computed.

The structure of this paper is as follows. Section 2 provides background on the Lippmann-Schwinger
integral equation. We define truncated Green’s functions and corresponding integral operators in Sec-
tion 3. After a reminder on trigonometric approximation in Section 4 we study spectral discretizations
of volumetric integral equations in Section 5. In Section 6 we consider multiple scattering problems and
diagonal approximations, yielding combined spectral/multipole methods in Section 7.

Notation: By | · |1, | · |, and | · |∞ we denote the 1- the 2- and the ∞-norm on Euclidean vector spaces.
For two real matrices A and B we write A ≤ B if Ai,j ≤ Mi,j . Following [1] we denote by Jm, Im and
Km the Bessel function of the first kind and the first and second modified Bessel function of order m,

respectively. H
(1)
m is the Hankel function of the first kind of order m.

2 The Lippmann-Schwinger Integral Equation in a Waveguide

A function u that solves the Helmholtz equation (1), the waveguide boundary conditions (2), and the ra-
diation conditions (3) satisfies a volumetric integral equation of the second kind known as the Lippmann-
Schwinger integral equation (see [25]). This integral equation uses the Green’s function G(x, y) of the
Helmholtz equation ∆u + k2u = 0 with constant coefficients, subject to the boundary conditions (2)
and the radiation conditions (3). Two explicit series representations of this Green’s function are known,
see [2, 24]. First, the modal representation

G(x, y) =
i

2h

∞∑

m=1

sin(αmx3) sin(αmy3)H
(1)
0 (km|x̃ − ỹ|) , x̃ 6= ỹ, (4)

has the advantage that it converges rapidly away from the line {x̃ = z̃}, while on this line the expression
is not defined. (Recall that we assumed that km 6= 0 for all m ∈ N.) Second, the method of images
yields an expression that is accurate near the singularity at x = z but slowly (and only conditionally)
converging away from this point,

G(x, y) =
1

4π

+∞∑

m=−∞

(−1)
m





eik|x−ym|

|x − ym| −
e

ik
˛

˛

˛x−y
′

m

˛

˛

˛

|x − y′

m|




 , x 6= y, (5)

where the image source points are ym = (y1, y2, y3 + 2mh)⊤ and y′
m = (y1, y2,−y3 + 2mh)⊤. Formally,

the volume potential V is defined by

Vf =

∫

D

G(·, y)f(y) dy for f ∈ L2(D).

Using the series representation (5) one shows that the waveguide Green’s function can be written as
sum of the free-space fundamental solution Φ(x) = eik|x|/(4π|x|) of the Helmholtz equation and an
analytic function G̃(·, ·) that solves the homogeneous Helmholtz equation in both variables, G(x, y) =
Φ(x − y) + G̃(x, y) for x 6= y ∈ Ω. In consequence, the mapping properties of V are the same as those
of the (free-space) volume potential with kernel Φ. From [18, Chapter 6] it follows that V is a bounded
operator from L2(D) into H2(B ∩ Ω) for any open ball B ⊂ R3. We denote this class of functions as
H2

loc(Ω). For the free-space Lippmann-Schwinger integral operator with kernel Φ and density f it is well-

known that the corresponding potential u solves ∆u + k2u = −f . Since G̃(x, y) solves the homogeneous
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Helmholtz equation we deduce that u = Vf ∈ H2
loc(Ω) solves ∆u + k2u = −f in Ω, too. In the last

equation, we understand f to be extended by zero outside of D, a convention that we will also use later
on. By construction of the Green’s function, the potential u also satisfies the boundary and radiation
conditions (2)–(3).

The Lippmann-Schwinger integral equation now arises in context of the scattering problem discussed
in the introduction. For an incident wave ui, the scattered wave us solves ∆us + k2n2us = −k2qui

and satisfies the boundary and radiation conditions (2) and (3). Hence ∆us + k2us = −k2q(ui + us),
which means that us − k2V(qus) = k2V(qui). Once a solution us ∈ L2(D) to this equation is found, the
scattered field us in all of Ω is given by us = k2V(q(ui + us)). This is the Lippmann-Schwinger integral
equation that we consider now in L2(D) for a right-hand side f ∈ L2(D),

u − k2V(qu) = f in L2(D). (6)

Since the integral operator V maps L2(D) into H2(D) Riesz theory implies that existence of solution
for (6) follows from uniqueness. However, in contrast to scattering in free-space, uniqueness of solution
might fail for waveguide scattering problems due to resonance phenomena, see [19]. In the sequel, we
assume that uniqueness of solution holds, noting that the paper [4] establishes a rather complete solution
theory. In essence, uniqueness of solution always holds if the scatterer is absorbing, or under geometric
non-trapping conditions on the contrast q. If none of these conditions is satisfied, analytic Fredholm
theory implies that for fixed q the set of wave numbers k > 0 such that I − k2V(q·) has a non-trivial
kernel is countable and possesses no finite accumulation point. Hence, non-uniqueness is a “rare” event,
and our assumption that (6) is uniquely solvable in L2(D) for any right-hand side is reasonable.

3 Periodic Green’s Functions and Integral Equations

Given f ∈ L2(D) and q ∈ L∞(D) we consider in this section the transformation of the Lippmann-
Schwinger equation to a periodic integral equation and study properties of the transformed equation.
Analysis (and, later on, computations) will be reduced to the domain

Λρ := {x ∈ Ω : |x̃|∞ < ρ}, ρ > 0.

In analogy to our notation for points, we set Λ̃ρ = {x ∈ R2 : |x̃|∞ < ρ}. To this end, let us introduce
trigonometric basis functions in L2(Λρ). For n ∈ Z3

+ and ñ := (n1, n2)
⊤ we set

ϕn :=
1√
2hρ

sin(αn3x3) exp

(
iπ

ρ
ñ · x̃

)
, x ∈ Λρ, n ∈ Z3

+ := {n ∈ Z3 : n3 > 0}. (7)

Note that the closure of {ϕn}n∈Z
3
+

in L2(Λρ) equals L2(Λρ) and that ϕn satisfies the waveguide boundary

conditions (2). For v ∈ L2(Λρ),

v̂(n) :=

∫

Λρ

vϕn dx , n ∈ Z3
+,

denotes the nth Fourier coefficient and since the functions ϕn are orthonormal and their closure is dense,
each v ∈ L2(Λρ) has a representation v =

∑
n∈Z

3
+

v̂(n)vn. The basis function ϕn is the product of

vñ(x̃) =
1

2ρ
exp

(
iπ

ρ
ñ · x̃

)
and hn3(x3) =

√
2

h
sin(αn3x3), n ∈ Z3

+. (8)

Fractional Sobolev spaces in Λρ play an important role in the sequel. For s ∈ R we define W s to be the
closure of the {ϕn}n∈Z

3
+

in the norm ‖ · ‖Hs(Λρ),

W s = {ϕn}
‖·‖Hs(Λρ)

, ‖u‖2
Hs(Λρ) =

∑

n∈Z
3
+

(
1 + |n|2

)s |û(n)|2 .

Since differentiation becomes multiplication under the Fourier transform, one can show that for s ∈ N

these spaces are subspaces of (standard) Sobolev spaces Hs
per of (laterally) 2ρ-periodic functions.
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Let us from now on assume that the support D of the contrast q is included in

Bρ/2 = {x ∈ Ω : |x̃| < ρ/2}.

(We are going to see below why ρ/2 is the largest possible radius.) Then we can rewrite the Lippmann-
Schwinger equation (6) as u − k2

∫
Bρ/2

G(·, y)q(y)u(y) dy = f in Λρ. The value of the integral in the

last equation does not change if we redefine G(x, y) for |x̃ − ỹ| > ρ, since for x ∈ Bρ/2 and y ∈ Bρ/2 the
difference |x̃ − ỹ| is always less than ρ. Motivated by this observation, let us define a function Hρ(x̃, k)
for |x̃|∞ < ρ and wave number k such that |k| > 0 and arg(k) ∈ [0, π/2],

Hρ(x̃, k) =

{
H1

0 (k|x̃|) if 0 < |x̃| < ρ,

0 else.
(9)

We extend this function 2ρ-periodically to R2 by

Hρ(x̃ + 2ρñ, k) = Hρ(x̃, k), for ñ ∈ Z2.

Using Hρ and the modal representation (4) we define a periodic Green’s function Gρ(x, y) by

Gρ(x, y) =
i

2h

∞∑

m=1

sin(αmx3) sin(αmy3)Hρ(x̃ − ỹ, km), x̃ 6= ỹ ∈ Ω. (10)

Note that Gρ(x, y) = G(x, y) for |x̃ − ỹ| < ρ. In the next lemmas we provide estimates for the Fourier
coefficients of tm, leading to a convergence result for the series in (10). For simplicity, we denote the
series terms of Gρ by

tm(x, y) :=
i

2h
sin(αmx3) sin(αmy3)Hρ(x̃ − ỹ, km). (11)

Lemma 3.1. Each term tm belongs to L2(Λρ × Λρ) and the nth Fourier coefficient t̂m(n) of tm(x, ·) is

given by t̂m(n) = iρ/
√

2h δm,n3 Ĥρ(n) sin(αmx3)v−ñ(x̃), n ∈ Z3
+, with

Ĥρ(n) =






2iρ

k2
n3

ρ2 − π2|ñ|2
(

1 +
iπ2

2
|ñ|J1(π|ñ|)H(1)

0 (kn3ρ) − iπ

2
ρkn3J0(π|ñ|)H(1)

1 (kn3ρ)

)

for ñ 6= 0, kn3ρ 6= π|ñ|,
2i

k2
n3

ρ
+

π

kn3

H
(1)
1 (kn3ρ) for ñ = 0,

πρ

2

(
J0(π|ñ|)H(1)

0 (π|ñ|) + J1(π|ñ|)H(1)
1 (π|ñ|)

)
for kn3ρ = π|ñ|.

(12)

Proof. The function tm(x, y) belongs to L2(Λρ ×Λρ) since Hρ(x̃− ỹ, km) has a (square-integrable) weak
singularity at x̃ = ỹ,

∫

Λ̃ρ

|Hρ(x̃ − ỹ, km)|2 dx =

∫

Λ̃ρ−ỹ

|Hρ(x̃, km)|2 dx =

∫

Λ̃ρ

|Hρ(x̃, km)|2 dx < ∞ (13)

since x̃ 7→ Hρ(x̃, km) is by construction 2ρ periodic in each argument. The second integral in (13) is
independent of ỹ, Hρ(x̃ − ỹ, km) is square-integrable in x̃ and ỹ, and tm(x, y) belongs to L2(Λρ × Λρ).

We compute the Fourier coefficients t̂m(n) of tm(x, ·),

t̂m(n) =
i

2h

∫

Λρ

sin(αmx3) sin(αmy3)Hρ(x̃ − ỹ, km)ϕn(y) dy

=
i√

2h3/2
sin(αmx3)

∫

Λρ

sin(αmy3)Hρ(x̃ − ỹ, km)v−ñ(ỹ) sin(αn3y3) dy

= δm,n3

i

2
√

2h
sin(αn3x3)

∫

Λ̃ρ

Hρ(x̃ − ỹ, kn3)v−ñ(ỹ) dỹ
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due to the orthogonality of the sine terms,
∫ h

0
sin(αmy3) sin(αn3y3) dy = h/2 for m = n3 and 0 else.

Exploiting the periodicity of Hρ in its first argument we find that
∫

Λ̃ρ

Hρ(x̃ − ỹ, kn3)v−ñ(ỹ) dỹ =
1

2ρ

∫

Λ̃ρ

Hρ(ỹ − x̃, kn3) exp

(
− iπ

ρ
ñ · (ỹ − x̃)

)
dỹ exp

(
− iπ

ρ
ñ · x̃

)

= 2ρ

∫

Λ̃ρ

Hρ(z̃, kn3)v−ñ(z̃) dz̃ v−ñ(x̃) =: 2ρĤρ(n) v−ñ(x̃).

(14)

Hence, t̂m(n) = iρ/
√

2h δm,n3 Ĥρ(n) sin(αn3x3) v−ñ(x̃).
In analogy to scattering problems in free space, see, e.g., [28, Section 3.8], the Fourier coefficients

Ĥρ(n) =
1

2ρ

∫

Λ̃ρ

Hρ(z̃, kn3) exp

(
− iπ

ρ
ñ · z̃

)
dz̃

=
1

2ρ

∫

|z̃|<ρ

H
(1)
0 (kn3 |z̃|) exp

(
− iπ

ρ
ñ · z̃

)
dz̃ , n ∈ Z3

+, (15)

of the truncated Hankel function Hρ(·, kn3) can be computed explicitly. Assume for a moment that
k2

n3
ρ2 6= π2|ñ|2, such that λn = ρ2/(k2

n3
ρ2 − π2|ñ|2) is well-defined. Then ∆vñ + k2

n3
vñ = λ−1

n vñ and
Green’s second identity yields

i

4

∫

|z̃|<ρ

H
(1)
0 (kn3 |z̃|) v−ñ dz̃ =

iλn

4
lim
δ→0

∫

δ<|z̃|<ρ

H
(1)
0 (kn3 |z̃|) (∆ + k2

n3
)v−ñ dz̃

=
iλn

4

∫

|z̃|=ρ

(
H

(1)
0 (kn3 |z̃|)

∂v−ñ

∂ν
− v−ñ

∂

∂ν
H

(1)
0 (kn3 |z̃|)

)
ds(z̃)

− λn
i

4
lim
δ→0

∫

|z̃|=δ

(
H

(1)
0 (kn3 |z̃|)

∂v−ñ

∂ν
− v−ñ

∂

∂ν
H

(1)
0 (kn3 |z̃|)

)
ds(z̃) .

For ñ 6= 0 we know from [28, Section 10.5.5] that
∫

|z̃|=ρ

∂v−ñ

∂ν
ds = −π2

ρ
|ñ|J1(π|ñ|) and

∫

|z̃|=ρ

v−ñ ds = πJ0(π|ñ|)

and for ñ = 0 we have
∫
|z̃|=ρ

v0 ds = π and
∫
|z̃|=ρ

∂v0/∂ν ds = 0. Moreover, it is well known (see,

e.g., [25]) that

i

4
lim
δ→0

∫

|z̃|=δ

(
H

(1)
0 (kn3 |z̃|)

∂v−ñ

∂ν
− v−ñ

∂

∂ν
H

(1)
0 (kn3 |z̃|)

)
ds(z̃) = v−ñ(0) =

1

2ρ
.

If k2
n3

ρ2 6= π2|ñ|2 we obtain the values for Ĥρ(n) given in (12). Finally, one uses L’Hospital’s rule to
compute the limiting value of the expression in the first line of (12) for ρkn3 = π|ñ|.

Lemma 3.2. For s < 1/2 the norms ‖tm(x, ·)‖W s are bounded by C(s)ms−3/2 for C(s) > 0 independent
of m ∈ N and x ∈ Λρ.

Proof. Using the asymptotic expansions of Bessel and Hankel functions for large arguments in [1,
Eqs. 9.2.1 & 9.2.3],

Jν(r) ∼
√

2/(πr) cos(r − νπ/2 − π/4), r → ∞,

H(1)
ν (z) ∼

√
2/(πz) exp

(
i(z − νπ/2 − π/4)

)
, |z| → ∞, arg(z) ∈ [0, π/2],

the growth of the coefficients Ĥρ(n) in (12) of the periodic kernel Gρ can be bounded in terms of n.
Note that the third case of (12) only holds for a finite number of n. Assuming that the first condition
in (12) holds, we find that

∣∣∣Ĥρ(n)
∣∣∣ ≤ C

1 + |ñ||H(1)
0 (kn3ρ)| |J1(π|ñ|)| + |kn3 ||H

(1)
1 (kn3ρ)| |J0(π|ñ|)|

α2
n3

ρ2 + π2|ñ|2 − k2ρ2

≤ C
1 + |kn3 |−1/2|ñ|1/2

2 + |kn3 |1/2|ñ|−1/2

α2
n3

ρ2 + π2|ñ|2 − k2ρ2
≤ C|ñ|−3/2 as |n| → ∞.

(16)
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Assuming that the second condition (ñ = 0) in (12) holds, one verifies in the same way |Ĥρ(n)| ≤ Cn−2
3 .

Thus, |t̂m(n)|2 ≤ ρ2/(2h) δm,n3 |Ĥρ(n)|2 ≤ Cδm,n3(1 + |n|2)−3/2 as n → ∞, where C is independent of
m, n and x. For s < 1/2 each of the functions tm(x, ·) is uniformly bounded in W s, because

‖tm(x, ·)‖2
W s =

∑

n∈Z
3
+, n3=m

(1 + |n|2)s|t̂m(n)|2 ≤ C
∑

n∈Z3, n3=m

(1 + |n|2)s−3/2 ≤ C(s)m2s−3.

Proposition 3.3. The truncated Green’s function Gρ belongs to W s for s < 1/2 in both variables x and
y and the series in (10) converges absolutely in W s for s < 1/2 as a function of x or y.

Proof. In view of the two last lemmas and the symmetry of Gρ(x, y) = Gρ(y, x) it just remains to bound
the W s-norm of Gρ(x, ·): ‖y 7→ Gρ(x, y)‖W s ≤∑∞

m=1 ‖tm‖W s ≤ C
∑∞

m=1 ms−3/2 < ∞ for s < 1/2.

Remark 3.4. The decay in x̃ of the order 3/2 can be improved to 2 if one uses a smooth lateral cut-off
of the Green’s function, as it is described in [25, Page 324]. However, this procedure increases the cut-off
parameter ρ and one looses the explicit knowledge of the Fourier coefficients of the kernel. Consequently,
these coefficients need to be computed numerically. An efficient method to do so is described in [7]. The
scheme proposed in the latter paper can be seen as a variant of Vainikko’s scheme.

For free-space scattering problems in three dimensions, a spherical cut-off of the Green’s function by
zero does not destroy second-order decay of the Fourier coefficients, see [13, 28]. However, the spheri-
cal cut-off used in these papers seems to be a bad choice here, in view of the explicit computations in
Lemma 3.1.

The integral operator corresponding to Gρ is

Vρf =

∫

Λρ

Gρ(·, y)f dy , f ∈ L2(Λρ). (17)

Fast methods for the solution of the Lippmann-Schwinger equation in free space [13,25,28] exploit that
a convolution operator becomes a multiplication operator under the Fourier transform. For our problem,
Vρ lacks a convolution structure in the third coordinate, but the ϕn still diagonalize Vρ.

Theorem 3.5. The integral operator Vρ is bounded from W s into W s+3/2 for all s ∈ R. The trigono-

metric basis functions ϕn are the eigenfunctions of Vρ with corresponding eigenvalues iρ/2 Ĥρ(n). If
f ∈ L2(D), then Vρf equals Vf in Bρ/2.

Proof. We first show that Vρ diagonalizes on the basis functions ϕn of L2(Λρ) = W 0 and deduce bound-
edness of Vρ from the magnitude of the eigenvalues resulting from this computation. For fixed x ∈ Λρ,

(
Vρϕn

)
(x) =

i√
2hh

∫

Λρ

[
∞∑

m=1

sin(αmx3) sin(αmy3)Hρ(kn3 |x̃ − ỹ|)
]

sin(αn3y3)vñ(y) dy

=
i

2
√

2h
sin(αn3x3)

∫

Λ̃ρ

Hρ(x̃ − ỹ, kn3)vñ(ỹ) dỹ . (18)

In Lemma 3.3 we showed that the series defining Gρ(x, ·) converges absolutely in L2(Λρ). This validates
permutation of integration and summation in (18). In combination with (14) the last computation
moreover implies

Vρϕn =
iρ√
2h

Ĥρ

(
−ñ
n3

)
sin(αn3x3)vñ(x̃) =

iρ

2
Ĥρ(n)ϕn,

because the coefficients Ĥρ(n) depend only on the length |ñ| and n3, that is, Ĥρ

(
−ñ
n3

)
= Ĥρ(n). We have

hence shown that Vρ diagonalizes on its eigenbasis ϕn. The growth bound (16) shows that |Ĥρ(n)|2 ≤
C(1 + |n|2)−3/2, and therefore

‖Vρϕ‖2
W s =

∑

j∈Z
3
+

(1 + |n|2)s|(̂Vρϕ)(n)|2 =
ρ2

4

∑

j∈Z
3
+

(1 + |n|2)s|Ĥρ(n)|2 |ϕ̂(n)|2

≤ C
∑

j∈Z
3
+

(1 + |n|2)s−3/2 |ϕ̂(n)|2 = C‖ϕ‖2
W s−3/2 .
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This shows boundedness of Vρ from W s into W s+3/2 for s ∈ R. It remains to prove the last claim of
the theorem. To this end, it is sufficient to show that for a smooth function f ∈ C∞

0 (D) with compact
support in D ⊂ Bρ/2 we have that Vρ(f) equals V(f) in Bρ/2. Choose x ∈ Bρ/2. Since |x̃ − ỹ| < ρ, the
definition of Hρ in (9) shows that

(Vρf)(x) =

∫

Λρ

Gρ(x, y)f(y) dy =
i

2h

∫

Bρ/2

[
∞∑

m=1

sin(αmx3) sin(αmy3)Hρ(x̃ − ỹ, km3)

]
f(y) dy

=
i

2h

∫

Bρ/2

[
∞∑

m=1

sin(αmx3) sin(αmy3)H
(1)
0 (km3 |x̃ − ỹ|)

]
f(y) dy = (Vf)(x).

By density of C∞
0 (D) in L2(D), Vρ equals V on Bρ/2 for any density f ∈ L2(D).

Due to the equality of the integral operators V and Vρ for densities supported in D stated in the last
theorem, we can reformulate the Lippmann-Schwinger equation

u − k2 V(qu)|D = f in L2(D) (19)

as u − k2 Vρ(qu)|D = f . Extending f by zero and u by k2Vρ(qu) to Λρ yields a function v ∈ L2(Λρ)
solving

v − k2Vρ(qv) = f in L2(Λρ). (20)

Proposition 3.6. Let f ∈ L2(D) and extend f by zero to Λρ. If u ∈ L2(D) solves (19) then v =
V(qv) + f ∈ L2(Λρ) solves (20). Furthermore, the restriction of a solution v ∈ L2(Λρ) of (20) to D
yields a function u in L2(D) that solves (19).

In the beginning of this paper we were interested to find the scattered field us for a waveguide
scattering problem with incident field ui. Setting f = k2Vρ(qu

i) yields a solution v to (20) that equals
us on D. To evaluate us in the complement Ω \ D one uses the Lippmann-Schwinger integral equation
(with smooth kernel!) us(x) = k2

∫
D G(x, y)q(y)(us(y) + ui(y)) dy for x 6∈ D.

4 Trigonometric Projection and Interpolation

Spectral discretization of the periodic Lippmann-Schwinger equation (20) relies on the Fourier transform.
Set

Z3
l := {n ∈ Z3 : −lj < nj ≤ lj, j = 1, 2, 1 ≤ n3 ≤ l3} for l = (l1, l2, l3)

⊤ ∈ N3.

The discrete subspace of trigonometric polynomials

Tl := span
{
ϕn : n ∈ Z3

l

}
⊂ L2(Λρ) of dimension L := 4 l1l2l3

will serve as approximation space for a solution to (20). We denote the orthonormal projection from
L2(Λρ) onto Tl by

Pl : L2(Λρ) → Tl ⊂ L2(Λρ), Plv =
∑

n∈Z
3
l

v̂(n)vn, where v̂(n) =

∫

Λρ

vϕ−n dx

denotes the nth Fourier coefficient of v. Note here that Lemma 3.5 implies that the integral operator Vρ

and the projection Pl commute: Vρ(Plu) = PlVρ(u) for u ∈ L2(Λρ). Later on, we rely on the following
classical approximation properties.

Lemma 4.1. For u ∈ W s and r ≤ s it holds that ‖u − Plu‖W r ≤ min(l)r−s‖u‖W s, where min(l) =
min{l1, l2, l3}.

Proof. For u ∈ W s, ‖u − Plu‖2
W r =

∑
n6∈Z

3
l
(1 + |n|2)s(1 + |n|2)r−s|û(n)|2 ≤

(
1 + min(l)2

)r−s ‖u‖2
Hs(Λρ).
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The proof of the following lemma is technical and therefore presented in Appendix A. It uses the
grid points

x(l)
n =

(
ρ
n1

l1
, ρ

n2

l2
, h

n3

l3

)⊤

, n = (n1, n2, n3)
⊤ ∈ Z3

l . (21)

Lemma 4.2. There is a basis {ϕ∗
n}n∈Z

3
l

of Tl such that ϕ∗
n(x

(l)
j ) = δn, j for n, j ∈ Z3

l .

In consequence, any function in ul ∈ Tl can be uniquely represented by its grid values at the grid

points x
(l)
n , ul =

∑
n∈Z

3
l
ul(x

(l)
n )ϕ∗

n. Additionally, we can define an interpolation operator

Ql : C0(Λρ) → Tl, Ql(f) =
∑

n∈Z
3
l

f(x(l)
n )ϕ∗

n,

mapping a continuous function in Λρ to the unique trigonometric interpolation polynomial satisfying

interpolation conditions at the grid points x
(l)
n . We indicate the following approximation property without

proof (see Theorem 8.3.1 in [25] for an analogous result).

Lemma 4.3. For u ∈ W s with s > 3/2 it holds that ‖u − Qlu‖W r ≤ C min(l)r−s‖u‖W s for 0 ≤ r ≤ s.

The transformation mapping the grid values vl(x
(l)
j ) of a function vl in Tl to the Fourier coefficients v̂l

of vl is called the discrete Fourier transform. Due to the structure of the basis functions ϕl, this transform
is the product of a two-dimensional discrete Fourier transform in the lateral variables, see [25, Section
10.5.4], and a discrete sine transform in the vertical variable (a type-3 discrete sine transform, see [17]).
Combining formulas for the 2D discrete Fourier transform and the type-3 discrete sine transform, one

arrives in the following formula connecting grid values vl(x
(l)
j ) of vl ∈ Tl with the Fourier coefficients

v̂l(n) of vl,

v̂(n) =
ρ

l1l2l3

l1∑

j1=−l1+1

l2∑

j2=−l2+1

l3−1∑

j3=1

vl(x
l
j) sin

(
πj3(2n3 − 1)

2l3

)
exp

(
− iπ

ρ
j̃ · x̃n

)

+ (−1)n3+1 ρ

2l1l2l3

l1∑

j1=−l1+1

l2∑

j2=−l2+1

vl(x
(l)
j ) exp

(
− iπ

ρ
j̃ · x̃n

)
.

(22)

Define Cl := {(c(j))j∈Z
3
l
, c(j) ∈ C}. The operator that maps grid values (v(j))j∈Z

3
l
∈ Cl to the Fourier

coefficients v̂l = (v̂l(j))j∈Z
3
l
∈ Cl of the unique trigonometric interpolation polynomial vl ∈ Tl that

satisfies vl(x
(l)
j ) = v(j) is in the following denoted by

Sl : Cl → Cl, (v(j))j∈Z
3
l
7→ (v̂l(j))j∈Z

3
l
. (23)

It is well known that the transform Sl can be computed in O
(
L log(L)

)
operations (recall: L = 4l1l2l3),

due to the fast Fourier transform, see [9], and its variant, the fast sine transform.
Later on, we will once require a second Fourier transform where the sine transform in the vertical

variable is replaced by a cosine transform. To distinguish this new transform from the above Fourier(-
sine) transform we call it the Fourier-cosine transform. The Fourier-cosine series of a function v ∈ L2(Λρ)
is

v(x) =
1√
2hρ

∑

n∈Z3,n3≥0

v̊(n)ϕñ(x̃) cos
(π

h
n3x3

)
, x ∈ Λρ, (24)

with Fourier-cosine coefficients v̊(n) = (
√

2hρ)−1
∫
Λρ

v(x)ϕñ(x̃) cos
(

π
hn3x3

)
dx for n3 6= 0 and v̊(n) =

(
√

8hρ)−1
∫
Λρ

v(x)ϕñ(x̃) dx for n3 = 0. Again, it is well known that any function v ∈ L2(Λρ) can

be represented by its Fourier-cosine series which is norm-convergent in L2(Λρ). The corresponding
trigonometric polynomials are

vl(x) =
1√
2hρ

l1∑

n1=−l1+1

l2∑

n2=−l2+1

l3−1∑

n3=0

v̊(n)ϕñ(x̃) cos
(π

h
n3x3

)
, x ∈ Λρ. (25)
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Since the summation over n3 starts at 0, it is natural to introduce Z3
l,0 := {n ∈ Z3 : −lj < nj ≤ lj , j =

1, 2, 0 ≤ n3 ≤ l3 − 1}. Define

v̊l = (̊v(j))j∈Z
l
0
∈ Cl

0 := {(vj)j∈Z
3
l,0

, vj ∈ C}. (26)

For a polynomial vl of the form (25) with Fourier-cosine coefficients v̊l, and m ∈ Z3
+, we denote by

Cl,m : Cl
0 → Cm the operator that maps the Fourier-cosine coefficients v̊l to the values of the polynomial

at the grid points (x
(m)
j )j∈Z3

m
. The only case interesting for us will be when m > l. Roughly speaking,

this operation can then be expressed as extension by zero of the Fourier-cosine coefficients, followed
by a discrete inverse Fourier(-cosine) transform, see [27]. For m > l and M := 4m1m2m3, one can
therefore evaluate Cl,m in O(M log(M)) operations. However, since we never use the discrete inverse
Fourier(-cosine) transform explicitly, we do neither give explicit formulas for this transform nor for Cl,m.

5 Spectral Discretization and Error Estimates

The original spectral discretization approach for the Lippmann-Schwinger equation (20) in [28] is to
multiply (20) by the contrast q and to solve for the new unknown u = qv in spaces of trigonometric
polynomials. Whenever q is not smooth, solving for qv yields worse convergence rates for the discretized
problem than solving for v, since multiplication by q destroys smoothness. Consequently, let us try to
keep the contrast q inside the integral operator Vρ and solve for v instead of qv. A corresponding variant
has been chosen, for different reasons, in [13].

Assumption 5.1. Throughout this section we assume that the contrast q is compactly supported in Bρ/2

and belongs at least to PC(Λρ), the class of piecewise continuous and everywhere defined functions in
Λρ. By definition, for f ∈ PC(Λρ) there are pairwise disjoint Lipschitz domains Uj, j = 1, . . . , N with
Λρ = ∪N

j=1Uj and f |Uj
is continuous.

The crucial point of any spectral discretization of (20) is to map the product qul back into the space
of trigonometric polynomials Tl. Let us first use the interpolation operator Ql for this task and seek
ul ∈ Tl such that

ul − k2VρQl(qul) = Qlf. (27)

The discrete Fourier transform Sl from Section 4 allows to state this problem matrix-vector form. To this
end, we denote element-wise multiplication of two elements a and b in Cl by a • b, (a • b)(n) = a(n)b(n)
for n ∈ Z3

l . Further, we abbreviate the Fourier coefficients of the integral kernel (multiplied by k2) by

k̂l(j) = k2 iρ

2
Ĥρ(j), j ∈ Z3

l .

By q
l
∈ Cl and f

l
∈ Cl we denote the point values of q and f at the points x

(l)
n , n ∈ Z3

l , from (21).
(Obviously, one crucial assumption for the collocation method (27) is that these point values are well-
defined.) Then the scheme (27) can be written in matrix-vector form in terms of the Fourier coefficients
ûl ∈ Cl of ul using the discrete Fourier transform Sl from (23),

ûl − k̂l • Sl

[
q

l
• S−1

l (ûl)
]

= Slf l
. (28)

Error estimates for this scheme will only be available for q, f ∈ W s for s > 3/2.
We can also discretize (20) by applying the projection Pl to all terms of the equation: Find ul ∈ Tl

such that
ul − k2VρPl(qul) = Plf. (29)

Writing down the fully discrete form of this discrete problem requires some preparation. Let us denote
the restriction of ûl ∈ Cl to Cm, m < l for j = 1, 2, 3, by Rl,m,

Rl,m(ûl) = v̂m, v̂m(n) = ûl(n) for n ∈ Z3
m.
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The extension operator Em,l extends ûm ∈ Cm by zero to Cl, m < l,

Em,l(ûm) = v̂l, v̂l(n) =

{
ûm(n) for n ∈ Z3

m,

0 else.

If q ∈ PC(Λ) ⊂ L2(Λρ), then we can develop q into a Fourier-cosine series as in (24) that converges in
L2(Λρ). (Developping q into a Fourier(-sine) series as in (7) does not allow to prove an analogue to the
crucial Lemma (5.2) below.) For l ∈ Z3

+ we define a polynomial ql by

ql(x) =
1

2hρ2

l1∑

m1=−l1+1

l2∑

m2=−l2+1

l3−1∑

m3=0

q̊(m)ϕm̃(x̃) cos
(π

h
n3x3

)
, l ∈ Z3

+. (30)

We extend the Fourier-cosine coefficients q̊(m) to all m ∈ Z3 by setting q̊( m̃
m3

) = 0 for m3 < 0. As
in (26), we set q̊l = (q̊(m))m∈Z

3
l,0

∈ Cl
0. Recall the mapping Cl,m : Cl

0 → Cm introduced in the end of

Section 4.

Lemma 5.2. An equivalent fully discrete form of the projection method (29) is given by

ûl − k̂l • R3l,lS3l

[
(C2l,3lq̊2l) •

(
S−1

3l El,3lûl

)]
= f̂l. (31)

Proof. For n ∈ Z3
+,

q̂ul(n) =

∫

Λρ

qulϕn dx =
∑

j∈Z
3
l

ûl(j)

∫

Λρ

qϕn ϕj dx

=
1

2hρ2

∑

j∈Z
3
l

ûl(j)
∑

m∈Z3,m3≥0

q̊(m)

∫ h

0

cos
(π

h
m3x3

)
sin(αn3x3) sin(αj3x3) dx3 δj̃−ñ,m̃.

Since 2 sin(αn3x3) sin(αj3x3) = cos((αn3 − αj3)x3) − cos((αn3 + αj3)x3) the latter integral reduces to

∫ h

0

cos
(π

h
m3x3

)
sin(αn3x3) sin(αj3x3) dx3

=
1

2

∫ h

0

cos
(π

h
m3x3

)[
cos
(π

h
(n3 − j3)x3

)
− cos

(π

h
(n3 + j3 − 1)x3

) ]
dx3

=

{
h
4 (δm3,n3−j3 − δm3,n3+j3−1) , m3 ≥ 0,
h
2 (δm3,n3−j3 − δm3,n3+j3−1) , m3 = 0,

and

q̂ul(n) =
1

8ρ2

∑

j∈Z
3
l

ûl(j)(1 + δm3,0)
[
q̊
(

j̃−ñ
n3−j3

)
− q̊

(
j̃−ñ

n3+j3−1

)]
. (32)

Consequently, the Fourier-cosine coefficients q̊(m) for m ∈ Z3 \ Z3
2l,0 do not influence the computation

of Pl(q ul). Using the definition of q2l in (30) we find that Pl(q ul) = Pl(q2l ul). Moreover, (32) with
q replaced by q2l also shows that q̂2lul(n) vanishes for n ∈ Z3

+ \ Z3
3l. Therefore the Fourier coefficients

of q2lul are given by S3l applied to the grid values of this trigonometric function at the grid points

(x
(3l)
n )n∈Z

3
3l

. For ûl, the grid values are given by S−1
3l El,3lûl. By construction, the grid values of q2l at

the grid points x
(3l)
n are C2l,3l(q̊2l). Hence,

(q̂2lul)(j) = S3l

[
C2l,3l(q̊2l) • S−1

3l El,3lûl

]
, j ∈ Z3

3l.

Since Vρ(Pl(qul)) is a Fourier polynomial, we can compute its Fourier coefficients SlVρ(Pl(qul)) from the
Fourier coefficients ûl of ul ∈ Tl by

SlVρ(Pl(qul)) = k̂l • P̂l(qul) = k̂l • ̂Pl(q2lul) = k̂l • R3l,lS3l

[
C2l,3l(q̊2l) • (S−1

3l El,3lûl)
]
.

Applying Sl to (29), we obtain the fully discrete matrix-vector formulation that was announced in (31).
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The advantage of the Galerkin (or projection) method (31) over the collocation method (28) is that
convergence can even be shown for discontinuous q. The drawback is that the Galerkin variant requires
larger memory space since it relies on Fourier transforms of higher dimension; however, our numerical
experiments later on indicate that the method is also more accurate than its collocation counterpart.
Further, it might be difficult to compute the Fourier coefficients q̊(n) of ql for complicated material
configurations; see Remarks 5.6 and 5.7 concerning this issue.

Proposition 5.3. Assume that q ∈ PC(Λρ) is such that the multiplication u 7→ qu is continuous on
W t for some t ≥ 0, ‖qu‖W t ≤ C‖u‖W t for all u ∈ W t. Then there is a constant C independent of
u and l such that ‖Vρ(qu) − VρPl(qu)‖W s ≤ C min(l)s−t−3/2‖u‖W t for s ≤ t + 3/2, and, if t > 3/2,
‖Vρ(qu) − VρQl(qu)‖W s ≤ C min(l)s−t−3/2‖u‖W t for 3/2 ≤ s ≤ t + 3/2.

Proof. We estimate ‖Vρ(qu) − VρPl(qu)‖W s ≤ C‖qu − Pl(qu)‖W s−3/2 ≤ C min(l)s−t−3/2‖qu‖W t ≤
C min(l)s−t−3/2‖u‖W t for s− 3/2 ≤ t. For t ≥ 3/2, s ≥ 3/2, and s− 3/2 ≤ t, ‖Vρ(qu)−VρQl(qu)‖W s ≤
C‖qu − Ql(qu)‖W s−3/2 ≤ C min(l)s−t−3/2‖qu‖W t ≤ C min(l)s−t−3/2‖u‖W t .

Theorem 5.4. Assume that the Lippmann-Schwinger equation (6) is uniquely solvable in L2(Λρ).
Then (20) has a unique solution u ∈ L2(Λρ) for any right-hand side f ∈ L2(Λρ).

(a) Assume that f ∈ W t, t ≥ 0, and that q is such that the multiplication u 7→ qu is continuous on
W r for 0 ≤ r ≤ max(t − 3/2, 0). Then for l ∈ Z3 with min(l) large enough there is a unique solution
ul ∈ Tl of (29) and

‖ul − u‖W s ≤ C min(l)s−t‖f‖W t for 0 ≤ s ≤ t.

(b) Assume that f ∈ W t for t > 3/2 and that q is such that the multiplication u 7→ qu is continuous
on W r for 3/2 < r ≤ t. Then for l ∈ Z3 with min(l) large enough there is a unique solution ul ∈ Tl

of (27) and
‖ul − u‖W s ≤ C min(l)s−t‖f‖W t for 0 ≤ s ≤ t.

Proof. Uniqueness of solution for the Lippmann-Schwinger equation (6) implies uniqueness of solution
for the periodized version (6) due to Proposition (3.6). The assumption that u 7→ qu is continuous on W r

implies by the (periodized) Lippmann-Schwinger equation that for a right-hand side in W t the solution
u ∈ L2(Λρ) belongs to W t, too. E.g., under the assumptions of part (a) and for t ≤ 3/2,

‖u‖W t ≤ C‖qu‖L2(Λρ) + ‖f‖W t ≤ C‖u‖L2(Λρ) + ‖f‖W t,

and for larger t one uses a bootstrap argument.
(a) For the projection method (29) we can apply a standard convergence results for such methods.

For instance, under our assumptions [26, Satz 4.2.9] yields ‖ul − u‖W s ≤ C minvl∈Tl
‖vl − u‖W s and

consequently

‖ul − u‖W s ≤ C min
vl∈Tl

‖vl − u‖W s ≤ C min(l)s−t‖u‖W t ≤ C min(l)s−t‖f‖W t .

(b) Compactness of Vρ on W s, the Fredholm alternative, boundedness of the multiplication operator
u 7→ qu on W r for the given range of r and unique solvability of (20) in L2(Λρ) imply that I−k2Vρ(q ·)
is an invertible operator on W s for 0 ≤ s ≤ t. Choose 3/2 < s ≤ t. Due to Proposition 5.3

‖ I−k2Vρ(q ·) − [I−k2VρQl(q ·)]‖W s→W s ≤ C min(l)−3/2,

and hence a Neumann series argument shows that I−k2VρQl(q ·) is invertible on W s and that
(I−k2VρQl(q ·))−1 is uniformly bounded for min(l) large enough. We apply I−k2VρQl(q ·) to the differ-
ence ul − u, where ul ∈ Tl is the solution of the discrete problem and u is the solution of the continuous
problem (20), and find that

(I−k2VρQl(q ·))(ul − u) = (Ql − I)f + Vρ(Ql − I)(qu). (33)

The uniform boundedness of (I−k2VρPl(q ·))−1 on W s yields

‖ul − u‖W s ≤ C‖(Ql − I)f + Vρ(Ql − I)(qu)‖W s

≤ C min(l)s−t‖f‖W t + ‖Vρ‖W s→W s‖(Ql − I)(qu)‖W s

≤ C min(l)s−t‖f‖W t + C‖Vρ‖W s→W s min(l)t−s‖qu‖W t , 3/2 < s ≤ t.

(34)
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Reformulating the left-hand side of (33), we obtain that

[I−k2Vρ(q·)](ul − u) − k2Vρ(Ql − I)(qul − qu) = (Ql − I)f + Vρ(Ql − I)(qu)

and hence the following estimate for all s ∈ [0, t],

‖ul − u‖W s ≤ ‖[I−k2Vρ(q·)]−1‖W s→W s

(
k2‖Vρ‖W s→W s‖(Ql − I)(qul − qu)‖W s

+ ‖(Ql − I)f‖W s + ‖Vρ‖W s→W s‖(Ql − I)qu‖W s

)

≤ C min(l)t−s
(
‖qul − qu‖W t + ‖f‖W t + ‖qu‖W t

)
≤ C min(l)t−s‖f‖W t , 0 ≤ s ≤ t.

(35)

The last inequality follows from the boundedness of the multiplication by q on W t and the bound
‖ul − u‖W t ≤ C‖u‖W t ≤ C‖f‖W t which is a consequence of (34).

Next we illustrate the above result by discussing smoothness assumptions for q. Let Cr,1(Λρ), r ∈ N,
be the space of all Lipschitz continuous functions on Λρ such that all partial derivatives up to order r
are still Lipschitz continuous.

Example 5.5. We suppose that the general assumptions of Theorem 5.3 hold.
(a) If f ∈ W t, 0 ≤ t ≤ 3/2, and q ∈ PC(Λρ), then Theorem 5.3(a) applies: Indeed, for q ∈ PC(Λρ)

the multiplication u 7→ qu is bounded on L2(Λρ) due to the Cauchy-Schwarz inequality.
(b) If f ∈ W t, t ≥ 0, and q ∈ Cr,1(Λρ), r ∈ N such that r ≥ max(t − 3/2, 0), then Theorem 5.3(a)

applies: Multiplication by q is shown to be bounded on L2(Λρ) as in part (a); thus, we assume now
that t − 3/2 > 0. Theorem 3.20 in [18] shows that ‖qu‖W s−3/2 ≤ C‖q‖Cr,1‖u‖W s−3/2 for 0 ≤ s ≤
max(t − 3/2, 0).

For f ∈ W t, t ≥ 3/2, and q ∈ Cr,1(Λρ), r ∈ N such that r ≥ t, the same argument shows that
Theorem 5.3(b) applies.

(c) If f, q ∈ W t, t > 3/2, then Theorem 5.3(b) applies: The multiplication by q is bounded on W s

since there is C > 0 such that ‖uv‖W s ≤ C‖u‖W s‖v‖W s for u, v ∈ W s, s > 3/2. This can be shown as
in [25, Lemma 5.13.1], where the corresponding result in one dimension is proven.

If f ∈ W t for t > 3 then it is even sufficient to assume that q ∈ W t−3/2 to obtain the estimate
‖ul−u‖W s ≤ C min(l)s−t‖f‖W t for 0 ≤ s ≤ t as in Theorem 5.3(b). To this end, we employ the inequality
‖qu‖W t−3/2 ≤ C‖q‖W t−3/2‖u‖W t from [13, Proof of Lemma 1]. Indeed, under these assumptions, the
inverse of I−k2VρQl(q·) is still uniformly bounded on W s for 3/2 < s ≤ t and (35) is replaced by

‖ul − u‖W s ≤ ‖[I−k2Vρ(q·)]−1‖W s→W s

(
k2‖Vρ‖W s−3/2→W s‖(Ql − I)(qul − qu)‖W s−3/2

+ ‖(Ql − I)f‖W s + ‖Vρ‖W s−3/2→W s‖(Ql − I)qu‖W s−3/2

)

≤ C min(l)t−s
(
‖qul − qu‖W t−3/2 + ‖f‖W t + ‖qu‖W t−3/2

)
≤ C min(l)t−s‖f‖W t, 0 ≤ s ≤ t.

Consider again the scattering problem of finding the scattered field us for an incident wave ui. The
Lippmann-Schwinger equation describing the scatterer field is u − k2Vρ(qu) = k2Vρ(qu

i). Since ui

is smooth, the smoothness of the right-hand side depends only the smoothness of q. For q ∈ PC(Λρ),
Vρ(qu

i) belongs, e.g., to W 3/2, and we obtain that ‖ul−u‖W s ≤ C min(l)s−3/2‖ui‖L2(Λρ) for the Galerkin

approximation where s ≤ 3/2. If q ∈ Cr,1(Λρ), then Vρ(qu
i) belongs to W r+3/2 and ‖ul − u‖W s ≤

C min(l)s−r−3/2‖ui‖L2(Λρ), again for the Galerkin approximation ul. For r ≥ 1 the same holds for ul

solving the collocation approximation.
The discrete systems (28) and (31) can be preconditioned by the inverse of the discrete system for a

coarser discretization, which leads to a two-grid method. This idea is well-known for integral equations
of the second kind and has been worked out in detail for Vainikko’s method in [12,13,28]. For the above
collocation and projection methods, preconditioners can be constructed in the very same way. Let us
write the collocation or the Galerkin discretization of (20) as

vl − Klvl = fl in Tl, l ∈ Z3
l , (36)

where Kl is either k2VρQl(ql
vl) or k2VρPl(q2lvl). For m < l, we multiply this equation by (Il −Km)−1.

(Il is the identity on Cl, Km is extended by zero from Tm onto Tl, and we assume that the inverse
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exists.) We note that (Il − Km)−1(Kl − Km)vl = vl − (Il − Km)−1(Il − Kl)vl. This implies that vl,
solution to (36), solves the fixed point equation

vl = (Il − Km)−1 [(Kl − Km)ul + fl] .

If m < l is large enough, this is a fixed-point equation for a contracting operator and the successive
approximations

v
(0)
l = (Il − Km)−1fl, v

(j)
l = (Il − Km)−1

[
(Kl − Km)u

(j−1)
l + fl

]
, j = 1, 2, . . . (37)

converge to the solution vl to (36). Since, in Fourier space, Km only acts on Fourier coefficients with
index in Z3

m, (Il − Km)−1 is easily computed spectrally. For instance, the fixed-point iteration (37)
formulated for the collocation method (27) reads

v̂
(j)
l =

[
(Il − Em,lRl,m) + Em,l

(
Im − k̂m • Sm[q

l
• S−1

m Rl,m]
)−1
]

[
k̂l • Sl[ql

• S−1
l û

(j−1)
l ] − Em,l

(
k̂m • Sm[q

l
• (S−1

m Rl,mû
(j−1)
l )]

)
+ Slf l

]
. (38)

The advantage of the fixed point iteration over solving (36) directly by an iterative solver is of course
that (37) requires, at each iteration, the inversion a smaller linear system than (36). Therefore the
memory requirements are considerably smaller than solving (36) directly by an iterative solver. For
instance, on the fine grid the scheme (38) requires merely to evaluate matrix-vector products of the form

k̂l • Sl[ql
• S−1

l û
(j−1)
l ] which requires O(L log(L)) (recall: L = 4l1l2l3) operations using the FFT. The

iteration requires to store the four vectors k̂l, q
l
, û

(j−1)
l and û

(j)
l and thus 16l1l2l3 complex variables.

We finish this section with a numerical experiment that confirms the convergence rates of Exam-
ple 5.5(c). For these experiments, h = 1/2, ρ = 1/2, and the wave number equals k = 12.5 which corre-
sponds to two propagating modes in the waveguide. We introduce the family of contrasts qα : Λρ → R

for α ≥ 0 by

qα(x) =

{(
1/16 − |x̃|2 − (x3 − 1/2)2

)α
if |x̃|2 + (x3 − 1/2)2 < 1/16,

0 else.
(39)

One can show that the function qα belongs to W s for all 0 ≤ s < α + 1/2. For comparability of the
computational results for different values of α we normalize the contrast qα to have L2(Ω)–norm equal
to one.

Remark 5.6. The Fourier coefficients q̂α(n) can be computed (semi-)explicitly since qα is a ra-
dial function (with respect to (0, 0, 1/2)⊤). Indeed, by rewriting the basis function cos(π/h n3x3) as
(exp(iπ/h n3x3)+exp(−iπ/h n3x3))/2 one finds a representation of q̊α(n) as an integral of a radial func-
tion times an exponential, and the formulas in [23] (see the proof of the first Lemma of Section 6) allows
to write q̊α(n) in terms of a one-dimensional integral that can either be computed explicitly (e.g., for α
an integer) or approximated numerically.

The test problem that we consider is to compute the scattered field for an incident point source
G(·, p) with source point p = (−2, 0, 1/4)⊤. We approximate the solution in Tl where l = (2n, 2n, 2n)⊤

for n = 2, . . . , 6. (The corresponding grid is uniform in all three directions with step width 2−n.) For all
computations, we use the two-grid scheme explained above, and we stop the fixed-point iteration of the
scheme when the relative residual is less than 10−8. The preconditioner on the coarse grid is computed
on Tm where m = (2⌊n/2⌋, 2⌊n/2⌋, 2⌊n/2⌋) using GMRES and we also stop the GMRES iteration when
the relative residual is less than 10−8. The choice of the discretization parameters as powers of two is
not crucial, but it is sufficient for our purpose of checking convergence rates. The reference solution
is computed using the collocation method for n = 8 and we iterate until the relative residual is less
than 10−10. This computations was done on a workstation with 4 processors and 12 GB RAM using
MATLAB. The computation of the reference solution just fitted into this RAM and the fixed-point
iteration converged after about 360 seconds (independent of α). Note also that the Fourier transforms in
MATLAB are computed using the FFTW package, and MATLAB executes these transforms in parallel
on the four processors.
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Figure 1 shows that the discrete L2–error of the projection method fits quite well to the theoretical
convergence estimates of Example 5.5(c). (The theoretical convergence rates are indicated by a dashed-
dotted line.) For α = 3/2, qα belongs to W s for s < 2 and Example 5.5(c) indicates a convergence
order 7/2 for the collocation method. For this α the numerical error indeed fits well to this predicted
convergence rate. For α = 0, 1/2, 1 there is no convergence theory for the collocation method, and Fig-
ure 1 shows that the collocation scheme does not reach the convergence rate min(l)α+2 of the projection
method.
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Figure 1: Relative L2-error of the collocation method and the projection method for waveguide medium
scattering from inclusions with contrast qα ∈ W s for s < α + 1/2. Pluses, circles, dots, and crosses
correspond to α = 0, 1/2, α = 1, and α = 3/2, respectively. The dotted lines indicate the convergence
order 3/2+α. (a) Collocation method: relative error versus n, l = (2n, 2n, 2n)⊤. (b) Projection method:
relative error versus n, l = (2n, 2n, 2n)⊤.

Table 1 indicates the run time for the experiments of Figure 1 in seconds. The run times for the
projection method are about six times larger than for the collocation method (the mean value of the
quotient is 6.15, the minimum is 5.2, the maximum is 5.8). On the other hand, the quotient of the relative
L2–error of the collocation method and the projection method is, at least for m = 6, always larger than
8. (For small m the value of the quotient is sometimes lower.) This shows that the projection method
has its own interest not only for the purpose of mathematical analysis: the more expensive numerical
scheme leads to a corresponding gain in numerical precision, at least if the approximation space has high
dimension.

α=0 α=0.5 α=1 α=1.5

m=2 0.04 0.04 0.17 0.17
m=3 0.17 0.17 0.93 0.93
m=4 0.44 0.44 0.44 0.44
m=5 1.62 1.63 1.64 1.64
m=6 7.79 7.61 7.67 7.66

α=0 α=0.5 α=1 α=1.5

m=2 0.25 0.24 0.24 0.24
m=3 0.93 0.93 0.93 0.93
m=4 2.76 2.76 2.75 2.75
m=5 13.36 12.93 13.17 13.00
m=6 45.87 45.05 45.14 46.74

(a) (b)

Table 1: Computation times for the errors presented in Figure 1 in seconds. (a) Collocation method.
(b) Projection method.

Remark 5.7. Since it is rather involved to obtain precise approximations for the Fourier coefficients q̊
for general q, we also tested a simplification of the projection method (31) where C2l,3l(q̊2l) is replaced by

q evaluated at the grid points x
(3l)
j . For the above class of contrasts qα this simplification did not perturb

the convergence rate of the method for α = 0, 1/2, 1, 3/2. However, we do not know whether it is possible
to prove this observation rigorously.
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6 Distributed Scatterers, a System of Integral Operators, and

Diagonal Approximation of the Green’s Function

In the next two sections we construct a variant of Vainikko’s method designed for a scatterer that
splits up into several disconnected parts. Our aim is to avoid to compute solutions for this geometry
in a large box containing all parts of the obstacle. To this end, we develop a mixed spectral/multipole
method generalizing the above technique in that the computational domains is the union of several
boxes containing each one of the disconnected parts of the scatterer. In this section we first derive a
reformulation of the Lippmann-Schwinger equation as a coupled system. Afterwards, we construct a
diagonal approximation of the waveguide Green’s function that relies on multipole expansions (see [11])
for Hankel functions with complex arguments. We briefly derive these expansions and prove error
estimates, since we did not find suitable multipole expansions for complex wave numbers in the literature
(note, however, that the recent work [10] provides numerical experiments and suggests parameter choices
for multipole expansions with complex wave numbers in 3D). In the next section we prove convergence
results and error estimates for the described extension of Vainikko’s method.

We assume that the contrast q = n2 − 1 splits up into J ∈ N parts,

q = q1 + q2 + · · · + qJ ,

where the functions qj have disjoint support Dj := supp(qj) in Ω. Strengthening this assumption, we
even suppose that there is oj ∈ R3 and ρj > 0 such that (recall: Bρ = {|x̃| < ρ}) Dj is compactly
contained in the cylinder B(j) := oj + Bρj/2,

Dj ⊂ B(j) = oj + Bρj/2, j = 1, . . . , J,

and that the closures B(j) are mutually disjoint. Set

δmin = inf
xi∈B(i), xj∈B(j), 1≤i6=j≤J

|xi − xj | and δmax = sup
xi∈B(i), xj∈B(j), 1≤i6=j≤J

|xi − xj |.

We further introduce computational domains Λ(j) := oj + Λρj that compactly contain the domains Dj .
The Lippmann-Schwinger integral equation u − k2V(qu) = f posed in L2(D), D := ∪J

j=1Dj , is now
decomposed into a system of equations. We split u = u1 + · · ·+uJ where supp(uj) ⊂ Dj for j = 1, . . . , J .
Since the supports Dj are disjoint, this splitting is unique. Set u = (u1, . . . , uJ)⊤, f = (f1, . . . , fJ)⊤ ∈
⊕J

j=1L
2(Dj) and q = (q1, . . . , qJ)⊤ ∈ ⊕J

j=1L
∞(Dj). We denote the element wise multiplication of such

vectors again by q • u, more precisely, q • u = (q1u1, . . . , qJuJ)⊤. Further, we define integral operators
V ij : L2(Λ(j)) → L2(Λ(i)) by

V iju =

∫

Λ(j)

G(·, y)u(y) dy

∣∣∣∣
Λ(i)

, i, j = 1, . . . , J. (40)

If u ∈ L2(D) solves (6), then u = (u1, . . . , uJ) ∈ ⊕J
j=1L

2(Dj) solves the integral equation

u − k2

(
V11 ··· V1J

...
. ..

...
VJ1 ··· VJJ

)
(q • u) = f in ⊕J

j=1 L2(Dj). (41)

Moreover, if u solves the latter vector-valued problem, than u ∈ L2(D) defined by u|Dj
= uj solves (6).

We will now reformulate this equation in spaces of periodic functions and afterwards consider numerical
schemes to solve it. As in Section (3), we consider the periodic kernels Gρj and the associated integral
operators Vρj . We denote the fractional Sobolev spaces W s from now on as W s(Λρj ). Further, W s =
⊕J

j=1W
s(Λρj ) for s ∈ R. We also set W = W 0 = ⊕J

j=1L
2(Λρj ). The norm on W s defined as ‖u‖W s =

∑J
j=1 ‖uj‖W s(Λρj

).

Since Dj ⊂ B(j) there exist cut-off functions χj ∈ C∞
0 (Λ(j)) such that χj = 1 on the support Dj of

qj , χj = 0 in Λ(j) \ B(j) and 0 ≤ χj ≤ 1. We use these cut-off functions to define truncation operators
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on Λ(j) that additionally shift the function into Λρj , see Figure 2,

T +
j :L2(Λρj ) → L2(Λ(j)), (T +

j u)(x) = (χju)(x − oj), x ∈ Λ(j), j = 1, . . . , J,

T−
j :L2(Λ(j)) → L2(Λρj ), (T−

j v)(x) = (χjv)(x + oj), x ∈ Λρj , j = 1, . . . , J.

The component-wise action of T−
j on u ∈ ⊕J

j=1L
2(Λ(j)) is denoted as T±u and we abbreviate

Kij = T−
i V ijT +

j for i 6= j, K =




Vρ1 ··· K1J

...
.. .

...
KJ1 ··· VρJ



 , (42)

that is, K has diagonal entries Vρj and off-diagonal entries Kij .

0

Λρ1

T−
1

T +
1

D1

D2 B(1)

B(2)
Λ(1)

Λ(2)

Figure 2: 2D-Sketch of a scatterer consisting of two parts D1 and D2. The cylinders B(1) = o1 + Bρ1/2

and B(2) = o2 +Bρ2/2 are contained in the boxes Λ(1) and Λ(2), respectively. The computational domain

Λρ1 is the reference domain for Λ(1) and T±
1 transport functions between the two domains.

Assumption 6.1. Throughout the rest of the paper we assume that the contrast q = (q1, . . . , qJ ) belongs
at least to PC := ⊕J

j=1PC(Λ(j)) and that each qj is compactly supported in B(j) = oj + Bρj/2.

Theorem 6.2. Let f ∈ W . Then any solution v ∈ W to

v − k2K(T−(q) • v) = f in W (43)

gives rise to a solution u ∈ ⊕J
j=1L

2(Dj) with right-hand side (T +fj)
J
j=1 of (41) by setting uj =

T +
j (vj)

∣∣
Dj

, j = 1, . . . , J . Any solution u to (41) with right-hand side (T +fj)
J
j=1 yields a solution v

to (43) by setting v = k2K(T−q • T−u) + f .

We omit the proof of Theorem 6.2, since it follows directly from Proposition 3.6. Note that Theo-
rem 6.2 implies that the regularity theory for the Lippmann-Schwinger equation carries over to (43).

Our aim is to discretize (43) on product spaces of trigonometric polynomials. Discretization of
the diagonal terms is done precisely as in Section 5. Discretization of the off-diagonal terms requires
multipole expansions for the waveguide Green’s function G in (4). Therefore we truncate the series (4)
and investigate approximate diagonalization of Hankel functions, to finally arrive in an exponentially
convergent diagonal approximation of G consisting only of a finite number of terms.

By m∗ we denote subsequently the first integer such that km = (k2 − α2
m)1/2 is purely imaginary.

Lemma 6.3. There is a constant C = C(δmin, m∗) > 0 independent of 1 ≤ i 6= j ≤ J such that for all
x ∈ B(i) and y ∈ B(j)

∣∣∣∣∣G(x, y) − i

2h

M∑

m=1

sin(αmx3) sin(αmy3)H
(1)
0 (km|x̃ − ỹ|)

∣∣∣∣∣ ≤ Ce−πδminM/h, M ≥ m∗. (44)
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Proof. First, we use [8, Lemma 2.2], stating that |H(1)
ν (z)| ≤ exp(− Im (z)(1−Θ2/|z|2)1/2)|H(1)

ν (Θ)| for
ν ∈ N0, Re (z) ≥ 0, Im (z) ≥ 0 and 0 < Θ ≤ |z|, to obtain that

∣∣∣H(1)
ν (km|x̃ − ỹ|)

∣∣∣ ≤ e
− Im (km) |x̃−ỹ|

„

1−
˛

˛

˛

km∗

km

˛

˛

˛

2
«1/2 ∣∣∣H(1)

ν (|km∗ ||x̃ − ỹ|)
∣∣∣ , m ≥ m∗, ν ∈ N0. (45)

Using the integral formula [21, Pg. 441]

|H(1)
ν (r)|2 = J2

ν (r) + Y 2
ν (r) =

8

π2

∫ ∞

0

K0(2r sinh(t)) cosh(2νt) dt , ν ≥ 0, r > 0, (46)

and the integral representation [1, Eq. 9.6.24] for the modified Bessel function K0, it follows that |H(1)
ν (r)|

is monotonically decreasing in r > 0 for ν ∈ N0. For 1 ≤ i 6= j ≤ J , x ∈ B(i) and y ∈ B(j), the difference
x̃ − ỹ is bounded from below by δmin > 0. Since

exp
(
− Im (km) |x̃ − ỹ|(1 − (|km∗/km|2)1/2

)
≤ exp

(
− Im (km) δmin (1 − |km∗/km|)

)

= exp(− Im (km) δmin) exp(δmin |km∗ |)

we hence obtain ∣∣∣H(1)
0 (km|x̃ − ỹ|)

∣∣∣ ≤ C exp(− Im (km)δmin)
∣∣∣H(1)

0 (|km∗ |δmin)
∣∣∣

for m ≥ m∗ where C = eδmin |km∗ |. Moreover, Im (km) = (α2
m − k2)1/2 ≥ αm − k ≥ πm/h − π/(2h) − k

for m ≥ m∗. Now we are ready to prove the claim,

∣∣∣∣∣

∞∑

m=M+1

sin(αmx3) sin(αmy3)H
(1)
0 (km|x̃ − ỹ|)

∣∣∣∣∣ ≤
∞∑

m=M+1

∣∣∣H(1)
0 (km|x̃ − ỹ|)

∣∣∣ ≤ C

∞∑

m=M+1

e−δmin(αm−k)

≤ C

∞∑

m=M+1

e−δmin( π(2m−1)
2h −k) ≤ C

exp
(
δmin

(
k + π

2h

))

1 − exp(−πδmin/h)
e−πδminM/h. (47)

For fixed m ∈ N, the Hankel functions H
(1)
0 (km|x̃− ỹ|) can be approximately diagonalized. For x̃ we

write its cylindrical coordinates as

x̃ = (rx cos(ϕx), rx sin(ϕx))
⊤

.

Choose N ∈ N, x ∈ B(i) and y ∈ B(j), i 6= j. Further, let a ∈ [−N, N ] such that a ≡ m (mod 2N + 1),

f±
n (x̃, k) = e±ikrx cos( 2πn

2N+1−ϕx), and sn(x̃, k) =
1

2N + 1

N∑

j=−N

(−i)jH
(1)
j (krx)eij(ϕx−

2πn
2N+1 ). (48)

We introduce short-hand notation for cylindrical coordinates of some special vectors. For 1 ≤ 1 6= j ≤ J ,

oi − oj =
(
rij cos(ϕij), rij sin(ϕij), 0

)⊤
,

and for x ∈ B(i) and y ∈ B(i) we define functions r(x, y) and ϕ(x, y) by

(ỹ − oj) − (x̃ − oi) =
(
r(x, y) cos(ϕ(x, y)), r(x, y) sin(ϕ(x, y)), 0

)⊤
. (49)

Strictly speaking, r(x, y) = rij(x, y) but since we always consider x ∈ Λ(i) and y ∈ Λ(j) in the following
it will not cause confusion to suppress this dependence (also for ϕ(x, y)).

A multipole expansion for the two-dimensional fundamental solution to the Helmholtz equation with
real wave number has been presented and analyzed in [3, 5]. However, we did not find such expansions
for complex wave numbers in the literature.
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Proposition 6.4. For x ∈ B(i), y ∈ B(j), 1 ≤ i 6= j ≤ J , and m ∈ N it holds that

H
(1)
0 (km|x̃ − ỹ|) =

2N+1∑

n=1

f−
n (x̃ − oi, km)sn(oi − oj , km)f+

n (ỹ − oj , km)

+
∑

|n|>N

Jn(kmr(x, y))e−inϕ(x,y)
(
H(1)

n (kmrij)e
inϕij + in−aH(1)

a (kmrij)e
iaϕij

)
. (50)

Remark 6.5. In the next lemmas we show that the second line of (50) is small, and hence the first line

yields an approximation of H
(1)
0 (km|x̃ − ỹ|) where x̃ and ỹ are decoupled.

Proof. The wave number k in [3] is restricted to be positive, however, inspecting the proof given in the
latter paper one can verify that the expansion (50) extends to wave numbers k ∈ C, and thus especially
to the modal wave numbers km. Essentially, this follows from checking that the addition theorem and
the integral identities used to derive (50) extends to complex wave numbers. To this end, one employs
the following version of the addition theorem from [16, Ch. 5.12] which holds for all k ∈ C,

H
(1)
0 (k|z̃|) =

∞∑

m=−∞

H(1)
m (k|x̃|)Jm(k|ỹ|)eim(θx̃−θỹ), z̃ = x̃ + ỹ, |x̃| > |ỹ|.

Consequently, splitting x − y = oi − oj + r(x, y)(cos(ϕ(x, y)), sin(ϕ(x, y)))⊤ and noting that oi − oj =
|oi − oj |(cos(ϕij), sin(ϕij))

⊤, we find that

H
(1)
0 (km|x̃ − ỹ|) =

∞∑

m=−∞

H(1)
m (kmrij)Jm(kmr(x, y))eim(ϕij−ϕ(x,y)). (51)

This identity replaces equation (3.2) in the proof of [3, Theorem 3.1] and allows to extend (50) to complex
wave numbers. The rest of the proof is quite similar to the proof given in [3]. One notes that

Jm(kmr(x, y)) =
1

2πim

∫ 2π

0

ei(kmr(x,y) cos(t)−mt) dt =
1

2πim

∫ 2π

0

eikmr(x,y) cos(t−ϕ(x,y))e−im(t−ϕ(x,y)) dt

by a change of variables t 7→ t − ϕ(x, y). Then one exploits that

r(x, y) cos(t − ϕ(x, y)) = r(x, y)
[
cos(t) cos(ϕ(x, y)) + sin(t) sin(ϕ(x, y))

]
= (x − oi − y + oj) ·

(
cos(t)
sin(t)

)

to get that

Jm(kmr(x, y))e−imϕ(x,y) =
1

2πim

∫ 2π

0

e
ikm(x−oi−y+oj)·

( cos(t)
sin(t)

)
e−imt dt .

Now one discretizes the integral appearing in the latter equation using the trapezoidal rule with 2N + 1
quadrature points and replaces the term Jm(kmr(x, y)) exp(−imϕ(x, y)) in (51) by the resulting expres-
sion. The computation of the resulting error can be done precisely as in [3] and yields the remainder
term appearing in the second line of (50).

Lemma 6.6. Let m ∈ N and assume that there exists a constant η ∈ (0, 1/2) such that r(x, y) < ηrij

for all x ∈ B(i) and y ∈ B(j), 1 ≤ i 6= j ≤ J . Then there is C = C(δmax, η) and N0 = N0(km, δmax) such
that for 1 ≤ i 6= j ≤ J , x ∈ B(i), and y ∈ B(j),

∣∣∣∣∣∣

∑

|n|>N

Jn(kmr(x, y))e−inϕ(x,y)
(
H(1)

n (kmrij)e
inϕij + in−aH(1)

a (kmrij)e
iaϕij

)
∣∣∣∣∣∣
≤ CηN , N ≥ N0.

Proof. For real km the estimate for the remainder term that needs to be shown follows from [3, 5].
However, we need to indicate how to extend this estimate to complex wave numbers km for m > m∗ Due
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to πH
(1)
n (km|x̃− ỹ|) = −2ie−nπi/2Kn(|km||x̃− ỹ|) and since the modified Bessel function Kn is monotonic

in n for real arguments due to [1, Eq. 9.6.24], we can estimate

∣∣∣∣∣∣

∑

|n|>N

Jn(kmr(x, y))e−inϕ(x,y)
(
H(1)

n (kmrij)e
inϕij + in−aH(1)

a (kmrij)e
iaϕij

)
∣∣∣∣∣∣

≤ 2
∑

|n|>N

|Jn(kmr(x, y))| |H(1)
n (kmrij)|, m > m∗.

(52)

Moreover, since Jn(kmr(x, y)) = enπi/2In(|km|r(x, y)), and since In and Kn are positive and real for
positive orders and real arguments we also have

∣∣∣∣∣∣

∑

|n|>N

Jn(kmr(x, y))e−inϕ(x,y)
(
H(1)

n (kmrij)e
inϕij + in−aH(1)

a (kmrij)e
iaϕij

)
∣∣∣∣∣∣

≤ 4

π

∑

|n|>N

In(|km|r(x, y)) In(|km|rij), m ≥ m∗.

Due to [20, Proposition 1] we know that

0 <
In+1(r)

In(r)
≤ r

r + n
, n ≥ 0, r > 0,

and [15, Theorem 2.1] states that

0 <
Kn+1(r)

Kn(r)
≤ (n + 1) +

√
(n + 1)2 + r2

r
, n ≥ 0, r > 0.

Hence, because r(x, y) ≤ ηrij ,

In+1(|km|r(x, y))Kn+1(|km|rij)

In(|km|r(x, y))Kn(|km|rij)
≤ |km|r(x, y)

|km|r(x, y) + n

n + 1 +
√

(n + 1)2 + |km|2r2
ij

|km|rij

≤ η
n + 1 +

√
(n + 1)2 + |km|2r2

ij

|km|r(x, y) + n

≤ η



1 +
1

n
+

√(
1 +

1

n

)2

+
|km|2δmax

n





≤ η



1 +
1

N + 1
+

√(
1 +

1

n

)2

+
|km|2δmax

N + 1



 .

Since we assumed that 0 < η < 1/2, we can choose N0 = N0(km, δmax) so large that

ηN := η



1 +
1

N + 1
+

√(
1 +

1

N

)2

+
|km|2δmax

N + 1



 < 1 for N ≥ N0.

With this choice of N0, for any N ≥ N0 the series

∑

n>N

In(|km|r(x, y))Kn(|km|rij) ≤ IN+1(|km|r(x, y))KN+1(|km|rij)
∑

n>N

ηn−N−1
N

≤ 1

1 − ηN
IN+1(|km|r(x, y))KN+1(|km|rij)

(53)
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converges. From the asymptotic expansion of the Bessel functions IN and KN for large orders [1, Eq.
9.3.1] we infer that

IN+1(|km|r(x, y))KN+1(|km|rij) ≤ |JN+1(|km|r(x, y))| |H(1)
N+1(|km|rij)|

≤ C

N + 1

(
e|km|r(x, y)

2N + 2

)N+1(
e|km|rij

2N + 2

)−N−1

=
C

N + 1

(
r(x, y)

rij

)N+1

≤ C

π

ηN+1

N + 1
. (54)

Plugging in (54) into (53) and combining it with (52) yields the result.

Combining Lemmas 6.3 and 6.6 yields the following error estimate for the approximation

GM,N (x, y) =
i

2h

M∑

m=1

sin(αmx3) sin(αmy3)

2N+1∑

n=1

f−
n (x̃ − oi, km)sn(oi − oj , km)f+

n (ỹ − oj , km) (55)

for x ∈ Λ(i) and y ∈ Λ(j) to the waveguide Green’s function G.

Proposition 6.7. Assume that there exists a constant η ∈ (0, 1/2) such that r(x, y) < ηrij for all
x ∈ B(i) and y ∈ B(j), 1 ≤ i 6= j ≤ J . Then there is C = C(δmin, δmax, m

∗, η) such that for 1 ≤ i 6= j ≤ J ,
x ∈ B(i), and y ∈ B(j), it holds

|G(x, y) − GM,N (x, y)| ≤ C(e−πδminM/h + MηN ) M ≥ m∗, N ≥ N0(kM , δmax).

Proof. By Lemma 6.3 we arrive in an exponentially convergent approximation to the waveguide’s Green’s
function G that consists of M terms. The M Hankel functions in this approximation are then diagonalized
using Lemma 6.6, introducing an error of the order of MηM .

We also need a corresponding error estimate for partial derivatives of G(x, y)−GM,N (x, y). To this end
we use multiindex notation and denote the length of a multiindex β = (β1, β2, β3)

⊤ by |β|1 = β1+β2+β3.

Proposition 6.8. Assume that there exists a constant η ∈ (0, 1/2) such that r(x, y) < ηrij for all
x ∈ B(i) and y ∈ B(j), 1 ≤ i 6= j ≤ J . Denote by β = (β1, β2, β3) ∈ N2

0 a multiindex with β1 + β2 ≤ 2,
β3 ∈ N0. Then there is a constant C = C(δmin, δmax, η, m∗, |β|1) such that for 1 ≤ i 6= j ≤ J , x ∈ B(i),
and y ∈ B(j), it holds

∣∣∣∣
∂|β|1

∂xβ

(
G(x, y) − GM,N (x, y)

)∣∣∣∣ ≤ C(e−πδminM/h + MηN ) M ≥ m∗, N ≥ N0(kM , δmax).

Proof. We proceed as for the estimate in Proposition 6.7 and first truncate the series defining the partial
derivative of the Green’s function G. Afterwards we use a multipole expansion for the Hankel functions
appearing in the truncated series.

For 1 ≤ i 6= j ≤ J , x ∈ B(i), and y ∈ B(j) we have that |x̃ − ỹ| > δmin and therefore the series in (4)
converges absolutely and uniformly,

∂|β|1

∂xβ
G(x, y) =

i

2h

∞∑

m=1

sin(αmy3)
∂|β|1

∂xβ

(
sin(αmx3)H

(1)
0 (km|x̃ − ỹ|)

)
, |x̃ − ỹ| > δmin, (56)

and we need to obtain bounds for the remainder of the truncated series. Obviously, partial derivatives
with respect to x3 have no effect other than creating factors |αm| ≤ Cm. Again, we use (45) and

monotonicity of |H(1)
0 (r)| in r to conclude that

∣∣∣∣∣

∞∑

m=M

sin(β3)(αmx3) sin(αmy3)H
(1)
0 (km|x̃ − ỹ|)

∣∣∣∣∣ ≤ C

∞∑

m=M

|αm|β3e−| Im (km)|δmin ≤ Ce−πδminM/h

for β3 ∈ N. Taking partial derivatives with respect to x2 or x3 yields derivatives of H
(1)
0 (km|x̃ − ỹ|). The

resulting higher-order Bessel functions H
(1)
ν are then estimated again by (45) against an exponentially

decaying sequence. The factor km grows linearly in m and hence does not spoil this decay. Derivatives
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of x 7→ a(x, y) = |x̃− ỹ| can be bounded by |∂a/∂x1,2| ≤ 1 and |∂|β̃|1a/∂xβ̃| ≤ 2/δmin for any multiindex

β̃ ∈ N2
0 of length |β̃|1 = 2. Combining the latter estimates yields

∣∣∣∣∣

∞∑

m=M

sin(αmx3) sin(αmy3)
∂|β̃|1

∂xβ̃
H

(1)
0 (km|x̃ − ỹ|)

∣∣∣∣∣ ≤ C exp(−δminM).

Finally, we also need to estimate partial derivatives of the remainder term appearing in the second
line of (50), for all m = 1, . . . , M . Indeed, after truncating the representation of the waveguide Green’s
function G in (56), we rely on the multipole expansion (50) to diagonalize the first M terms of the
Green’s function. We need to estimate

∑

|n|>N

∂|β̃|1

∂xβ̃

[
Jn(kmr(x, y))e−inϕ(x,y)

] (
H(1)

n (kmrij)e
inϕij + in−aH(1)

a (kmrij)e
iaϕij

)
(57)

for m = 1, . . . , M . We mimic the proof of [3, Lemma 3.2] and proceed by bounding partial derivatives
of Jn(kr(x, y))e−inϕ(x,y) in terms of higher-order Bessel functions. The definitions of r(x, y) and ϕ(x, y)
in (49) imply that |∂r(x, y)/∂x1,2| ≤ 1, |∂ϕ(x, y)/∂x1,2| ≤ 1/r(x, y), and

∂|β̃|1

∂xβ̃
r(x, y) ≤ 2

r(x, y)
,

∂|β̃|1

∂xβ̃
ϕ(x, y) ≤ 3

r(x, y)2
for |β̃| ≤ 2, r(x, y) > 0.

Following the proof of [3, Lemma 3.2], we arrive at

∣∣∣∣∣
∂|β̃|1

∂xβ̃
Jn(kr(x, y))e−inϕ(x,y)

∣∣∣∣∣ ≤
3|k|
2

Jn−1(|k|r(x, y)), |β̃| ≤ 1, and

∣∣∣∣∣
∂|β̃|1

∂xβ̃
Jn(kr(x, y))e−inϕ(x,y)

∣∣∣∣∣ ≤ 4|k|2Jn−2(|k|r(x, y)), |β̃| ≤ 2, n ≥ 3.

These bounds imply the given error estimates for the remainder term in (57) by the same techniques
employed in the proof of Lemma 6.6.

7 A Combined Spectral/Multipole Method for Multiple Scat-

tering

In this section, we consider a fully discrete approximation to the system of integral equations (43) and
prove convergence of the discrete solution to the solution of (43). The system of integral equations (43) is
equivalent the (periodized) Lippmann-Schwinger integral equation (20) considered in Section 5. However,
if the scatterer contains multiple components, discretizing the system (43) results in a much smaller linear
system then discretizing directly (20).

Using the same notation as in the last section, we define V ij
M,N to be the volume integral operator

with kernel GM,N (see (55)),

V ij
M,Nu =

∫

Λ(j)

GM,N (·, y)u(y) dy

∣∣∣∣
Λ(i)

, i, j = 1, . . . , J,

and by Kij
M,N : L2(Λρj ) → L2(Λρi) an associated operator defined by Kij

M,N = T−
i V ij

M,NT +
j . We first

prove the following operator approximation result.

Proposition 7.1. Let 1 ≤ i 6= j ≤ J and assume that there exists a constant η ∈ (0, 1/2) such that
r(x, y) < ηrij for all x ∈ B(i) and y ∈ B(j), 1 ≤ i 6= j ≤ J . Then

‖(Kij −Kij
M,N )ϕ‖W s+2(Λρi

) ≤ C(e−πδminM/h + MηN)‖ϕ‖W s(Λρj
) (58)

for all ϕ ∈ W s(Λρj ), s ≥ 0, M ≥ m∗ and N ≥ N0(kM , δmax) large enough.
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Proof. Due to real interpolation theory for fractional Sobolev spaces (see, e.g., [25, Lemma 5.12.2]) it
is sufficient to prove (58) for s ∈ N0. For s = 0, this estimate follows from Proposition 6.8 and the
Cauchy-Schwartz inequality. For s a positive integer we make use of an equivalent norm on W s(Λρj ).
Namely, there are constants c1 > 0 and c2 > 0 such that

c1‖ϕ‖2
W s(Λρj

) ≤
∑

|β|1≤s

∥∥∥∥
∂|β|1u

∂xβ

∥∥∥∥
2

L2(Λρj
)

≤ c2‖ϕ‖2
W s(Λρj

), s ∈ N.

Moreover, we make use of the following property of G and GM,N : For β̃ ∈ N2
0,

∂|β̃|1

∂x̃β̃
G(x, y) = (−1)β̃ ∂|β̃|1

∂ỹβ̃
G(x, y), and

∂|β̃|1

∂x̃β̃
GM,N (x, y) = (−1)β̃ ∂|β̃|1

∂ỹβ̃
GM,N (x, y). (59)

Both relations hold since G(x, y) and GM,N (x, y) only depend on the difference x̃ − ỹ. Let us denote

K(x, y) = G(x, y) − GM,N (x, y)

for the rest of this proof and assume that β ∈ N3
0 is a multiindex of length less than or equal to s + 2.

By (59),

∂|β|1

∂xβ
(T−

i (V ij − V ij
M,N )T +

j ϕ) =
∂|β|1

∂xβ

[
χi(x + oi)((V ij − V ij

M,N )T +
j ϕ)(x + oj)

]

=
∑

γ≤β

(
β

γ

)
∂|β−γ|1

∂xβ−γ
χi(x + oi)

∫

Λ(j)

∂|γ|1

∂xγ
K(x, y) (χjϕ)(y − oj) dy

=
∑

γ≤β

(−1)|γ̃|
(

β

γ

)
∂|β−γ|1

∂xβ−γ
χi(x + oi)

∫

Λ(j)

∂γ3

∂xγ3

3

∂|γ̃|1

∂ỹγ̃
K(x, y) (χjϕ)(y − oj) dy .

Now we integrate by parts up to s − 2 times to transport derivatives with respect to ỹ onto ϕ. Hence,
split γ̃ = γ1 + γ2 into two multiindices where |γ1|1 ≤ 2 and |γ2|1 ≤ s − 2. Since χj ∈ C∞

0 (Λρj ) vanishes
on the boundary of Λρj , there arise no boundary terms from the partial integration,

∫

Λ(j)

∂γ3

∂xγ3

3

∂|γ̃|1

∂ỹγ̃
K(x, y) (χjϕ)(y − oj) dy = (−1)|γ̃|

∫

Λ(j)

∂γ3

∂xγ3

3

∂|γ1|1

∂x̃γ1
K(x, y)

∂|γ2|1

∂ỹγ2
(χjϕ)(y − oj) dy ,

and using the Cauchy-Schwarz inequality and Proposition 6.8 we estimate

∥∥∥∥
∫

Λ(j)

∂|γ|1

∂xγ
K(·, y) (χjϕ)(y − oj) dy

∥∥∥∥
2

L2(Λ(i))

≤ C

∫

Λ(i)

∫

Λ(j)

∣∣∣∣
∂|γ1|1

∂x̃γ1
K(x, y)

∣∣∣∣
2

dy dx ‖ϕ‖2
W s−2(Λρj

)

≤ C(e−πδminM/h + MηN )2‖ϕ‖2
W s−2(Λρj

)

for M ≥ m∗ and N ≥ N0(kM , δmax). Consequently,

∥∥∥∥
∂|β|1

∂x̃β
(T−

i (V ij − V ij
M,N)T +

j ϕ)

∥∥∥∥
L2(Λρi

)

≤ C(e−πδminM/h + MηN )‖ϕ‖W s−2(Λρj
)

where C is independent of M ≥ m∗, N ≥ N0(kM , δmax), and ϕ ∈ W s−2(Λρj ).

The last lemma yields discrete schemes for the spectral approximation of the off-diagonal terms
T−

i V ijT +
j occurring in the operator K in (42). We discretize these operators by replacing the kernel

G by GM,N and apply projection operators to the separable parts of GM,N depending on x and y.
(Since there is no danger of confusion we do not yet denote the dependence of the projection operators
on the domain Λρj explicitly.) This procedure yields finite-dimensional operators that we denote by
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Kij
M,N,l1,l2

: L2(Λρj ) → L2(Λρi),

(Kij
M,N,l1,l2

ϕ)(x) =
i

2h

M∑

m=1

2N+1∑

n=1

Ql1

[
χi(x) sin(αmx3)f

−
n (x̃, km)

]
(x) sn(oi − oj , km)

∫

Λ(j)

Ql2

[
χj(y − oj) sin(αmy3)f

+
n (ỹ, km)

]
(y)ϕ(y − oj) dy (60)

for x ∈ Λρi , ϕ ∈ L2(Λρj ), l1,2 ∈ N3 and 1 ≤ i 6= j ≤ J . Recall that we defined Kij = T−
i V ijT +

j in (42).

Proposition 7.2. Under the assumptions of Proposition 7.1,

‖Kijϕ −Kij
M,N,l1,l2

ϕ‖W s+2(Λρi
) ≤ C(e−πδminM/h + MηN + C1(N)C2(M)(min(l1, l2))

s+2−r)‖ϕ‖W s(Λρj
)

(61)
for all ϕ ∈ W s(Λρj ), s ≥ 0, M > m∗, N ≥ N0(Km, δmin), r > s + 2, and l1,2 ∈ N3.

Remark 7.3. The proof shows that the constant C1(N) grows exponentially in N , see (63). The behavior
of C2(M) for large M depends on the sign of max1≤i6=j≤J (ρi + ρj − δmin). If this quantity is negative,
then C2(M) ∼ M2r, if it is positive, then C2(M) grows exponentially in M .

Proof. The estimate to be shown is based on Lemma (4.3), stating that ‖u − Qlu‖W s+2(Λρj
) ≤

C min(l)s+2−r‖u‖W r(Λρj
) for u ∈ W r(Λρj ) with r > 3/2 and 0 ≤ s + 2 ≤ r. Moreover, the error

estimates for Kij
M,N,l1,l2

depend on the smoothness of the kernel GM,N (x, y) in both variables x and y.
The expansion (50) shows that the smoothness of GM,N (x, y) directly depends on the smoothness of the
functions f±

n defined in (48),

f±
n (x̃, km) = e±ikmrx cos( 2πn

2N+1−ϕx) = e±ikmrx[sin( 2πn
2N+1) cos(ϕx)−cos( 2πn

2N+1 ) sin(ϕx)]

= e±ikm[sin( 2πn
2N+1)x1−cos( 2πn

2N+1)x2].

Hence, f±
n (x̃, k) is a plane wave with wave number km, and hence especially a smooth function of

x̃ = (x1, x2)
⊤. Moreover, any partial derivative of order β ≥ 0 of f±

n (·, km) is pointwise bounded by

∣∣∣∣∣
∂|β̃|1

∂x̃β̃
f±

n (x̃, km)

∣∣∣∣∣ ≤ |km|β̃eIm (km)ρj , x ∈ Λρj , β ∈ N2
0.

As |km| grows like m as m → ∞,

‖χj sin(αmx3)f
±
n (x̃, km)‖W s(Λρj

) ≤ CmseIm (km)ρj , s ∈ N0, (62)

where C is independent of j = 1, . . . , J , m ∈ N, and n ∈ Z. As in (45) one deduces that |H(1)
n (kmrij)| ≤

exp(δmin|km∗ |) exp(− Im (km)δmin)|H(1)
ν (|km∗ |δmin)| for m ≥ m∗ and the monotonicity of H

(1)
ν , see (46)

implies that |H(1)
ν (kmrij)| ≤ C exp(− Im (km)δmin)|H(1)

N (|km∗ |δmin)| for m ≥ m∗ and |ν| ≤ N . Since

0 < km∗−1 < k, |H(1)
ν (kmrij)| ≤ |H(1)

N (km∗−1δmin)| for m < m∗ and |ν| ≤ N . Set

kmin = min(|km∗ |, km∗−1).
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The norm of χi(x)GM,N (x, y)χj(x) in the space W r(Λρj ) × W r(Λρj ) is hence bounded by

‖χi(x)GM,N (x, y)χj(y)‖W r(Λρj
)×W r(Λρj

) ≤
M∑

m=1

2N+1∑

n=1

‖χi sin(αmx3)f
−
n (x̃, km)‖W r(Λρi

)

|sn(oi − oj , km)|‖χj sin(αmy3)f
+
n (ỹ, km)‖W r(Λρj

)

≤ C

M∑

m=1

m2re(ρi+ρj−δmin) Im (km)
2N+1∑

n=1

∣∣∣H(1)
n (kminδmin)

∣∣∣ (63)

≤ C(2N + 1)
∣∣∣H(1)

2N+1(kminδmin)
∣∣∣

M∑

m=1

m2re(ρi+ρj−δmin) Im (km)

≤ C (2N + 1)
∣∣∣H(1)

2N+1(kminδmin)
∣∣∣

︸ ︷︷ ︸
=:C1(N)

M2r

(
m∗ − 1 +

M∑

m=m∗

e(ρi+ρj−δmin)(α2
m−k2)1/2

)

︸ ︷︷ ︸
=:C2(M)

The constant C1(N) grows exponentially in N . The behavior of C2(M) depends on the sign of ρi + ρj −
δmin. Recall that αm − k ≤ (α2

m − k2)1/2 ≤ αm = π/(2h)(2m − 1). If ρi + ρj − δmin ≥ 0 then C2(M)
grows exponentially in M , too. More interesting is the case, ρi + ρj − δmin < 0, where

M∑

m=m∗

e(ρi+ρj−δmin)(α2
m−k2)1/2 ≤ e−k(ρi+ρj−δmin)

M∑

m=m∗

eπ/h(ρi+ρj−δmin)m ≤ e(πm∗/h−k)(ρi+ρj−δmin)

1 − eπ/h(ρi+ρj−δmin)
.

Hence, C2(M) grows only polynomially in M if ρi + ρj − δmin < 0,

C(M) ≤ M2r

[
m∗ − 1 +

exp((πm∗/h − k)(ρi + ρj − δmin))

1 − exp(π/h(ρi + ρj − δmin))

]
.

The kernel of Kij
M,N,l1,l2

is obtained from χi(x)GM,N (x + oi, y + oj)χj(y) by application of Ql1 and Ql2

acting on the x- and on the y variables, respectively. Hence,

((Kij
M,N−Kij

M,N,l1,l2
)ϕ)(x) = χi(x)

∫

Λρj

(I − Ql2,y) [GM,N (x + oi, y + oj)χj(y + oj)] ϕ(y + oj) dy

− (I − Ql1,x)

[
χi

∫

Λρj

Ql2,y [GM,N (x + oi, y + oj)χj(y + oj)] ϕ(y + oj) dy

]
, x ∈ Λρi .

Thus,

‖(Kij
M,N −Kij

M,N,l1,l2
)ϕ‖W s(Λρi

) ≤ C min(l1, l2)
s+2−r‖χiGM,N (· + oi, · + oj)χj‖W r(Λρi

)×W r(Λρj
)‖ϕ‖L2(Λρj

)

≤ CC1(N)C2(M)min(l1, l2)
s+2−r‖ϕ‖L2(Λρj

)

where C is independent of M , N and l1,2. From Lemma 7.2 we know that ‖(Kij −Kij
M,N )ϕ‖W s+2(Λρi

) ≤
C(e−πδminM/h + MηN )‖ϕ‖W s(Λρj

). Combining the last two estimates yields (61).

Next we derive error estimates for discretizations of the integral equation (43). As in Section 5, an
important point is to project the product T−q • vl back into spaces of trigonometric polynomials. The
two available options are the projection and interpolation operators Plj and Qlj into Tl(Λρj ), the space of
trigonometric polynomials Tl defined on Λρj . For l = (l1, . . . , lJ) ∈ N3×J we define a finite-dimensional
product space Tl = ⊕J

j=1Tlj (Λρj ). Let us set

Pl : W → Tl, Plu = (Pl1u1, . . . , PlJ uJ)⊤, Ql : W → Tl, Qlu = (Ql1u1, . . . , QlJ uJ)⊤.

For a discretization parameter l ∈ N3×J we define a J × J matrix of operators KM,N,l with diagonal

entries Vρi and off-diagonal entries Kij
M,N,li,lj

for 1 ≤ i, j ≤ J . The projection and collocation versions

of the spectral/multipole discretization of (43) for the unknown vl ∈ Tl are then

(a) vl − k2KM,N,l♭Pl(T
−(q) • vl) = Plf , (b) vl − k2KM,N,l♭Ql(T

−(q) • vl) = Qlf , (64)
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respectively. Here, l♭ ∈ N3×J can be chosen smaller than l to reduce the complexity of the scheme (see
also Remark 7.4).

Let us now formulate the discrete scheme (64) in matrix-vector form. For the diagonal operators this
has already been done in Section 5 and thus we concentrate now on the off-diagonal terms: Given the
Fourier coefficients ϕ̂ of ϕ ∈ Tlj(Λρj ), we seek to compute the vector containing the Fourier coefficients

of Kij
M,N,li,lj

ϕ. The interpolation projection of χi(x) sin(αmx3)f
±
n (x̃+ oi, km) that appears in Kij

M,N,li,lj
,

see (60), is denoted as

b−m,n,i := Qli

[
χi(x) sin(αmx3)f

−
n (x̃ + oi, km)

]
∈ Tli(Λρi),

b+
m,n,j := Qlj

[
χj(x) sin(αmx3)f

+
n (x̃ + oj , km)

]
∈ Tlj (Λρj ),

for i, j = 1, . . . , J , m = 1, . . . , M , n = 1, . . . , 2N + 1. By b̂
±

m,n,i we denote the corresponding Fourier
coefficients, considered as a column vector of size Li (the dimension of Tli(Λρi)). The M(2N + 1) × Li

matrix B±
i contains the vectors b̂

±

m,n,i as rows,

B±
i =

(
b̂±1,1,i, b̂±1,2,i . . . , b̂±1,2N+1,i, b̂

±
2,1,i, . . . , b̂

±
2,2N+1,i, . . . b̂

±
M,2N+1,i

)⊤
. (65)

The column vector Sij , 1 ≤ i 6= j ≤ J , contains the M(2N + 1) entries sn(oi − oj , km),

Sij =
[
s1(oi − oj , k1), s2(oi − oj , k1) . . . , s2N+1(oi − oj , k1),

s1(oi − oj , k2), . . . , s2N+1(oi − oj , k2), . . . s1(oi − oj , kM ), . . . , s2N+1(oi − oj , kM )
]⊤

. (66)

The vector containing the Fourier coefficients of Kij
M,N,li,lj

ϕ can then be computed as

̂Kij
M,N,li,lj

ϕ =
(
B−

i

)⊤ [
Sij • (B+

j ϕ̂)
]
. (67)

Thus, to apply the coupling operator Kij
M,N,li,lj

to ϕ we need to store three matrices B−
i , Sij and

B+
j . Since Sij has M(2N + 1) complex entries and B±

i has M(2N + 1) × Li entries, which in total
makes (2Li + 1)M(2N + 1) complex numbers. The matrix-vector products in (67) can be computed in
O(MN(Li + Lj)) operations.

Remark 7.4. The total number of operations to apply KM,N,l to ϕ ∈ Tl of dimension L = 4ΠJ
i=1li,j

belongs to O(MNL log(L)). This shows the interest of discretizing the coupling terms of (64) sparser
than the diagonal terms, i.e., to choose l♭ < l. Setting L♭ = 4ΠJ

i=1l
♭
i,j then the complexity of evaluating

KM,N,l♭Pl(T
−(q)•vl) or KM,N,l♭Ql(T

−(q)•vl) is O(L log(L)+MNL♭ log(L♭)). If MNL♭ ≤ L, then
the complexity reduces to O(L log(L)) with a constant independent of M and N .

Let min(l) := min1≤i≤3, 1≤j≤J li,j for l ∈ R3×J .

Theorem 7.5. Assume that the Lippmann-Schwinger equation (6) is uniquely solvable in L2(Λρ) for
any right-hand side and that there exists a constant η ∈ (0, 1/2) such that r(x, y) < ηrij for all x ∈ B(i)

and y ∈ B(j), 1 ≤ i 6= j ≤ J . Then the system (43) has a unique solution u ∈ W .
(a) Consider the Galerkin discretization in (64)(a). Assume that f ∈ W t, t ≥ 0, and that q ∈ PC

is such that the multiplication u 7→ T−q •u is continuous on W r for 0 ≤ r ≤ max(t− 3/2, 0). Then for
l♭ ≤ l ∈ N3×J with min(l), min(l♭), M , and N large enough there is a unique solution ul ∈ Tl of (64)(a)
and

‖ul − u‖W s ≤ C
[
min(l)s−t + e−πδminM/h + MηN + C1(N)C2(M)min(l♭)s+2−r

]
‖f‖W t

for 0 ≤ s ≤ t and arbitrary r > 0.
(b) Consider the collocation discretization in (64)(b). Assume that f ∈ W t for t > 3/2 and that

q ∈ PC is such that the multiplication u 7→ T−q • u is continuous on W r for 3/2 < r ≤ t. Then for
l♭ ≤ l ∈ N3×J with min(l), min(l♭), M , and N large enough there is a unique solution ul ∈ Tl of (64)(b)
and

‖ul − u‖W s ≤ C
[
min(l)s−t + e−πδminM/h + MηN + C1(N)C2(M)min(l♭)s+2−r

]
‖f‖W t

for 0 ≤ s ≤ t and arbitrary r > 0.
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Proof. If (6) is uniquely solvable in L2(Λρ), then the same holds for the (equivalent) periodized vector-
valued system of integral equations (43). Under the stated smoothness assumption on q, the solution u

to (43) belongs to W t if f ∈ W t.
The remainder of the proof, for both cases, follows the proof of Theorem 5.4(b). One first exploits

Proposition 7.2 to obtain an estimate for the approximation error in the off-diagonal terms of KM,N,l♭ ,
and combines these estimates with the results of Theorem 5.3 on the approximation error in the diagonal
terms. First,

‖K − KM,N,l♭‖W s→W s ≤ C
[
e−πδminM/h + MηN + C1(N)C2(M)min(l♭)s+2−r

]
(68)

for arbitrary r > 0. Hence, the operator norm of K −KM,N,l♭ on W s can be made arbitrarily small by

first choosing M and N large enough, and then choosing l♭ = l♭(M, N) large enough. Second,

‖K(T−(q) • v) − KM,N,l♭Pl(T
−(q) • v)‖W s→W s

≤ ‖(K − KM,N,l♭)(T−(q) • v)‖W s→W s + ‖KM,N,l♭[T−(q) • v − Pl(T
−(q) • v)]‖W s→W s

≤ ‖K − KM,N,l♭‖W s→W s + C(M, N)‖T−(q) • v − Pl(T
−(q) • v)‖W s→W s

for 0 ≤ s ≤ t, and an analogous estimate holds for Pl replaced by Ql. Hence, by choosing l = l(M, N)
large enough, one can again use a Neumann series argument as in the proof of Theorem 5.4 to show that
the discrete system (64) has a solution ul in Tl for M , N , and min(l♭) and min(l) large enough. The
claimed error estimate for this approximate solution follows as in the proof of Theorem (5.3)(b).

Remark 7.6. (a) The proof shows that l♭ can be chosen merely in dependence of M and N , but in-
dependent of l; especially, l♭ can be chosen significantly smaller than l, yielding efficient discretizations
in (64).

(b) Examples for smoothness assumptions on q can be constructed as in Example 5.5.
(c) Of course, one can also let the multipole parameters M and N depend on the domains Λ(j).

In a first numerical experiment we test the accuracy of the multipole expansions by extending a
solution to the discrete problem (27) from a uniform grid with step width 1/32 of the computational
domain [−1/4, 1/4] × [−1/4, n + 1/4] × [0, 1/2] to the corresponding grid of the domain [n − 1/4, n +
1/4]× [n− 1/4, n+ 1/4]× [0, 1/2], n = 1, 2, 4 or 6. The corresponding values of the multipole parameter
η are 1/2, 1/4, 1/8 and 1/12, and the discretization parameter l hence equals l = (25, 25, 25)⊤. The
wave number equals 17.5 and hence the first five modal wave numbers (rounded to four digits) are 17.22,
14.75, 7.714, 13.32i, and 22.21i. Table 2(a)–(b) shows the relative discrete L2 error between the multipole
expansion given in (60) (see (67) for the discrete form) and the exact extension of the solution using the
waveguide Green’s function. For η = 1/4 choosing M larger than three (corresponding to the number of
propagating modes) does not improve the accuracy for all values of N . For η = 1/2 the domains between
which we extend are closer. Consequently, incorporating the evanescent fourth mode into the multipole
expansion improves the accuracy of the method. For M = 3, the minimal error is about 7e-09 while for
M = 4 it is about 6e-10. Depending on the magnitude of the first complex wave number km∗ this effect
is more or less pronounced. If we set k = 20.8, the first complex modal wave numbers is k4 = 7.14i.
Since the magnitude of the first complex wave number is smaller than for k = 17.5, the corresponding
mode is significant for the expansion error. If N is large enough, Table 2(c)–(d) indicates that for M = 4
the error is several orders of magnitude smaller than for M = 3.

The exponential growth of the Hankel functions H
(1)
n (kmrx) in the multipole expansion (see (48))

causes cancellation and thus to a reduction of numerical accuracy due to numerical instability. This is
reflected in the exponential growth of the constant C1(N) appearing in Proposition (7.2) and already
observable in Table 2. The accuracy of the multipole expansion for the Green’s function of the Helmholtz
equation in two dimensions has been investigated in [22]. Define

u(N) =






0, N ≤ 1.4kd,
[

N−1.4kd
2.0(kd)1/3

] 3
2

, 1.4kd < N ≤ 1.4kd + 12.3(kd)1/3,

15, N > 1.4kd + 12.3(kd)1/3,

l(N) = 15−





0, N ≤ kd/η,
[

N−kd/η
1.8(kd/η)1/3

] 3
2

, N > kd/η.
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(a)

M = 3 M = 4

N = 15 3.54e-05 3.54e-05
N = 25 6.94e-09 5.82e-10
N = 30 6.12e-07 6.12e-07

M = 3 M = 4

N = 10 4.36e-03 4.36e-03
N = 20 2.48e-08 2.48e-08
N = 30 4.63e-14 4.63e-14

(b)

(c)

M = 3 M = 4

N = 15 1.57e-04 1.54e-04
N = 25 2.85e-05 7.74e-10
N = 30 2.85e-05 9.02e-07

M = 3 M = 4

N = 10 9.78e-03 9.78e-03
N = 20 4.47e-07 4.47e-07
N = 30 1.13e-09 4.68e-13

(d)

Table 2: Relative L2-error of multipole expansions for different truncation parameters M and N . (a)
η = 1/2, k = 17.5 (b) η = 1/4, k = 17.5 (c) η = 1/2, k = 20.8 (d) η = 1/4, k = 20.8. Apart from η, k,
M , and N , all other parameters are the same in (a)–(d). For M = 2, the relative errors are always ≥ 1.

For a Dirichlet scattering problem with a scatterer of diameter d, the authors of [22] claim that 10−u(N)

is an estimate for the truncation error of the expansion (50), that is, u(N) indicates the number of
correct digits of the expansion in (50). Due to numerical instability caused by the exponential growth

of the Bessel function H
(1)
n (kmrx) for large n, an implementation of the multipole method can however

not obtain arbitrary accuracy. In [22], the authors claim that l(N) is an upper bound for the number of
correct digits that an implementation of the multipole method can reach in double precision.

In our experiments on multipole expansions for medium scattering we found that the parameter d
should be taken to be ‖q‖L2(Ω), the L2 norm of the contrast q. With this choice, the relative discrete

L2 error of the expansion is pretty well approximated by 10−min(u(N),l(N)). Figure 3 shows this error
for the above-described experiment with wave number k = 17.5 for different values of η (1/2, 1/4,
1/8 and 1/12), corresponding to the extension from [−1/4, 1/4] × [−1/4, n + 1/4] × [0, 1/2] to into
[n− 1/4, n + 1/4]× [n− 1/4, n + 1/4]× [0, 1/2], for n = 1, 2, 4 and 6. Setting d = ‖q‖L2(Ω) always yields

a good estimator N 7→ 10−min(u(N),l(N)) for the numerical accuracy of the multipole expansion.
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Figure 3: Relative L2-error of the multipole expansion in dependence of N for four different values of
η (all other parameters are the same in the three experiments; especially, M = 4 and l = (25, 25, 25)⊤

throughout). Circles, crosses, triangles, and stars correspond to η = 1/2, 1/4, 1/8, and 1/12, respectively.
The dotted curve N 7→ 10−u(N) indicates an estimate for truncation error and the four dashed curves
N 7→ 10−l(N) for the above four different values of η indicate an estimate for the maximal numerical
precision.

In a second experiment we check the convergence rates given in Theorem 7.5 for scattering from two
inhomogeneities. Again, we use the contrasts qα from (39). For o1 = (0, 0, 0)⊤ and o2 = (1, 1, 0)⊤, the
contrast q = (q1, q2) is defined by qj(· − oj) : Λ(j) = oj + Λ1/2 → R, qj(· − oj) = qα(·), j = 1, 2. The
wave number k = 12.5, the height h = 1/2 and the discretization parameters are the same as in the
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numerical experiment for a single scatterer in the end of Section 5. The parameters M and N equal 4
and 22. To solve the linear system arising from the integral equation we employ a two-grid schemes as
described in Section 5 with the same discretization in each reference domain as in Section 5, and also
with the stopping criterion. The reference solution is computed for n = 9, the stopping criterion is a
relative residual of 10−8 and we choose N = 25. To compute the reference solution we use l♭ = l/4.
Still, the size of the multipole data structures for these parameters forces us to do compute the reference
solution on a workstation with 48 GB RAM; these computations required roughly half of this RAM.

Figure 4 shows that the error curves for the multiple scattering problem behave precisely as to those
for the single scatterer from Section 5. Especially, the error of the projection method behaves as predicted
by theory. For α = 3/2, the error curve of the collocation method also fits well to the predicted rate,
and for α = 0, 1/2, 1 the scheme does not reach the rate of the projection method.
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Figure 4: Relative L2-error of the projection/multipole method (64)(a) and the collocation/multipole
method (64)(a) for waveguide medium scattering from two inclusions q ∈ W s for s < α + 3/2 and
α = 0, 1/2, 1, 3/2. Pluses, circles, dots, and crosses correspond to α = 0, 1/2, 1, and 3/2, respectively.
The dotted lines correspond to convergence order 3/2 + α. (a) Collocation method: relative error versus
n, l = (2n, 2n, 2n)⊤. (b) Projection method: relative error versus n, l = (2n, 2n, 2n)⊤.

As it is indicated by Theorem 7.5, one can discretize the coupling terms significantly sparser than
the diagonal terms without spoiling the convergence of the scheme by choosing l♭ < l. By exploiting
this property, the diagonal terms of the operator matrices in (64) dominate the evaluation of the system
matrix and hence also the complexity of the scheme. We demonstrate this feature by a numerical
experiment that continues the above one. For α = 1, M = 4, N = 22 and l = (l, l) with l = (26, 26, 26)⊤

we set l♭ = (l♭, l♭) with l♭ = (2m, 2m, 2m) for m = 3, 4, 5. Figure 3 shows the relative error between the
coupled multipole/spectral projection method for these parameters and the corresponding solution for
m = 6. It is obvious that the error introduced by sparsifying the discretization of the coupling terms is
way below the error of the solution of about 4e-06 even for m = 5. However, the memory requirements
to store the multipole data structures are reduced from about 37 million for m = 6 to about 700000
complex numbers for m = 3. The scheme also speeds up as m is reduced.

m = 3 m = 4 m = 5
Error 1.80e-12 1.77e-12 1.55e-12
Time 68.6 74.5 79.9

Table 3: Comparison of the coupled multipole/spectral projection method for l = (l, l) with discretization
parameters l = (26, 26, 26)⊤ and l♭ = (l♭, l♭), where l♭ = (2m, 2m, 2m)⊤ for m = 3, 4, 5, 6. The table shows
the relative L2-error between the solutions for m = 3, 4, 5 and the solution for m = 6 (which corresponds
to the same discretization for diagonal and off-diagonal terms), and the corresponding computation times
in seconds.
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A Proof of Lemma 4.2

We need to construct a basis {ϕ∗
n}n∈Z

3
l

of Tl such that ϕ∗
n(x

(l)
j ) = δn,j . We construct ϕ∗

n as product of
functions v∗ñ depending on x̃ and functions h∗

n3
depending on x3. For this construction we make used of

the polynomials vñ and hm from (8). Denote Vl̃ = {vñ : ñ ∈ Z2
l̃
} and define v∗ñ by

v∗ñ(x̃) =
1

4l1l2

∑

m̃∈Z
2
l̃

exp

(
iπ

ρ
m̃ · (x̃ − x̃ñ)

)
.

It is shown in [25, Sections 8.1 and 10.5] that the v∗ñ form a basis of Vl̃, and that v∗ñ(x̃m̃) = δñ,m̃.
To construct the special basis functions h∗

m of Ul = {hn, 1 ≤ n ≤ l}, l ∈ N, we first consider
trigonometric interpolation of 4h-periodic functions at grid points tm = h m/l, m = 0, 1, . . . , 4l−1. Note

that the points t1, . . . , tl are the third components of the 3D grid points x
(l)
n . It is well known [14, Theorem

8.25] that

p2l(t) =
β0

2
+

2l−1∑

m=1

[
βm cos

(πm

2h
t
)

+ γm sin(
πm

2h
t)
]

+
β2l

2
cos(2lt)

solves the interpolation problem p2l(tm) = pm, m = 0, 1, . . . , 4l − 1, if and only if

βm =
1

2l

4l−1∑

j=0

pj cos

(
πjm

2l

)
, j = 0, 1, . . . , 2l,

γm =
1

2l

4l−1∑

j=0

pj sin

(
πjm

2l

)
, j = 1, . . . , 2l − 1.

(69)

When given interpolation data p1, . . . , pl at t1, . . . , tl, we extend this data to all the 4l points t0, . . . , t4l−1

by setting p0 = 0 and then doing even and odd reflection at tl and t2l, respectively,

p(l + m) = p(l − m), m = 1, . . . , l, and p(4l − m) = −p(m), m = 1, . . . , 2l − 1.

Due to the two reflection symmetries, all βm and all γm for even m in (69) vanish, that is, the interpolation
polynomial satisfying p2l(tm) = pm, m = 0, 1, . . . , 4l − 1, is

p2l(t) =
l∑

m=1

γ2m−1 sin

(
π(2m − 1)

2h
t

)
=

l∑

m=1

γ2m−1 sin(αmt) (70)

with

γ2m−1 =
1

2l

4l−1∑

j=0

pj sin

(
πj(2m − 1)

2l

)
=

2

l

l−1∑

j=1

pj sin

(
πj(2m − 1)

2l

)
+

(−1)m+1

l
yl. (71)

For the special choices pj = δj,m, m = 1, 2, . . . , l, one obtains special trigonometric polynomials h∗
m that

satisfy h∗
m(tn) = δm,n and h∗

m(0) = 0, m, n = 1, 2, . . . , l. Furthermore, by evaluating the derivative of
the function in (70) at t = h we find

d

dt
h∗

m(h) =
l∑

k=1

γ2k−1
π(2k − 1)

2h
cos
(π

2
(2k − 1)

)
= 0.

Finally, we set ϕ∗
n(x) = v∗ñ(x̃)h∗

n3
(x3) for n ∈ Z3

l to obtain a family of functions ϕ∗
n ∈ Tl such that

w∗
n(x

(l)
j ) = δn,j for n, j ∈ Z3

l . The latter equation implies especially that the w∗
n are linear independent

and since their number equals the dimension of Tl they form a basis.
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[20] I. Nåsell, Inequalities for modified Bessel functions, Mathematics of Computation, 28 (1974),
pp. 253–256.

31



[21] G. N.Watson, A treatise on the theory of Bessel functions, Univ. Pr., 2. ed., 1966.

[22] S. Ohnuki and W. C. Chew, Truncation error analysis of multipole expansions, SIAM J. Sci.
Comput., 25 (2003), pp. 1293–1306.

[23] M. A. Pinsky, N. K. Stanton, and P. E. Trapa, Fourier series of radial functions in several
variables, Journal of Functional Analysis, 116 (1993), pp. 111 – 132.

[24] J. A. F. Santiago and L. C. Wrobel, Modified Green’s functions for shallow water acoustic
wave propagation, Engineering Analysis with Boundary Elements, 28 (2004), pp. 1375 – 1385.

[25] J. Saranen and G. Vainikko, Periodic integral and pseudodifferential equations with numerical
approximation, Springer, 2002.

[26] S. Sauter and C. Schwab, Randelementmethoden, Teubner, 1. ed., 2004.

[27] G. Strang, The discrete cosine transform, SIAM Review, 41 (1999), pp. 135–147.

[28] G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of
Mathematical Physics, Dordrecht, 2000, Kluwer, p. 423.
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