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The phase transition in frustrated spin systems is a fascinated subject in statistical
physics. We show the result obtained by the Wang-Landau flat histogram Monte Carlo
simulation on the phase transition in the fully frustrated simple cubic lattice with the
Heisenberg spin model. The degeneracy of the ground state of this system is infinite
with two continuous parameters. We find a clear first-order transition in contradiction
with previous studies which have shown a second-order transition with unusual critical
properties. The robustness of our calculations allows us to conclude this issue putting
an end to the 20-year long uncertainty.
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1. Introduction

During the last 30 years, intensive investigations have been carried out to study

the effect of the frustration in spin systems. The frustration is known to be the

origin of many unusual properties such as large ground state (GS) degeneracy, suc-

cessive phase transitions, partially disordered phase, reentrance and disorder lines.

Frustrated systems still constitute at present a challenge for theoretical physics.1

One of the most studied aspects is the nature of the phase transition in frustrated

spin systems. Exact methods have been devised to solve with mathematical elegance
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many problems in two dimensions.2,3 Numerical simulations and various approxi-

mations have been used to study three-dimensional frustrated cases. In particular,

numerical simulations which did not need huge memory and long calculations for

simple non frustrated systems require now new devices, new algorithms to improve

convergence in frustrated systems.4,5

Frustrated systems are very unstable due to the competition between different

kinds of interaction. However, they have no disorder and therefore can be exactly

solved in two dimensions.2,3 In three dimensions, it is not the case: several systems

are not well understood.1 Let us recall the definition of a frustrated system. When

a spin cannot fully satisfy energetically all the interactions with its neighbors, it is

”frustrated”. This occurs when the interactions are in competition with each other

or when the lattice geometry does not allow to satisfy all interaction bonds simul-

taneously. A well-known example is the stacked triangular antiferromagnet (STA)

with interaction between nearest-neighbors (NN). This system with Ising,6 XY and

Heisenberg spins7,8 have been intensively studied since 1987,9,10,11,12,13,14,15,16 but

only recently that the 20-year controversy comes to an end.4,5,17,18,19,20,21,22,23,24

For details, see for example the review by Delamotte et al.7

In this work, we study another fully frustrated model called fully frustrated

simple cubic lattice (FFSCL) shown in Fig. 1. A detailed description of the model

will be presented in section 2. The nature of the phase transition in the classical

XY spin model has been recently investigated.25 It was shown that it is a first-order

transition putting an end to a 20-year long controversial issue. In this paper, we

study the case of Heisenberg spin model.

Section 2 is devoted to the description of the model and some technical details of

the Wang-Landau (WL) methods as applied in the present paper. Section 3 shows

our results. Concluding remarks are given in section 4.

2. Model and Wang-Landau Method

We consider the fully frustrated simple cubic lattice (FFSCL) shown in Fig. 1. The

Hamiltonian is given by

H = −
∑

(i,j)

JijSi.Sj , (1)

where Si is the classical Heisengerg spin of magnitude S = 1 at the lattice site

i,
∑

(i,j) is made over the NN spin pairs Si and Sj with interaction Jij . We take

Jij = −J (J > 0) for antiferromagnetic bonds indicated by discontinued lines in Fig.

1, and Jij = J for ferromagnetic bonds. This is the three dimensional counterpart

of the Villain’s model.26,27,28,29

Let us recall some results on the present model. The GS are given by the follow-

ing three independent relations which determine the relative orientation of every

spin pair30,31
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Fig. 1. Fully frustrated simple cubic lattice. Discontinued (continued) lines denote antiferromag-
netic (ferromagnetic) bonds.

S2 · S3 + S3 · S4 + S2 · S4 = 0 (2)

−S1 · S3 + S3 · S4 + S1 · S4 = 0 (3)

S1 · S2 + S2 · S4 − S1 · S4 = 0 (4)

For the XY model, there are 12 non collinear planar configurations.30,25 For the

classical Heisenberg model, the GS degeneracy is infinite with two free parameters.30

The reader is referred to those papers for the details of the GS calculation.

This model has been studied by standard Monte Carlo (MC) simulation with

small lattice sizes, short runs and poor statistics more than 20 years ago.31 The

result has shown a second order transition with unusual critical exponents. MC

technique and computer capacity at that time did not allow us to conclude the

matter with certainty.

Wang and Landau32 have recently proposed a MC algorithm which allowed

to study classical statistical models with difficultly accessed microscopic states. In

particular, it permits to detect with efficiency weak first-order transitions.4,5,25 The

algorithm uses a random walk in energy space in order to obtained an accurate

estimate for the density of states g(E) which is defined as the number of spin

configurations for any given E. This method is based on the fact that a flat energy

histogram H(E) is produced if the probability for the transition to a state of energy

E is proportional to g(E)−1.

We summarize how this algorithm is implied here. At the beginning of the

simulation, the density of states (DOS) is set equal to one for all possible energies,

g(E) = 1. We begin a random walk in energy space (E) by choosing a site randomly

and flipping its spin with a probability proportional to the inverse of the temporary

density of states (DOS). In general, if E and E′ are the energies before and after a
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spin is flipped, the transition probability from E to E′ is

p(E → E′) = min [g(E)/g(E′), 1] . (5)

The details of the WL method as applied to our spin models have been given in our

recent papers.4,5,25 We shall not repeat it here. We just emphasize the following

point. We consider here an energy range of interest34,35 (Emin, Emax). We divide

this energy range to R subintervals, the minimum energy of the i − th subinterval

is Ei
min (i = 1, 2, ..., R), and the maximum is Ei

max = Ei+1
min + 2∆E, where ∆E

can be chosen large enough for a smooth boundary between two subintervals. The

WL algorithm is used to calculate the relative DOS of each subinterval (Ei
min, E

i
max)

with a flatness criterion x% = 95%. Note that we reject a spin flip and do not update

g(E) and the energy histogram H(E) of the current energy level E if the spin-flip

trial would result in an energy outside the energy segment. The DOS of the whole

range is obtained by joining the DOS of each subinterval (Ei
min+∆E,Ei

max−∆E).

The thermodynamic quantities32,33 can be evaluated by

〈En〉 =
1

Z

∑

E

Eng(E) exp(−E/kBT ) (6)

Cv =
〈E2〉 − 〈E〉2

kBT 2
(7)

〈Mn〉 =
1

Z

∑

E

Mng(E) exp(−E/kBT ) (8)

χ =
〈M2〉 − 〈M〉2

kBT
(9)

where Z is the partition function defined by Z =
∑

E g(E) exp(−E/kBT ). The

canonical distribution at a temperature T can be calculated simply by P (E, T ) =
1
Z
g(E) exp(−E/kBT ).

3. Results

The following system sizes have been used in our simulations N ×N ×N where N

varies from 24 up to 90. At N = 90, as seen below, the transition shows a definite

answer to the problem studied here. Periodic boundary conditions are used in the

three directions. J = 1 is taken as the unit of energy in the following.

Figure 2 shows, as functions of T , the magnetization for N = 90, and the

susceptibility for N = 60, 70 and 90. These curves show a sharp transition but they

do not allow us to conclude about a first-order character. The same observation is for

the energy per spin and the specific heat shown in Fig. 3 forN = 90. In this situation

where there is a possibility of very weak first-order transitions, the WL method is

very useful because it allows us to sample rarely accessed microscopic states by

establishing a flat DOS. The energy histograms obtained by WL technique for four

representative sizes N = 54, 60, 70 and 90 are shown in Fig. 4. As seen, for N = 54,

the energy histogram, though unusually broad, shows a single peak indicating a
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Fig. 2. Magnetization (upper curve) for N = 90 and susceptibility (lower curve) for N = 60, 70,
90, versus T .

continuous energy at the transition. The double-peak histogram starts only from

N = 60 and the dip between the two maxima becomes deeper with increasing size,

as observed at N = 70 and 90. We note that the distance between the two peaks, i.

e. the latent heat, increases with increasing size and reaches ≃ 0.0085 for N = 90.

This is rather small compared with the value ≃ 0.03 for N = 48 in the XY case.25

The double-peak structure is a clear signature of a first-order transition. It indi-

cates a discontinuity in energy at the transition and gives the latent heat. Without

an efficient MC method, weak first-order transition cannot be easily detected. We

give here the values of Tc for a few sizes: Tc = 0.44225±0.00010, 0.44208±0.00010,

0.44182± 0.00010 and 0.44164± 0.00010 for N = 54, 60, 70 and 90, respectively.

4. Concluding Remarks

To conclude, let us emphasize by using the powerful WL flat histogram technique,

we have studied the phase transition in the Heisenberg fully frustrated simple cubic

lattice. In weak first-order transitions, the technique is very efficient because it helps

to overcome extremely long transition time between energy valleys. We found that

the transition is clearly of first-order at large lattice sizes in contradiction of early

studies using standard MC algorithm and much smaller sizes.31

The result presented here will serve as a testing ground for theoretical methods

such as the nonperturbative renormalization group which has recently succeeded

in clarifying the nature of the transition in the much debated STA with vector

spins.7 We note that some other three-dimensional Heisenberg frustrated systems
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Fig. 3. Energy per spin for N = 90 (upper curve) and specific heat per spin (lower curve) for
N = 60, 70, 90, versus T .
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Fig. 4. Energy histogram for several sizes N = 54, 60, 70, 90 at Tc indicated on the figure.

such as the FCC,36 HCP37 and helimagnetic38 antiferromagnets show also a first-

order transition in MC simulations. It would be interesting to check if it is a general

rule or not.
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