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ABSTRACT
The biological data regarding the signalling pathways often
consider single pathways or a small number of them. We
propose a methodology for composing this kind of data in a
coherent framework, in order to be able to investigate a big-
ger number of signalling pathways. We specify a biological
system by means of a set of stoichiometric-like equations re-
sembling the essential features of molecular interactions. We
represent these equations by a timed concurrent constraint
(ntcc) language, which can deal with partial information
and the time for a reaction to occur. We describe a freely
available prototypical implementation of our framework.

1. INTRODUCTION
Cellular signalling pathways consist in groups of interact-
ing proteins belonging to various functional classes, e.g. re-
ceptors, adaptor proteins and kinases [4]. Each pathway is
specialized in sensing and transducing particular environ-
mental signals such as growth factors, hormones, cytokines,
light and nutrients. Misfunctioning or defects in signalling
pathways are often associated with important diseases e.g.
diabetes, immune disorders and cancer [4, 7]. In living
cells individual signalling pathways do not act in isolation.
Rather, they cross talk due to the presence of components
shared by different pathways or positive and negative feed-
back loops that form complex interaction networks. Thus,
the overall behavior of a cell embedded in a given environ-
ment should be seen as the integrated response to a variety
of sensed signals coming from the outside [4, 1]. Under-
standing the dynamics underlying the functioning of whole
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cellular signalling networks is a task that is far from being
accomplished. Unfortunately, nowadays wet-lab techniques
are still not adequate to cope with this kind of “systemic”
investigation. Moreover, the available information results to
be heterogenous as it is obtained through different exper-
imental techniques and comes from variable contexts. So,
it results particularly difficult to organize the existing infor-
mation in a coherent framework taking also into account the
dynamics of the interactions, in order to gain knowledge at
the network level. To address the problem of data integra-
tion and of heterogeneity, we present a new methodology for
modelling molecular interaction networks, which allows to
organize the existing knowledge in a compositional fashion.
We aim at exploiting this method for describing and simulat-
ing the behavior of a big number of signalling pathways. Our
modelling technique takes into account the fact that several
features of the biological system may be undetermined or
affected by measuring mistakes [5]. Our language allows us
to represent partial information and to model explicitly the
time which is necessary for a reaction to occur. In this paper
we use our methodology by modeling and simulating some
well known signalling pathways, namely the TNFα, EGF,
and insulin signalling pathways.

2. CONCURRENT CONSTRAINT CALCULI
Concurrent system, i.e. systems whose components act si-
multaneously and potentially interact with each other, are
ubiquitous in several domains and applications, as in bio-
logical and physical systems, mobile systems, Internet, etc.
Due to their complex forms of interaction, concurrent sys-
tems are difficult to specify and reason out. In computer
science, process calculi have been proposed to rise this chal-
lenge. They provide a mathematical language where con-
current systems can be modelled and their behaviour can be
formally described and predicted. Timed Concurrent Con-
straint Programming (ntcc) [13] is a simple but powerful
model for concurrency aiming at modeling reactive systems,
i.e., those whose components interact among each other and
with the environment. Here, interactions are modeled by
means of constraints accumulated in a common store. A con-
straint c, e.g., x ≥ 10, represents a piece of (partial) informa-
tion upon which processes may act. Processes in ntcc can
change the state of the system by telling information, and



synchronize by asking information: A process tell(c) adds c
to the store, thus making it available to the other processes.
A process

∑
i∈I

when ci do Pi non-deterministically chooses

one of the Pi whose corresponding guard ci can be deduced
from the store. The chosen alternative, if any, precludes the
others. A process P ‖ Q denotes P and Q running con-
currently possibly “communicating” via the common store.
Processes in ntcc can be also executed along time-units or
time-intervales: A process nextP delays the execution of
P to the next time-unit, and the replication !P means un-
boundedly many copies of P but one at a time. We refer
the reader to [13] for a detailed account of the syntax and
the operational semantics of the ntcc calculus.

3. A COMPOSITIONAL MODEL
A biochemical pathway can be represented as a set of in-
terconnected biochemical reaction in which the product of
a reaction is the reactant of another one. A signaling path-
way is a biochemical pathway supporting the transduction
of signals in a biological cell: molecules present in the ex-
ternal environment can affect the cellular behaviour linked
to a specific receptor on the cell membrane and triggering
the biochemical reactions of the receptor-dependent signal-
ing pathways. For example, the equation

Insulin + Insulin_Receptor 99K Insulin_Receptor_P

represents the reaction of one insuline molecule and its re-
ceptor (IR). This reaction causes the (auto)phosphorilation
of the receptor molecule, and triggers the following events of
the signal transduction pathway. Here we abstracted away
various details regarding chemical features, such as reaction
rate dependence from the temperature. These approxima-
tions are consistent with the in-vitro experiments, where the
temperature is kept constant. The reaction rate will be con-
sidered at simulation time as stochastic parameters.
In general, we shall represent the signaling pathway by a
finite set of equations r1, ..., rm of the form

rj :
∑
i

ajiAi 99K
∑
i

bji (1)

The constants aj1, ..., a
j
n and bj1, ..., b

j
n are the stoichiometric

coefficients. Therefore, aj1A1, a
j
2A2, ..., a

j
3An are reactants

that interact (and are consumed) yielding to the products
bj1A1, b

j
2A2, ..., b

j
3An. We also assume that each equation rj

has associated a duration dur(rj) defining the number of
time-units required for that reaction to produce the compo-
nents on the right-hand side.
Our idea is to represent this set of equations as ntcc pro-
cesses. This will provide a runnable specification of the sys-
tem in which we can formally specify the time required for a
reaction to occur. Furthermore, due to the constraint-based
nature of ntcc, and the ability of dealing with partial in-
formation, we will be able to specify systems where we do
not have a complete description of it (e.g., if we only have a
partial information about the concentration of the reactants
involved). Moreover, models specified in this language can
be easily composed due to the parallel composition operator,
thus yielding the description of more complex phenomena.
Finally, another advantage of using ntcc, is that it is en-
dowed with a logic semantics [13], thus providing a valuable
tool for the verification of properties of the modelled system.

3.1 The model in ntcc

The model we propose consists of three different compo-
nents: A process to choose the rule (equation) to be applied
in each time-unit; the processes modelling the equations and
the processes changing the state of the concentrations of each
reactant/product according to the equation applied.

We assume a set of equations as in Equation 1. In the sequel,
the variables x1, ..., xn represent the current concentrations
of the components A1, ..., An respectively.
The process choose below, selects non-deterministically one
of the equations (eq = j) s.t. the current concentration of
each component is higher than the reactant necessaries for
the equation to take place (e.g., xji ≥ a

j
i ).

choose
def
=

m∑
j=1

when xj
1 ≥ aj1 ∧ ... ∧ xj

n ≥ ajn do tell(eq = j)

Improvements here can be done by adding the stochastic
information about the reaction rate of each equation (if it
is known). In this case, the non-deterministic operator is
replaced by a probabilistic choice (see e.g., [11]).
A reaction (equation) rj is modelled by a process binding
the variables xji− and xji+ to aji and bji respectively. This
variables determine how the concentration of the component
Ai must be affected due to the application of the equation:
aji units are consumed and bji units are produced.

equationj
def
= when eq = j do

next tell(xj
1− = aj1 ∧ ... ∧ xj

n− = ajn) ‖
next dur(rj)tell(xj

1+ = bj1 ∧ ... ∧ xj
n+ = bjn)

Notice that the concentration of the products bji is incre-
mented dur(rj) time-units later.
Finally, the whole system looks like this:

system
def
= ! (state ‖ choose ‖ equation1 ‖ ... ‖ equationn)

The process state computes the current concentration of the
components according to their concentrations in the previ-
ous time-unit and the variables xji+ and xji− explained above.
It also sets the initial concentration of the components that
are parameters of the simulation. We omit the definition of
this process for the sake of presentation.

3.1.1 A simulation tool: BioWayS
We have implemented a simulation tool based on our model,
which we have called BioWayS and which is freely avail-
able on the web. This tool is based on a interpreter of the
ntcc calculus written in the Oz Languages (http://www.
mozart-oz.org/).
BioWayS takes as input a text file containing the initial pa-
rameters of the simulation as well as the description of the
equations. Then, it computes the final stores of each time-
unit and outputs the number of equation applied and the
concentration of each component. In the following sections
we shall show some examples of simulations executed in this
tool. More examples and the description of the input and
output files can be found at http://lix.polytechnique.

fr/~colarte/bioways/.

4. IN SILICO EXPERIMENTATION
We used our modelling technique to study some intercon-
nected cellular signaling pathways related to three recep-
tors: Tumor Necrosis Factor Receptor I (TNFR1), Insulin



Receptor (IR), and the Epidermal Growth Factor Recep-
tor (EGFR) [8]. This choice is motivated by the fact that
the information regarding these pathways is relatively abun-
dant and can be used to verify the viability of the model
comparing them with the output of the simulations. Some
aspects of the dynamics of this network have been charac-
terized through wet-lab techniques that allow to measure
the quantity (concentration or activity) of a pool of cellular
proteins over a time period [8].

4.1 The model
The set of signalling pathways composing the network indi-
cated above was considered. Using a system-level approach,
our aim was to build a model based on the information
available in the literature, adequate for describing the mea-
sured data and, eventually, to make predictions regarding
the modeled system. Our model network is composed by 37
different kind of molecules (nodes) and 48 equations (inter-
actions). Each interaction is rendered by a “reaction rule”
resembling the corresponding chemical equation. The input
for a simulation run is composed by the list of rules (i.e. the
model of the network) and a set of parameters specifying
the number of copies for each involved molecule (i.e. the
amount of reacting molecules) and the length of the compu-
tation (i.e. the time length of the experiment).

For each rule it is possible to specify a parameter indicating
the amount of time needed for the corresponding reaction to
occur. This parameter corresponds to the first passage time
and is evaluated according to [14]. Note that to estimate
the first passage time for an enzymatically catalysed reac-
tion, it is not necessary to know the details regarding the
reaction’s mechanism and, thus, the kinetic constants re-
lated to each elementary step. Instead, the needed data are
the enzyme and substrate(s) concentrations, the enzyme-
substrate(s) “affinity constant(s)” and the overall (macro-
scopic or apparent) rate constant. The first two parameters
were taken from the literature or determined heuristically
letting their initial amounts ranging on reasonably realistic
intervals estimated by comparison with similar cases. The
last parameter was estimated using Kinfer (http://www.
cosbi.eu/index.php/research/prototypes/kinfer) and lit-
erature data. The choice of this approach reflects the need of
building a “biochemically consistent” model using correctly
the available data to avoid common misconceptions, e.g., to
use the apparent rate constant instead of the microscopic
rate constant. This mistake is often made in works relying
on the Gillespie’s Stochastic Simulation Algorithm (SSA)
[9] for the (stochastic) simulation of biochemical pathways.
Gillespie’s SSA, needs the knowledge of the elementary rate
constants, which are often impossible to measure and eval-
uate. To circumvent this problem, apparent rate constants
are typically used. This introduces a heavy approximation
with unpredictable effects on the results of simulations.

In our framework, for each step of the computation, BioWayS
chooses non deterministically one rule and simulates the oc-
currence of a chemical reaction. When a reaction occurs,
reactant molecules are “consumed” and new copies of other
molecules are eventually “produced” according to the corre-
sponding rule. After a computation, initial and final states
differ for the number of copies of each molecule.

Figure 1: Amount of pAkt present in differ-
ent experimental conditions: 500I=500µM of in-
sulin (blue); 100T=100µM of TNFα (yellow); 100T
500I=100µM of TNFα and 500I=500µM of insulin
(red). This figure should be compared with the ho-
mologous in [8]

4.2 Experiments and results
The in silico experiments were performed by simulating the
model described above through BioWayS. In the first exper-
imental session we tuned the model and tested its viability
by comparing the simulations outputs with the correspond-
ing wet-lab data reported in [8]. The in silico experiments
were performed under different initial conditions mimicking
the presence of different combinations of insulin, TNFα and
EGF in the extracellular environment. For each combination
of these three molecules, simulations differing in time length
were performed to obtain time courses of the measured val-
ues, i.e., the amount of the various kind of molecules at the
end of each computation. Some of these results are pre-
sented in Figure 1. We compared the “real” and “virtual”
time series through the X2 test (p > 0.05). In all the tested
cases, the X2 test showed that our results are consistent
with wet-lab data.

For further validating our proposal, we studied particular
cases of cross-talk amongst the considered signaling path-
ways. It is known [3] that the pathways regulated by TNFR1
and IR interact, negatively influencing each other signal-
ing dynamics. The effects of this cross-talk can be ob-
served through proteomic techniques monitoring the amount
of phosphorylated Insulin Receptor Substrate 1 (IRS1). IRS1
is specifically phosphorylated on tyrosine and serine residues.
Tyrosine phosphorylation of IRS1 is performed by IR when
it is bound to insulin and activates IR-dependent signaling
pathways. Phosphorylation on serine residues decreases the
activity of IRS1 and prevents tyrosine phosphorilation. This
chemical modification occurs when certain signaling path-
ways, such as TNFR dependent pathways, are active and
leads to the inactivation of IR-dependent signaling path-
ways. While the relationship between IR and IRS1 is struc-
turally well characterized (IRS1 directly interacts with IR)
the same cannot be said for TNFR and IRS1. Actually the
model presented in Sec. 4.1 does not reproduce insulin/TNFα
interference. This may depend on the fact that in [8] is
used a cell culture line (namely human colon adenocarci-
noma cells, ATCC) which, being cancerous cells, may not
function as the non-cancerous ones such as adipocytes. Our
hypothesis was that our model, being shaped on the findings
reported in [8], does not mimic “correctly” the insulin-TNFα



Figure 2: The white columns represents the final
amount of IRS1 (arbitrary units) when only in-
sulin is present in the environment. The coloured
columns represents the final amount of IRS1 (arbi-
trary units) when both insulin and TNFα are ini-
tially present.

interactions. Some experimental evidences indicate a possi-
ble pathway responsible of this cross-talk [3]. To test our
hypothesis, we inserted compositionally this pathway in our
model. We then performed a new session of in silico exper-
iments by simulating the updated model through BioWayS
mimicking the presence of insulin, TNFα or both in the ex-
tracellular environment. The results of these experiments
(see Figure 2) show that the trend of in silico behavior re-
sembles what happens for the real counterpart.

5. RELATED WORK AND CONCLUSIONS
Petri Nets (PN), both in their classical version [10] and in
their stochastic ones [15] are one of the first approaches
which has been used for modelling living systems. Our for-
malism should be easier to use as a programming language.
Pathway Logic (PL) [16] is a symbolic approach to the mod-
elling and analysis of biological systems which is based on
rewriting logic [12]. Our methodology should have the ad-
vantage of modelling the time of reactions and treat in a
natural way partial information.
The language BIOCHAM was introduced in [6], and was
designed for being very close to the classical rules biologists
use to describe biochemical reactions. We believe that we
can model different sets of reaction rules by exploiting the
fact that we do not require precise stoichiometric data. We
use constraints for representing partial information.
A programming language similar to ours has been used for
representing Biological systems in [2]. [2] considers a lan-
guage which is suitable for modelling hybrid systems, i.e.,
system where continuos and discrete time is considered. Some
other major differences are as follows. We mainly focus on
deriving a simple representation of equations, which can be
easily used by non expert users. We model time duration
of reactions as well as partial information, like [2], but we
present a new methodology which allows to compose sev-
eral pathways and find results which normally requires the
availability of more refined data.

As future work we plan to extend the language and add
the possibility to specify the probability to choose a rule,
thus introducing the possibility of making stochastic com-
putations as in [11]. We would also like to make use of the
declarative nature of ntcc as formulae in temporal logic [13]
to verify properties of the modelled systems. Another ex-

tension concerns the possibility to model continuous time.
This would allow to describe hybrid systems as in [2].
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