
HAL Id: hal-00548736
https://hal.science/hal-00548736v1

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

F4Plan: An Approach to build Efficient Adaptation
Plans

Françoise André, Erwan Daubert, Grégory Nain, Brice Morin, Olivier Barais

To cite this version:
Françoise André, Erwan Daubert, Grégory Nain, Brice Morin, Olivier Barais. F4Plan: An Approach
to build Efficient Adaptation Plans. 7th International ICST Conference on Mobile and Ubiquitous
Systems (MobiQuitous), Dec 2010, Sydney, Australia. �hal-00548736�

https://hal.science/hal-00548736v1
https://hal.archives-ouvertes.fr


F4Plan: An Approach to build Efficient Adaptation

Plans⋆

Francoise André2, Erwan Daubert1, Grégory Nain1, Brice Morin⋆⋆1, and Olivier Barais2

1 INRIA, Centre Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes, France

{Erwan.Daubert | Gregory.Nain}@inria.fr — Brice.Morin@sintef.no
2 University of Rennes1, IRISA, Campus de Beaulieu, 35042 Rennes, France

{Francoise.Andre | Olivier.Barais}@irisa.fr

Abstract. Today’s society increasingly depends on software systems subject to

varying environmental conditions imposing that they continuously adapt. A dy-

namic adaptation reconfigures a running system from a consistent state into another

consistent state. To achieve this goal, a reconfiguration consists in executing a set

of actions leading from source to target configuration. The planning of actions has

often been neglected in adaptation mechanisms, leading to naive sequential sched-

ules statically predefined. EnTiMid, a ubiquitous software system for assisted liv-

ing, is one of these adapting systems using basic adaptation plan. This situation

may cause problems when considering adaptations involving large set of actions

and/or devices, particularly for distributed service-based applications. We propose

a framework to ease the integration of different planning algorithms that produce

more efficient adaptation plan than an ad-hoc algorithm.

1 Introduction

Large companies, banks, airports, buildings and even houses increasingly depend on soft-

ware systems. These systems are continuously impacted by changes in their execution

environment (infrastructural variation or a modification of the user requirements).

In this domain, EnTiMid is a home-automation software system to assist elderlies

in their everyday life. Typically the system has to deal with dozens of devices, different

needs per user or frequent changes in the ubiquitous environment. To address the combi-

natorial explosion of the number of potential configurations, engineers can develop such

Dynamically Adaptive Systems (DASs) as Dynamic Software Product Lines (DSPLs) [5]

by defining several variation points. Depending on the context, the system dynamically

chooses suitable variants to realize those variation points. These variants may provide bet-

ter quality of service, offer new services that did not make sense in the previous context,

or discard some services that are no longer useful.

In previous work [9] using Aspect-Oriented Modeling (AOM) techniques, we can

explicitly build a model of the configuration which is suitable for the current context,

with no need for the designers to specify the whole set of configurations in extension.

Using Model-Driven Engineering (MDE) techniques (model comparison) we were able to

infer safe but sub-optimal migration plans to dynamically adapt the system. In particular,

the simple heuristic we used tend to maximize the unavailability of services when some

components have to be stopped and restarted to achieve a safe adaptation.

⋆ The research leading to these results has received funding from the European Community’s

Seventh Framework Program FP7 under grant agreements 215412 (DiVA, http://www.ict-

diva.eu/) and 215483 (S-Cube, http://www.s-cube-network.eu/).
⋆⋆ Now at SINTEF ICT, Oslo, Norway



2 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

In this paper we propose to improve adaptation systems by the use of planning algo-

rithms to build more efficient reconfiguration plans than already existing ones. We illus-

trate this work on the EnTiMid system.

This paper is structured as follow. Section 2 starts with a presentation of EnTiMid and

discusses our previous model-driven approach for designing and executing DAS. Then

Section 3 details F4Plan, our proposal for designing and developing an efficient plan-

ning phase. Section 4 illustrated our approach on EnTiMid and demonstrates its benefits.

Section 5 concludes this article and presents our future works.

2 Background

EnTiMid [10] is an ubiquitous software system built over an OSGi execution platform

and developed in an assisted living context. The aim of this system, is to offer a level-

sufficient abstraction of the devices in the home, making it possible for highlevel services

to interact with physical devices (such as lights, heater or temperature sensors)

To address the problems of heterogeneity and dynamicity encountered in such an ubiq-

uitous system, we proposed an Aspect-Oriented and Model-Based approach to tame the

complexity of Dynamically Adaptive Systems (DAS) [8, 9]. The overall approach is il-

lustrated in Figure 1.

Architecture 

Metamodel

Reflection

model

Running System

Component-based execution platform

Target

model

Generated platform-specific

reconfiguration commands

build and validation

M2

M1

M0

1

2

3

4

conforms to

5

Fig. 1: Overview of our Approach to Dynamic Adaptation

The key idea is to keep an architectural model synchronized with the running system.

This reflection model, which conforms to the architecture metamodel, is updated (step

1) when significant changes appears in the running system (addition/removal of compo-

nents/bindings). It is important to note that the reflection model can only be modified ac-

cording to runtime events. When a change has been made, a copy of this reflection model

is used to build a target architectural model using model transformation or aspect model

weaving. When a target model is derived, it is validated (step 2) using classic design-

time validation techniques. This new model, if valid, represents the target configuration

the running system should reach. Then, the adaptation plan to switch from the current to

the target configuration is automatically generated. To do so, we first perform a model

comparison between the source configuration (the reflection model) and the target con-

figuration (step 3). This comparison produces an ordered set of adaptation actions. This

safe sequence of actions is then submitted (step 4) to the running system in order to ac-

tually reconfigure it. Finally, the reflection model is automatically updated and becomes

equivalent to the target model (step 5).



F4Plan: An Approach to build Efficient Adaptation Plans⋆⋆ 3

The sequence of atomic actions is ordered according to the following plan description:

(1) components (that should be stopped) are stopped, according to the client/ server depen-

dencies (clients are stopped before the servers), (2) bindings are removed, (3) components

are removed, (4) attributes of already present components are updated, (5) components are

added and their attributes are set, (6) bindings are added, (7) components are (re-)started,

according to the client/server dependencies (servers are started before the clients).

In case of a large number of actions, this simple heuristic tends to maximize the un-

availability of components, since the “ Stop Component” actions are always executed at

the beginning of the adaptation, and the “Start Component” actions are always executed

at the end. To allow more efficient scheduling of actions we propose a new methodology

based on general purpose planning algorithms. Our objective is to fit different possible

needs concerning the planning phase. The next section concentrates on that proposal.

3 A generic approach for planning adaptation actions

3.1 Motivations

The MAPE[6] model defines four steps to do dynamic adaptation at runtime: the Moni-

toring, the Analysis, also called Decision, the Planning and the Execution. We define the

semantic of these steps as follow. First, the Monitoring is used to detect changes inside the

application or in its execution context (step 1 in Figure 1).When significant changes are

detected, the Monitoring triggers the Analysis. This phase consists in deciding if adap-

tation is necessary to maintain the functionalities of the system. If adaptation is needed,

the Decision also chooses the adaptation strategy that should be used (step 2). Once done,

the Planning phase selects actions to execute and schedule them according to the chosen

strategy (step 3). The execution of the selected actions is the last phase of the model (step

4). In this paper, we focus on the Planning phase.

As adaptation is performed at run-time, the time needed to actually perform the adap-

tation have to be minimized. Therefore, Planning is an important step of the MAPE model.

It defines the actions necessary to properly apply the adaptation strategy, and orders the

actions to ensure the consistency of the adaptation execution and minimize the time. In-

deed some actions may be dependent of some others. For example, it is not possible to

start component if its bindings are not already set and its attributes changed. At the oppo-

site some actions can be independent, leading to a partial order between them (e.g.: two

components can be started at the same time).

In our preliminary planning method described in the section 2, a static total order

is defined on the different types of actions. This order can only lead to build a sequential

schedule. Thus considering a distributed EnTiMid platform, whatever the number of com-

ponents involved in an adaptation and their location, all the necessary “stop component”

commands should be performed before to execute all the “remove binding” commands

and so on.

Such an adaptation method consumes more time than needed because for example,

the adaptation engine have to wait for all the “component stop” commands to be executed

before launching the “component start” commands. Moreover, in a distributed and asyn-

chronous system, synchronization operations between the different platforms should be

added to enforce the sequentiality. Also, in this preliminary planning implementation it is

not possible to add information or constraints on actions or on sequence of actions to give

useful indications for the execution phase(e.g.: non-functional data as the execution time

of an action or the among of resources used).

Research works on planning methods such as Artificial Intelligence planning, Motion

planning or Control theory, have produced some algorithms that overcome these limita-



4 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

tions. In this paper, we propose an architecture for the planning phase to use, according to

the needs, one of these algorithms in adaptation system for Service-Oriented Architecture.

Most of times a planning phase using one of these algorithms is executed as follow.

It takes the strategy issued from the decision phase as input. This strategy consists of

a source configuration and a target configuration (i.e. the current and the desired state of

the system).

An initial state and a goal state, both given to the planning algorithm, are deduced

from the strategy. These states are described in a language that depends on the planning

algorithm used. The domain of actions, last input needed by the planning algorithm, rep-

resents all the possible actions.

In the following we describe our design proposition for the planning phase.

3.2 Our proposition: F4Plan (Framework for Planning)

As previously said, several planning algorithms exist, each one has its own characteristics.

Therefore, to design an adaptation system, a planning algorithm has to be chosen among

all existing ones according to the planning objectives. These objectives can be about mini-

mizing the time spend in the planning phase and in that case choose a very simple planning

algorithm, even if the resulting schedule is not the best one. In case there exists only one

processor to execute the adaptation actions, it is not useful to select an algorithm that may

exhibit some parallelism in the schedule. At the opposite it may be preferable to choose an

algorithm that will spend some time to obtain the most efficient schedule if the adaptation

actions are long and some of them may be executed simultaneously.

Each planning algorithm has its own dedicated language to express the initial/goal

states and the domain of actions. In order to keep a coherent chain from the source and

target configurations to the initial and goal states (i.e.: from the decision algorithm outputs

to the planning algorithm inputs), a language translation is necessary.

We do not want to impose the choice of a specific decision algorithm nor a specific

planning algorithm because this choice may depend on changing environmental con-

straints. For instance sometimes adaptation can concern only few elements, geographi-

cally closed, with the objective to quickly adapt. In that case, a simple planning/decision

algorithm will be chosen. Sometimes the objective can be to perform proactive adapta-

tion, involving a large set of distributed elements. The preference will then be for a more

powerful planning/decision algorithm.

Thus, to ease the work of the final developer, we offer a set of translators from a

description language to another. To face the combinatorial explosion of the number of

translators, we propose to use a very common and powerful planning language, PDDL

[4], as a pivot language.

At the end of the planning phase, the algorithm returns a schedule (a plan) that is used

by the last phase of the MAPE model (the execution) to concretely realize the strategy.

An illustration of the benefits of using an efficient planning algorithm and a coherent

chain of translation between decision and planning phases is given in section 4 to adapt

the Ambient Assisted Living Application based on EnTiMid previously presented in 2).

4 Illustration

This section illustrates the use of F4Plan with a simple example into the EnTiMid system.

In the following, the changes operated on the EnTiMid platform located on the elderly

person’s house when the night comes will be depicted.

During the day the elderly person, in case of major problem, has to his/her disposal

a remote control with a single button (the SOS component), that will send an emergency



F4Plan: An Approach to build Efficient Adaptation Plans⋆⋆ 5

message via SMS using the SMS component. In addition, to confirm the person that the

SMS has been sent, a Text-To-Speech component emits a message. To connect these three

components a dispatcher1 component is involved to trigger in parallel the SMS sending

and the vocal message emitting.

At night, when the person signals a problem, the house will be enlighten so that the

person can realize what happened and get back its landmarks. As a consequence, lights

must be manageable by the system in this configuration and N light components are

added. These lights are bound with the remote control with the dispatcher1 already avail-

able into the platform. A component, here called central lights command, is also added

to enable the elderly person to switch off the lights when everything get back to normal.

A new dispatcher (called dispatcher2) is needed to connect lights with the central lights

command.

The target configuration to reach is obtained using the mechanism described in sec-

tion 2. In this scenario, a small subset of actions available to reconfigure the EnTiMid

platform is considered. Only, add component, add binding, start component and stop

component are used.

In this use case F4Plan uses a planning algorithm called GraphPlan [1]. This algorithm

uses a PDDL subset called STRIPS [3] as input language.

Therefore, a translation between the decision output language, in our case the ART

home made language and STRIPS is needed. Using our implementation, this translation

is done with two translators automatically found, communicating through the PDDL pivot

language. When the translation is done, the planning algorithm is executed.

At the end GraphPlan returns a partial ordered set of actions (Figure 2).

St ep 1 :

Add Component ” c e n t r a l l i g h t s command”

/ / . . . / / Add Component ” l i g h t N ”

/ / Stop Component ” d i s p a t c h e r 1 ”

S t ep 2 :

Add Binding ” d i s p a t c h e r 1 T o l i g h t 1 ”

/ / . . . / / Add Binding ” d i s p a t c h e r 2 T o l i g h t N ”

S t ep 3 :

S t a r t Component ” d i s p a t c h e r 1 ”

/ / . . . / / S t a r t Component ” l i g h t N ”

Fig. 2: partial-order set of actions

To sum up, GraphPlan is well adapted for our Ambient Assisted Living use case,

showing a substancial gain on the resulting plan reducing the number of steps (from 4N+6

to 3). Meanwhile, some other recent algorithms can provide the same kind of result with

better performance.

The translation mechanism, associated with our proposition also implies a cost.

In all cases, the use of such not trivial planning algorithms has a cost. A tradeoff

between this cost and benefit during the execution of plans needs to be done. Here we

choose more complex planning algorithms to build more efficient plans and reduce their

execution.

5 Conclusion

Nowadays, most software developments should consider the issue of their adaptation to

the dynamism of the execution environments. However current solutions for adaptation

are most often ad hoc and in consequence are not satisfying as long term solutions.

In this paper, we focus on the planning phase which has till now received little atten-

tion whereas it is an important phase especially in distributed environments. Most adap-



6 F. André, E. Daubert, G. Nain, B. Morin, O. Barais

tation systems use a very simple ordering of actions even though many general purpose

planning algorithms exist.

F4Plan allows the use of already developed planning algorithms. In that way, it is

possible to take advantage of research works already done on planning methods such as

Artificial Intelligence planning, Motion planning or Control theory. Such general purpose

algorithms have already been applied in contexts close to our, in particular in applications

for components deployment on computational Grids [7, 2]. Contrary to these approaches,

our proposal does not impose a specific algorithm for the adaptation system and is self-

adaptable, so that a choice between different planning algorithms, for example an algo-

rithm looking for parallelism and a much simpler one, is always possible. So we are able

to compute an efficient, coherent and valid plan to apply the decision strategy according

to the constraints like time duration or resource consumption. The characteristics of the

environment, in particular the distribution of all resources, either software or hardware,

can also be taken in consideration to schedule and parallelize the actions.

F4Plan also provides an automatic way to translate the decision output into the plan-

ning input, offering several translators around a pivot language.

In our future work, we intend to study the distribution of the planning algorithms. This

could be interesting to reduce the computation time of the schedule. Moreover in some

cases, part of the schedule can be locally computed when it only involves local actions in

a distributed environment.

Another subject of interest is the dynamic discovery of available adaptation actions.

Indeed we currently use statically defined types of actions but in a large scale world of

services, some actions can only be identified dynamically.

References

1. Avrim L. Blum and Merrick L. Furst. Fast Planning Through Planning Graph Analysis. Artifi-

cial Intelligence, 90:1636–1642, 1995.

2. E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B.

Berriman, J. Good, et al. Pegasus: A framework for mapping complex scientific workflows

onto distributed systems. Scientific Programming, 13(3):219–237, 2005.

3. R. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to

problem solving. Artificial intelligence, 2(3/4):189–208, 1971.

4. Malik Ghallab, Craig K. Isi, Scott Penberthy, David E. Smith, Ying Sun, and Daniel Weld.

PDDL - The Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS

TR-1165, Yale Center for Computational Vision and Control, 1998.

5. S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product Lines. IEEE

Computer, 41(4), April 2008.

6. Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer,

36(1):41–50, 2003.

7. T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide-area

networks using AI planning techniques. In Int’l. Parallel and Distributed Processing Sympo-

sium, 2003.

8. Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg. Models@

Run.time to Support Dynamic Adaptation. Computer, 42(10):44–51, 2009.

9. Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel. Taming Dynamically

Adaptive Systems with Models and Aspects. In 31st International Conference on Software

Engineering (ICSE’09), Vancouver, Canada, May 2009.

10. Grégory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel. Using MDE to Build

a Schizofrenic Middleware for Home/Building Automation. In In ServiceWave’08: Networked

European Software & Services Initiative (NESSI) Conference, Madrid, Spain, December 2008.


