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The large, level-dependent g-factors in an InSb nanowire quantum dot allow for the occurrence
of a variety of level crossings in the dot. While we observe the standard conductance enhancement
in the Coulomb blockade region for aligned levels with different spins due to the Kondo effect, a
vanishing of the conductance is found at the alignment of levels with equal spins. This conductance
suppression appears as a canyon cutting through the web of direct tunneling lines and an enclosed
Coulomb blockade region. In the center of the Coulomb blockade region, we observe the predicted
correlation-induced resonance, which now turns out to be part of a larger scenario. Our findings are

supported by numerical and analytical calculations.

Due to their small size the properties of nanosystems
are dominated by discrete quantum levels. These levels
can be tuned by the means of, e.g., applying a magnetic
field. At level crossings a variety of different physical
features can arise from electron coherence between the
levels as well as correlations with contacts. These can
be conveniently probed by transport measurements, see,
e.g., Refs. |, where generically conductance peaks can
be associated with the presence of electronic states at
the Fermi level. While most experimental work is done
on GaAs-based systems where the individual levels are
approximately spin-degenerate due to the small electron
g-factor, less results exist at the crossing of spin-resolved
levels. Such a level crossing is particularly interesting if
both levels are slightly below the Fermi energy, so that
there is one electron in the system while a second elec-
tron is blocked to enter due to Coulomb repulsion. In
this Coulomb blockade region the conductance is typ-
ically small. At very low temperatures, however, the
Kondo effect provides a strong conductance enhancement
at degeneracy of levels with opposite spins as observed
in Refs. M@] For the case of degeneracy of levels with
equal spins, much less is known. Here, recent theoreti-
cal calculations ﬂ@] showed a vanishing conductance at
the point of electron-hole symmetry in the middle of the
Coulomb blockade region together with the correlation-
induced resonance, a strong enhancement of the conduc-
tance for slight detuning between the levels.

In this letter, we present detailed measurements on
InSb quantum dots realized by electrically contacting
epitaxially grown InSb nanowires. These devices ex-
hibit giant, strongly level-dependent electron g-factors
ﬂﬁ], which allow for a clear observation of several spin-
resolved level crossings at relatively weak magnetic fields,
and we can directly compare the results of transport mea-
surements at crossings of levels with equal and different
spins. For the case of equal spins we are able to verify the
predicted correlation-induced resonance ﬂﬂ] in the center
of the Coulomb blockade region. Furthermore our data
shows that this effect is a part of a larger scenario where
conductance suppression appears as a line in the parame-

ter space of detuning and gate voltage. These findings are
supported by numerical and analytical calculations based
on a two-level, equal-spin, interacting model, which fully
confirm the observed scenario.

The InSb nanowire dot devices investigated here are
fabricated from InSb segments of InAs/InSb heterostruc-
ture nanowires where the InAs segments are used as seed
nanowires to favor nucleation of InSb ﬂE—Iﬂ] Figure[la)
shows a scanning electron microscope (SEM) image of a
fabricated device, where the dot is formed between two
150-nm-wide Ti/Au contacts with a distance of 100 nm
in an InSb nanowire with a diameter of 65 nm. All mea-
surements are performed in a *He cryostat at 300 mK.

Figure[lIb) shows a grey-scale plot of the conductance,
G, as a function of the magnetic field B and the back-
gate voltage Wi,z applied to the Si substrate of a fabri-
cated device. The spin state of the last filled electron in
each energy level is indicated by an arrow in the figure.
Here negative values of the g-factor are assumed for all
quantum levels ] From the magnetic field evolutions
of the conductance peaks, we can evaluate the electron
g-factors for the dot levels (following Refs. [14, [15]) and
find that the values of these g-factors are giant, with the
largest absolute value reaching about 60, and are strongly
level-dependent (sce also Refs. [10, [12]). A large differ-
ence between the electron g-factors in the dot allows for
the crossings of the spin-up state of the 5th level with
both the spin-down and the spin-up state of the 4th level
as B is increased. Figure [[[c) shows a schematic for
the scenario of such single-particle level crossings with-
out taking level interaction and the effect of Coulomb
charging into account.

The transport measurements in Fig. [(b) display sev-
eral clear signatures of both the conventional spin-1/2
Kondo and the integer-spin Kondo-like effects which
manifest themselves as conductance enhancements in the
Coulomb blockade regions in the InSb quantum dot. For
example a weak but visible conductance ridge is observed
at zero magnetic field inside the N = 7 Coulomb blockade
region. A line plot of the conductance as a function of the
magnetic field along cut A is shown in Fig.[I[d). Here one
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FIG. 1: (Color online) (a) SEM image of a fabricated
InSb nanowire quantum-dot device. (b) Conductance in grey
scale measured at a source-drain bias of Vg = 0.5 mV.
(c) Schematic for the evolution of the single-particle levels
4 and 5 with magnetic field (neglecting the level interac-
tion and Coulomb charging). Letters A, B, and C mark the
three single-particle level degenerate points investigated in
this work. (d) Conductance along line cut A in panel (b)
showing a conventional spin-1/2 Kondo peak at B = 0. (e)
Conductance along line cut B showing an integer-spin Kondo-
like conductance enhancement at B ~ 1.5 T.

can easily identify a conductance peak at zero magnetic
field. This peak occurs at the standard spin-degeneracy
point of level 4 of the quantum dot at B = 0 as indicated
by label A in the schematic shown in Fig. [{i(c). Simi-
lar conductance peaks or ridges in odd-number electron
Coulomb blockade regions are observed in several other
fabricated InSb quantum dots at zero magnetic field. All
of these conductance enhancements can be attributed to
the conventional spin-1/2 Kondo effect M, B]

In addition to the spin-1/2 Kondo effect we see
clear signatures of integer-spin Kondo-like correlations
ﬂa, @] One such example is provided by the clear high-
conductance ridge in the N = 8 Coulomb blockade re-
gion at B ~ 1.5 T [see Fig. [[I(b)]. A corresponding line
plot of the conductance as a function of the magnetic
field along the cut B through the conductance ridge is
shown in Fig. [e), where a conductance peak is clearly
observed. This peak occurs at the degeneracy of lev-
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FIG. 2: (Color online) Details of the conductance suppression.
(a) Enlarged section of Fig. [[{(b). (b)-(f) Conductance plots
along line cuts C1-C5 (at back-gate voltages of 848, 822, 762,
708, and 690 mV) of panel (a), respectively.

els 4 and 5 with opposite spins as indicated by label
B in the schematic shown in Fig. [{c). An additional,
though weaker, integer-spin Kondo-like conductance en-
hancement is observed in the N = 6 Coulomb blockade
region at B ~ 3 T. Such integer-spin Kondo-like conduc-
tance enhancements appear at the transition from a spin
singlet to the S, = 1 state of an S = 1 spin triplet as the
magnetic field increases. Note that the other states of
the S =1 triplet are significantly higher in energy due to
the large g-factors. Thus more complex phenomena such
as the two-stage Kondo effect ﬂﬂ, @] are not observed
here. Both the spin-1/2 and the integer spin Kondo-like
enhancements of the conductance in the Coulomb block-
ade region occur when there are two degenerate states of
different spins.

We now focus our attention to the N = 7 Coulomb
blockade region at magnetic fields of B ~ 2 T [Fig. [I(b)]
where the 4th and the 5th level with the same spin
cross as indicated by label C in the schematic shown in
Fig. Ml(c). Here we observe a clear suppression of the
conductance within the cotunneling background in the
Coulomb blockade region. Moreover the direct tunneling
lines are also broken at the crossing points at the corners
of the Coulomb blockade region. This scenario is shown
in detail in Fig. Ba). The bright region of the conduc-
tance suppression resembles a canyon which connects the
upper S, =1 and N = 8 Coulomb blockade region with
the lower S, = 0 and N = 6 region while cutting through
both the direct tunneling lines and the S, = 1/2 and
N = 7 blockade region. As shown in Figs. 2(b){2(f) for



different gate voltages, the conductance drops approxi-
mately down to zero at the bottom of the canyon. In
addition, the conductance in the middle of the Coulomb
blockade region [Fig. 2(d)] shows a clear enhancement on
both sides of the conductance suppression. This is the
correlation-induced resonance, which was predicted for a
similar, strong correlated quantum dot system near the
clectron-hole symmetry point [7].

This canyon of conductance suppression is the main
finding of our letter. We note that the presence of giant,
strongly level-dependent g-factors in our InSb nanowire
dot is crucial to create the degeneracy between the two
spin-up levels at a moderate magnetic field. Further-
more, the quadratic shifts of the levels with magnetic
field differ strongly for levels 4 and 5, which has helped
to create this desired degeneracy point. Intuitively, the
phenomenon of the conductance suppression can be un-
derstood as a result of (i) the strong modification of the
dot states by correlations with the contacts and (ii) the
consequent (destructive) interference between the two
paths through the dot associated with the two modified
states. This is straightforwardly seen in the lower and
upper direct tunneling regions, see the Breit-Wigner re-
sults below. However, in the Coulomb blockade region,
strong correlations between contacts and the dots states
exist, which can result in vanishing conductance at the
electron-hole symmetry point at zero temperature and
zero bias Eﬁ] The observed canyon of conductance sup-
pression connects both scenarios and suggests that the
combination of correlations and interference is required
for a full understanding.

In the following we show theoretically that a cross-
ing between two levels with equal spins indeed provides
a canyon of conductance suppression that cuts through
both the Coulomb blockade and direct tunneling regions.
Our Hamiltonian H D+ flc combines the terms describ-
ing the quantum dot and its coupling to the left (L) and
right (R) lead which read (similar to Refs. [7-1])

Hp = E4Ta1,ra4¢ + E5Tag,ra5¢ + Ual,ramag,ram , (1)

Z tg(lc)cm(k)(ajlT + Iga;T) +h.c.
k(=L/R

+ > Bolk)ch (R)eer (k) (2)

k¢=L/R

He =

where a;p (a;.rT) and cgp (C}T) are the annihilation (cre-
ation) operators of electrons in the dot and leads, respec-
tively. We define Iy (E) = 21y, |te(k)|?6[Ee(k) — E],
which is assumed to be constant, and Ips = |2¢]?T4.
Fitting to the conductance peaks ﬂﬂ], we obtain U =
5 meV, FL4 = 0.3 meV, FR4 = 0.1 meV, FL5 =
1 meV, I'gs = 04 meV, and the level energies of
Ey = 2 meV x (B/T —2) — E; —U/2 and E5y =
—2.5 meV x (B/T — 2) — E;, — U/2. Here, the gate
level energy F, corresponds to the back gate voltage by
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FIG. 3: (Color online) Conductance where interaction is
of minor importance. (a) Experimental data (crosses) for
Vg = 690 mV together with calculated results using the non-
interacting Green’s function (GF) model with Voq = 0.5 mV
(black solid line) and the Breit-Wigner (BW) transmission
formula of Eq. (@) (black dashed line). Corresponding 2vN
results, including interactions, are given in thin orange lines
for two temperatures. (b) Conductance from the GF model in
its region of validity, Ey < —U/2, together with the positions
of the minimal conductance from the experiment (red dots)
and the 2vN model (blue crosses).

E, = ¢(V,y — 767 mV)/22. (This choice of E, provides
electron-hole symmetry around B = 2 T at B, = 0.)
As motivated below, we use x;, < 0 and xg > 0, which
might reflect a parity difference between the fourth and
fifth quantum orbital states. The occupations of the left
and right leads are given by Fermi functions with the
electrochemical potentials of +eV,q/2, respectively.

For E, < —U/2, at most one of the two levels is oc-
cupied and Coulomb interaction plays no role. In such
a non-interacting system, the transmission T'(E) can be
calculated with Green’s functions (GF), see, e.g., Ref. [19]
where a similar system was treated. The finite bias con-

ductance reads G = (e/hViq) —6‘6/1;152ET(E> for zero
temperature, see the black solid line in Fig. Bla), which
agrees well with the data (crosses) from Fig. (f). Fig-
ure B(b) shows that the experimental canyon of conduc-
tance suppression is reproduced very well by the GF
model in its range of validity, £, < —U/2. Here the
vanishing conductance can be attributed to interference
between the transmission through both levels. The Breit-
Wigner formula provides

1
E—FEu+iTra+Tra)/2

+ TR
E—FEs +i(Tps +Tgrs)/2

T(E)=Tr4l R4

2

(3)

We find the vanishing of T'(0) at zpxrEsr ~ —FEst as-
suming I'z; +T'r; < Ejy. For our parameters this pro-
vides E,+U/2 =~ 3.7 meV x (B/T—2) in good agreement
with the numerical findings and the experimental data
shown in Fig.BI(b). This justifies our choice of xpzg < 0.

In the Coulomb blockade region (—-U/2 < E, < U/2)
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FIG. 4: (Color online) Calculations by the 2vN approach at
kT = 0.2 meV, Voig = 0.5 mV and Q = 0 unless stated
otherwise. (a) Canyon of conductance suppression. (b) Con-
ductance for different interlevel couplings €2 together with the

experimental data. (c) Conductance for different bias values
of ‘/sd-

the current is carried by cotunneling events. Here we ap-
ply the second-order von Neumann (2vN) approach @],
which treats all interactions in Hp exactly. Correlated
transitions between the leads and the dot states are in-
cluded in second order describing cotunneling ﬂ2_1|] and
interference @] For E; = —3.5 meV, the results agree
excellently with the experimental data, see Fig.Bl(a). The
2vN is only reliable above Tk [20] which we estimate to
be kpTk =~ 0.1 meV ﬂﬂ] and we attribute the occur-
rence of some slightly negative conductivities to the im-
proper treatment of higher-order processes. In order to
reduce these problems we use the increased temperature
of kpT = 0.2 meV in the following. The results of the
calculation are given in Fig. @(a) and show the canyon
of conductance suppression in good agreement with the
experiment.

The calculated conductance shows an approximate
symmetry around the electron-hole symmetry point (full
symmetry is restored by reversing the bias). In contrast,
the experimental data are more asymmetric, which indi-
cates a gate voltage dependence of system parameters.
Figuredl(b) shows that the conductance suppression per-
sists for a finite interlevel coupling described by an ad-
ditional term QCL;[,TCLM + h.c. to Hp in Eq. @), while
its width increases. Comparing with experimental data,
Q ~ 0.4 meV fits better at V4, = 762 mV. Even higher
values of 2 seem appropriate for larger V4, (not shown),
while Q ~ 0 fits well for Vi, = 690 mV (see Fig. B).
This indicates that the interlevel coupling depends on
the back-gate voltage in our dot and vanishes acciden-
tally around V,g ~ 700 mV. Finally, Fig. [d}c) shows that
the vanishing of the current persists for higher biases. In
the high-bias limit with infinite U this corresponds to the

4

situation discussed in Ref. ﬂﬁ], where it was shown that
the current vanishes exactly at level degeneracy (i.e., at
B = 2 in our case), independently of the couplings unless
Ty, = TR-

In conclusion we have observed that the crossing of
quantum levels with equal spins in the presence of
Coulomb repulsion manifests as a canyon of vanishing
conductance cutting through the direct tunneling lines
and the enclosed Coulomb blockade region. This sce-
nario is well covered by the 2vIN approach based on a
two-level, equal-spin, interacting model. Furthermore,
our experimental data confirms the predicted correlation-
induced resonances close to the electron-hole symmetry
point. Our results show that a full understanding of the
interplay between strong correlations and interference is
required to describe the entire behavior of the conduc-
tance of the system at degeneracy of levels with equal
spins.
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