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 Abstract 

 

 The effect of length-bidispersity on the stability of nematic, smectic and columnar 

phases of rod-like particles is studied in the perfect alignment limit using the Onsager’s 

second virial theory. The rod-like particles are modeled as hard cylinders of equal diameters 

(D) but different lengths ( 21 LL ≠ ). Three different smectic structures are observed: (i) the 

conventional smectic (S1) phase, where both components accommodate in the same layer; (ii) 

the microsegregated smectic (S2) phase, which can be considered as an alternation of fluid 

layers rich in short and long rods, respectively; and (iii) two layers of short rods accommodate 

inside one layer of long rods, which gives the third smectic (S3) structure.  Due to the 

inefficient packing of the short and long rods into a layered structure along the symmetry axes 

of the rods, the smectic phase is destabilized with respect to nematic and columnar phases 

upon mixing the short and long components. With decreasing length ratio ( 1/ LL=l 2 )  the 

smectic phase is destabilized with respect to the nematic phase at compositions rich in short 

rods and two forms of smectic phases, namely S1 and S2, take place in alternation. The 

alternation of the structure is the consequence of the minimization of the number of 

overlapping layers of the short rods with one long rod.  In mixtures rich in long rods, the short 

and long rods are in the same layer up to l=0.39, while the short rods can accommodate into 

the interstitial region of long rods for l<0.39 and the system forms a S2 phase.  The S3 phase is 

observed in the range 0.57<l<0.39 and is due to the efficient packing of two layers of short 

rods inside one smectic layer of long rods. Our theoretical predictions for the three smectic 

structures are in close agreement with the smectic phase behaviour of a binary mixture of 

short and long helical polysilanes (Okashi et al., Macromolecules 42, 3443 (2009)). It seems 

reasonable that the helical polysilanes can be considered as an ideal system for testing the 

hard-body theories. Finally, it is interesting that the stabilization process of the columnar 

phase with respect to the smectic ordering with decreasing length ratio turns over at l=0.3.  
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 1 Introduction 

 Liquids and colloidal suspensions consisting of linear particles display an extremely 

interesting phase behaviour that becomes even more pronounced as we proceed from 

monodisperse systems to mixtures. In addition to the nematic, smectic and solid structures 

encountered in the pure substances, fractionation and demixing transitions [1-7], 

microsegregated smectic as well as columnar phases may occur in mixtures [8-18]. Frenkel 

[19]  was the first to point out that an entropy-driven columnar phase transition is possible 

even in monodisperse systems, although only for disc-shaped particles such as cut spheres, 

while elongated particles such as spherocylinders and cylinders display only isotropic, 

nematic and smectic (and crystalline) phases [20-22]. Further insight into the stability of the 

nematic, smectic and solid phases in systems of identical parallel cylinders was provided by 

Mori and Kimura [23] and Xu et al. [24]. Microsegregation of different rods in the smectic 

phase was first reported by Koda and Kimura [12] who applied the second virial 

approximation to parallel cylinders.  Following this line of research, Koda et al. investigated 

mixtures of parallel rods and spheres, both by Monte Carlo simulation and by basic density 

functional theory [14-15]. Further studies of rod-sphere systems followed by Dogic et al. [16], 

Cinacchi et al. [6] and Vesely [18]. The first account of a suppression of the smectic phase is 

due to Sluckin, who studied a length-polydisperse mixture of hard rods [8]. Evidence of the 

importance of the columnar phase was then explored by several simulation and theoretical 

studies [9-11,13,25-28]. In a sequence of extensive simulation studies, Stroobants [9,10] 

demonstrated the presence of a columnar phase in mixtures of long and short rods. Sear and 

Jackson [13] applied second virial theory and bifurcation analysis to parallel bidisperse 

cylinders, demonstrating the possibility of a nematic-columnar transition masking the smectic 

phase.  Both MC simulation and theoretical methods were used by van Roij et al. [3, 26] to 
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investigate the demixing of short and long rods in the isotropic and nematic phases, as well as 

the smectic and columnar bifurcations. Cui and Chen [11] and Bohle et al. [25] applied 

bifurcation analysis and Landau theory to study the ordered phases of bi- and polydisperse 

rods, while Bates and Frenkel used semigrand MC simulation, again demonstrating the 

presence – and possible dominance – of a columnar phase [27]. In the recent FMT study of 

Martínez-Ratón and Cuesta [28] the dominance of the columnar phase is confirmed above a 

threshold value of the polydispersity in a system of parallel cylinders.  

Several rod-like colloidal dispersions have been prepared to examine by experiment 

the effect of hard body interactions in the stabilization of the liquid crystalline mesophases. 

Well-known examples are polydisperse mineral liquid crystals [29-30], the mixture of 

colloidal spheres and TMV viruses [31], the binary mixture of thin and thick fd viruses [5] 

and solutions of single walled carbon nanotubes [32-34]. A common feature of the mineral 

rods and the carbon nanotubes is that they are polydisperse mainly with respect to length. To 

give a theoretical explanation for the phase behaviour of polydisperse rods, it is customary to 

use continuous distribution functions such the Shultz-Flory distribution in Onsager and 

related theories [35-36]. Instead of using continuous distribution functions one may consider 

the system as a binary mixture of short and long rods, which leads to qualitatively correct 

results for the phase transitions. For instance, the isotropic-nematic-nematic three phase 

coexistence of a dispersion of sterically stabilized rodlike boehmite particles can be explained 

by Onsager theory of short and long rods [30]. 

In a foregoing study we have investigated mixtures of hard elongated particles with 

equal length but differing diameters [37]. As a natural continuation of our previous work, the 

present work is devoted to mixtures of parallel cylinders having equal diameters but different 

lengths. The experimental motivation of our work is the very recent study of the smectic 

phase in binary mixtures of short and long helical polysilanes [38]. The main feature of the 
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polysilanes is that excluded volume interactions are dominant, electrostatic and the van der 

Waals interactions are weak, and almost monodisperse solutions can be prepared. Due to 

these advantageous properties the polysilanes can be considered as an ideal playground for 

testing the Onsager and other density-functional theories. Okoshi et al. [38] have focused on 

determining the possible smectic structures of binary mixtures of polysilanes using x-ray 

scattering and atomic force microscopy. In addition to the conventional and the 

microsegregated smectic phases, a new finely structured smectic phase was discovered. We 

make an attempt to find this new smectic structure in our present study. Another reason of our 

work is that the relative stability of the columnar, smectic and nematic phases in various 

regions of parameter space has not yet been studied thoroughly in MC simulation and 

theoretical studies. It is clear that the columnar phase is an important though somewhat 

elusive feature in the interplay of ordered phases in mixtures of elongated particles. A 

nematic-columnar transition may preempt the formation of a smectic phase, and 

microsegregation may be delayed by the formation of well-mixed columnar structures. At 

high densities, even the transition to a solid is sometimes preceded by the formation of a 

columnar phase of larger entropy.  It is the purpose of this study to investigate the relative 

stabilities of the ordered and demixed states of bidisperse parallel cylinder systems, using a 

method that provides higher accuracy and reliability than the bare bifurcation approaches.    
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2 Model system and Onsager theory for smectic and columnar phases 

We consider the binary mixture of parallel hard cylinders, where both components 

have equal diameters ( 21 DDD == ) while their lengths are different ( 21 LL ≠ ).  Restricting 

ourselves only to nematic, smectic and columnar phases, it is useful to decompose the 

positional vector of the cylinders ( r
r

) as a sum of mutually perpendicular vectors ⊥r
r

and ||r
r

. 

We use  )0,,( yxr =⊥

r
 for the description of the columnar phase, while ),0,0(|| zr =

r
 is for the 

smectic one, the long axes of the cylinders being orientated along the z-axis. In this way the 

columnar phase is a two-dimensional solid in the x-y plane, while the smectic is a one-

dimensional solid along the z axis. The corresponding local columnar and smectic densities 

for binary mixtures are ( )⊥ri

r
ρ  and ( )||ri

r
ρ  (i=1,2), respectively. The ideal Helmholtz free 

energy density of 21 NNN +=  particles in a vessel of volume V  for the binary mixture can 

be written for the columnar phase as 

( ) ( )( ){ }∑∫
=

⊥⊥⊥ −Λ=
2

1

3 1ln
1

i

iii

A

id rrrd
AV

F rrr
ρρ

β
,    (1a) 

where  
TkB

1
=β  (T being the temperature and Bk  the Boltzmann constant), VN ii /=ρ is the 

local number density of component i  (i=1,2), 3

iΛ  is the de Broglie volume of each component, 

including the translational and rotational contributions to the kinetic energy, and 2

2

3
aA = is 

the area of the hexagonal unit cell.  In the smectic phase the ideal contribution of the free 

energy is simpler and can be written as a one-dimensional integral as follows 

( ) ( )( ){ }∑∫
=

−Λ=
2

1

3

0

1ln
1

i

iii

a

id zzdz
aV

F
ρρ

β
,    (1b) 

where a is now the smectic period. 
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The residual contribution of the Helmholtz free energy is approximated by the second 

viral contribution in the virial series [39,40] 

( ) ( ) ( )1222

2

1,

11
2

1
rfrrdrrdF

ij

Mj

ji

ires

rrrrr

∫∑∫
=

−= ρρβ ,    (2) 

where the Mayer function ( ij

Mf ) of the hard cylinders can be written as a product of Heaviside 

functions of columnar and smectic variables,  

( ) ( ) ( )zLrDrf ij

ij

M −−−= ⊥ θθ
r

,     (3) 

with || ⊥⊥ = rr
r

 and 
2

ji

ij

LL
L

+
= . Substituting Eq. (3) into Eq. (2) only the z spatial variable 

can be integrated out for the columnar phase, and x and y for the smectic order. The resulting 

residual free energy densities for the columnar and the smectic phases are 

( ) ( ) ( )1222

2

1,

11

1
⊥⊥⊥

=
⊥⊥ −= ∫∑ ∫ rDrrdrrdL

AV

F
j

ji A

iij

res θρρ
β rrrr

 ,   (4a) 

( ) ( ) ( )
1222

2

1, 0

11

2

2

1
zLzdzzdzD

aV

F
ijj

ji

a

i

res −= ∫∑ ∫
=

θρρπ
β

 .   (4b) 

The sum of the corresponding equations of Eq. (1) and Eq. (4) constitutes our total Helmholtz 

free energy density.  The equilibrium structure of the binary mixture is determined by that 

density profile which minimizes the free energy of the system. In this work we use the 

method of Fourier parametrization for both columnar and smectic ordering. Instead of the 

local number densities, we parametrize the positional distribution functions given by the ratio 

of local and mean number densities, i.e. ( ) ( ) iii rrf ρρ /
rr

=  (i=1,2).   

In the columnar phase the Fourier representation of ( )⊥rf i

r
 is given by 

( ) ( )∑ ⊥⊥⊥ ⋅+⋅=
21

21 2211, cos
nn

nnii rqnrqnfrf
rrrrr

,      (5) 
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where 
21, nnif is the Fourier coefficient of component i, 1n  and 2n  are integer numbers, and 

1q
r

, 2q
r

 are reciprocal lattice vectors.  The reciprocal lattice vectors of the hexagonal phase can 

be obtained by the orthogonality relation between the unit and reciprocal vectors. These 

vectors are 







−= 0,

3
,1

q
qq

r
 and 








= 0,

3

2
,02

q
q
r

, where 
a

q
π2

= . The simple form of Eq. (5) 

is due to the inversion symmetry of the columnar phase: ( ) ( )⊥⊥ −= rfrf ii

rr
. Inserting Eq. (5) 

into Eq. (4a) and using the orthogonality relations of the cosine and sine functions  one 

obtains that  

( )∑ Γ=
21

212121

,,

,,

24
nnji

nnnnjnnijiij

res qDffLD
V

F
ρρ

β
,    (6) 

where ( ) ( ) ( )xDqnxqD
x

nnjdxqDnn 1

2
2

120

1

0

cos1
3

1
2

21
−













 −
−=Γ ∫  and ( ) xxxj /)sin(0 = . 

 ( )qDnn 21
Γ  can be calculated analytically in some special cases, for example 

( )
nqD

nqDJ
nn

1
,200

2
,

4

ππ
=Γ=Γ . The ideal contribution of the free energy Eq. (1a) cannot be 

simplified further by the substitution of Eq. (5), but it becomes now a function of the Fourier 

coefficients. Since the total free energy density, which is the sum of Eqs. (1a) and (6), 

depends on the Fourier components and the wave number q, the equilibrium columnar 

structure can be determined by the following set of equations  

0,0

21,

=
∂








∂
=

∂








∂

q

V

F

f

V

F

nni

ββ

,       (7) 

where 2,1=i and nnnnnn ≤≤−≤≤− 21 , . The normalization constraints of the number 

densities ( ) i

A

i rrd
A

ρρ =∫ ⊥⊥

rr1
 determine the values of the zeroth order Fourier coefficients; the 

results 100,1 =f  and 100,2 =f  hold for nematic and columnar phases, too. In the nematic phase 
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all Fourier components are zero except 00,1f  and 00,2f , while 0
21,1 ≠nnf  and 0

21,2 ≠nnf in the 

columnar phase. The Fourier coefficients decay rapidly with increasing n1 and n2. In our 

calculations it has been more than sufficient to cut the series at the 6
th

 shell, i.e. n=6, which 

guarantees that ε<|| ,nnif , with 410−=ε . 

 To include the possible in-phase and out-of-phase ordering of the short and long rods 

in the smectic phase we use the following Fourier ansatz for the long and short rods 

   ( ) ( )∑
=

=
m

i

i iqzfzf
0

,11 cos ,       (8a) 

   ( ) ( )∑
=

−=
m

i

i iiqzfzf
0

0,22 cos ϕ ,      (8b) 

where the phase shift 0ϕ  is zero for in-phase order, while it is π for out-of-phase order 

(microsegregation). We consider the Fourier components ( if ,1  and if ,2 ), wave number 

(
a

q
π2

= ) and the phase shift ( 0ϕ ) as free variables of the smectic phase. Using Eqs. (8a-8b) 

in Eq. (4b) we can derive the residual free energy density in terms of our free variables 

 

( ) ( ) ( )
,

sin
cos

2
sin

2
sin

2

1

2

1

2

1

2

,2

2

20

21

,2

1

,121
1

1

2

,1

2

1

2
2

1,

























+















 +

+×

×+=

∑∑∑

∑

===

=

iq

iqL
fi

iq

LL
iq

ff
iq

iqL
f

DV
V

F

m

i

ii

m

i

i

m

i

i

ji

ij

excji

res

ρϕρρρ

πρρ
β

 (9) 

where ij

excV  denotes the excluded volume between a particle of component i and another 

particle of component j. It can be shown easily that ( ) ( )
jiji

ij

exc LLDDV ++= 2

4

π
.  As for the 

columnar phase, the ideal contribution of the free energy Eq. (1b) cannot be simplified further 

by the help of Eq. (8) and we determine it numerically. The free energy of the smectic phase, 
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which is the sum of Eq. (1b) and Eq. (9), is minimized with respect to the free variables to 

obtain the equilibrium structure and the free energy of the smectic phase. The minimization 

yields the following set of equations 

0,0,0
0,

=
∂








∂
=

∂








∂
=

∂








∂

ϕ

βββ
V

F

q

V

F

f

V

F

ji

,     (10) 

 
where i=1,2 and j=1,..,m. From the normalization condition of the number densities 

( ) i

a

i zdz
a

ρρ =∫
0

1
 it is trivial to prove that 10,1 =f  and 10,2 =f . The value of m is set such that 

the order of magnitude of mif ,  cannot be more than 10
-4

. In our calculations the maximum 

value of m has not exceeded 16 even at very high pressures.  

       In summary, Eq. (7) determines the free energy of the columnar phase, while Eq. (10) is 

for the smectic phase. For the case of vanishing Fourier coefficients both the columnar free 

energy (sum of Eqs. (1a) and (6)) and the smectic free energy [sum of Eqs. (1b) and (9)] 

reproduces the free energy of the nematic phase.  

 Having obtained the free energy of the nematic, smectic and columnar phases we can 

determine the pressure and chemical potentials from the standard thermodynamic equations as 

follows 

( )2,1,
2

1

=
∂








∂
+−=

∂








∂
= ∑

=

i
V

F

V

F
P

V

F

ii

i

i

i ρ

β

ρ
β

β
ρ

β

βµ    (11) 

These equations are used to determine the phase boundary between two coexisting phases 

α1 and α2 from the conditions of the phase coexistence 21 αα βµβµ ii =  (i=1,2) and 

21 αα ββ PP = . In the following section we search for possible phase transitions between the 

same types of phases, such as nematic-nematic and smectic-smectic demixing transitions, and 

we examine the possibility of nematic-smectic, nematic-columnar and smectic-columnar 
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phase transitions. The extent of the fractionation and the structure of the stable phases are 

studied in detail.  

 

3 Results and discussion 

3.1 Phase behaviour of monodisperse hard cylinders 

 The phase behaviour of parallel cylinders has been studied thoroughly several times by 

Monte Carlo simulation methods [15,21,41] and Onsager type theories [23,24,39-40,42]. 

More recently a sophisticated density-functional theory, the Fundamental-Measure theory 

(FMT), has been applied also to this system [22,43]. Mulder [39] has shown that Onsager’s 

second virial theory is capable to describe the nematic-smectic A (N-S) phase transition of 

parallel hard cylinders. It was proved that the N-S phase transition is of second order and that 

the transition density (scaled with particle volume) is independent of the length-to-breadth 

ratio (L/D). The results of Onsager theory for the transition properties are presented in Fig. 1. 

The distance between neighbouring layers at the N-S transition is about 1.39 L. Regarding the 

columnar (C) phase we are only aware of some bifurcation analysis studies of the nematic-

columnar phase transition based on Onsager theory [13,40]. It was found that, within this 

theory, the nematic phase becomes unstable with respect to columnar density modulation well 

above the N-S phase transition, which means that the N-C phase transition cannot take place. 

Capitán et al. [22] proposed a FMT approximation for the system of parallel cylinders, 

obtaining the complete phase diagram. The C phase was found always to be metastable, the 

sequence of stable phases being N-S-K (crystal phase). 

       Even though the C phase is probably preempted by the K phase in the monodisperse 

fluid, we expect that this phase will be stabilized in the bidisperse system. Consequently, in 

what follows we discuss the formation of the columnar phase in the monodisperse fluid with a 

view to obtaining the limits of phase stability in the phase diagrams of the mixture. We 
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proceed beyond the bifurcation analysis of Onsager theory by obtaining the full numerical 

solutions of the columnar equations [see Eq. (7)] for Fourier coefficients and wave number in 

the monodisperse case at a given packing fraction ( 0vρη = , where 0v  is the volume of the 

cylinder). Two columnar solutions are detected in the packing fraction range of 0.83<η 

<0.945: one solution is a weakly ordered columnar phase, while the other corresponds to a 

strongly ordered columnar structure. The weakly ordered columnar phase has a larger lattice 

constant (a) than the strongly ordered one. In accordance with the bifurcation analysis the 

weakly ordered columnar phase is less ordered with increasing density and becomes nematic 

at the N-C bifurcation packing fraction ( 945.0≈bifη ), while the strongly ordered columnar 

phase exists at the N-C bifurcation and becomes more ordered with increasing packing 

fraction. The two columnar solutions at 9.0=η  are depicted in Fig. 2, while the equations of 

state of the nematic and columnar branches are shown in Fig. 3. Note that the nematic and 

columnar curves of Fig. 3 resemble the equation of state of a typical first-order phase 

transition [44]. Because of the presence of a van der Waals-like loop in the equation of state 

the nematic-columnar phase transition would be first order, provided it existed as a stable 

phase transition. The calculated coexisting nematic and columnar packing fractions are 0.814 

and 0.888, respectively. These values are above the N-S transition packing fraction, so the 

nematic-columnar phase transition is unstable. It is worth noting that the columnar solution 

exists much below the nematic-columnar bifurcation packing fraction. 

The next issue is the stability of the smectic phase with respect to columnar order. Our 

smectic and columnar free energy calculations indicate that the smectic phase becomes 

unstable with respect to columnar structure at unphysically high densities with an 

accompanying first order smectic-columnar phase transition. The coexistence packing 

fractions of Onsager theory (see Fig. 1) are unphysical because they are above the close 

packing limit of the cylinders. This discrepancy of Onsager theory is due to the fact that it is a 
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virial theory truncated at the second term. The inclusion of higher order virial terms [23] or 

multiplying the residual free energy (Eq. (2)) by a ( )η−1/1  term [8, 13] shifts the transition 

densities into the physically acceptable packing fraction range, but they do not change the 

phase diagram qualitatively. For the sake of simplicity we do not change the theory. 

Regarding the solid phase, we have not made an attempt to calculate the free energy and the 

pressure, as the focus of our study is the stability of smectic with respect to columnar ordering 

in binary mixtures. Moreover the solid phase is destabilized in the mixture of short and long 

rods, because the short rods impose shorter period than the long rods along the symmetry axes 

of the rods. For these reasons, we refrain ourselves from comparing our results with those 

from the more accurate FMT approximation [22,43]. 

 

3.2 Phase behaviour of length-bidisperse hard cylinders 

Since the smectic A phase is the first in the rank which destroys the nematic order in 

the monodisperse system of hard cylinders, it is reasonable to examine first the stability of the 

nematic phase with respect to a smectic A modulation in the mixture of short and long 

cylinders. The simplest method to locate the borders of the nematic and smectic regimes is the 

nematic-smectic bifurcation analysis. In our formalism this is equivalent to finding the lowest 

density at which Eq. (10) still has nonzero solutions for the Fourier coefficients of the 

positional distribution functions. In this regard the composition ( NNx ii /= ) and the length 

ratio of the system ( 12 / LLl = ) are free parameters in the calculations. The bifurcation 

analysis of Koda and Kimura [12] shows that the nematic phase can be destabilized either by 

a monolayered smectic phase (S1) or by a bilayered or microsegregated smectic one (S2).  The 

length-bidispersity always destabilizes the smectic order with respect to the nematic phase 

because the characteristic smectic periods of the short and long rods do not fit. For example, 

in a short-rod-rich smectic phase the added long rods cannot accommodate into the layer 
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structure of the short rods, but they have to occupy more than one layer. Depending on the 

length of the long rod the number of occupied layers can start from one and go up to infinity.  

To minimize the excluded volume between short and long rods the long rods occupy the 

optimum position in the layer. With monolayered or bilayered stacking it is possible to reduce 

the number of layers overlapping with a long rod by one.  For example, a long rod which 

occupies n layers in monolayered structure, can interact with only n-1 in a bilayered smectic 

structure. The resulting stable phase is the bilayered structure, because there is an entropy 

gain from the more efficient packing. The opposite situation can also happen that the stable 

monolayered structure has occupation number n-1, while the metastable bilayered structure 

has n. Koda and Kimura [12] have derived analytical equations for the structure of the smectic 

phase at the nematic-smectic bifurcation in the limit of pure phases ( 01 →x  and 11 →x ) .  

The regions of S1 and S2 phases alternate according to   

 212 2)12( LaiLLai NSNS −≤≤−− ,      (12a) 

210 LaL NS −≤≤  and ( ) 212 122 LaiLLai NSNS −+≤≤− ,   (12b) 

(i=1,2,3,...) where the first equation gives the interval of L2 for a stable S1 structure, while the 

second one is for the S2. NSa  is the smectic period at the nematic-smectic bifurcation of the 

pure phase of component 2, which equals 239.1 L . In Fig. 4 we present the results of 

bifurcation analysis for the structure, the packing fraction and the period of the smectic phase 

as a function of composition and length ratio. We can see from Fig. 4a that our results follow 

the prediction of Eq. (12), but it also gives further information about the stability of smectic 

structures for intermediate compositions. In accordance with Eq. (12) we find S2-S1-S2-S1 

sequences for 0.2<l<1 in the short-rod-rich regions, while systems with a majority of long 

rods show only the S2-S1 change. Figures 4b and 4c demonstrate the commensuration problem 

of the particles’ lengths. Both the bifurcation packing fraction and the smectic period have 

abnormal behaviour at intermediate values of length ratio and composition. The packing 
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fraction goes up to unphysical ranges in the vicinity of an equimolar mixture, while the 

smectic period shows increasing discontinuity with decreasing length ratios. The results 

clearly show the suppression of the smectic phase and the possible predominance of stable 

columnar structures, because the columnar phase does not suffer from the commensuration 

problems. 

 A more detailed insight is provided by the positional distribution functions 

( ) ( ) iii zzf ρρ /=  of the possible smectic phases. Numerical solution of Eq. (10) results in 

three qualitatively different smectic structures: a monolayered (Figs. 5a) and a bilayered 

structure (Fig. 5b), and a two-in-one-layer ordering (Fig. 5c).  We can see that the long rods 

are more ordered than the short ones in all three cases.  This is due to the fact that the long 

rods constitute the majority species and they contribute with a higher excluded volume cost 

than the short ones. The shorter rods can move out more freely from the center of the layer 

without increasing the excluded volume cost. The conventional smectic phase (S1) is mainly 

stable in weakly length-bidisperse systems (l>0.6), but it can also take place in the strongly 

bidisperse case. In the special case of 12 39.0 LL < , the short rods can accommodate in the 

interstitial region and the short rods are squeezed out from the layer of the long rods to make 

the packing of the short and long rods more efficient. The resulting bilayered smectic 

structure is shown in Fig. 5b. The two-in-one smectic ordering (S3) is the most interesting 

(Fig. 5c), because it has not been predicted theoretically before. The first experimental 

evidence for the existence of a S3 smectic structure is reported in the very recent study of 

Okashi et al [38]. It is found that the two-layer accommodation is possible in the length ratio 

interval of 0.34<l<0.59. Note that the length ratio of Fig. 5c is located inside this interval. The 

existence of the S3 structure is due to commensuration, because two layers of shorts rods can 

fit into one layer of long rods. Finally Fig. 5. proves that our model and the experimental 
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system are in close relationship because the smectic structures of the  binary mixture of short 

and long polysilanes are those shown in Fig. 5. 

We have monitored how the structural change takes place in the smectic phase by 

changing the length ratio at a given pressure. We have chosen two compositions (x=0.01 and 

0.99) very close to the monodisperse limits to avoid the stability problem of the smectic 

phase. Figure 6 demonstrates that S1 and S2 structures transform into each other continuously.  

In the long-rod-rich phase (Fig. 6a) the short rods go into the interstitial region with 

decreasing length ratio. At around l=0.3 the short rods form a nematic phase because they can 

stay everywhere with equal probability. This is an interesting structural behaviour because the 

long rods are in the smectic phase irrespectively of the value of the length ratio. In the short-

rod-rich smectic phase we observe the same structural S1-S2 change in the distribution of long 

rods (see Fig. 6b).  The only difference is that the period of the smectic phase is now shorter. 

To locate the border of S1-S2 (S2-S1) smectic transformations we have used the condition 

f2(z)=1 (f1(z)=1) in the solution of Eq. (10). The S3 phase can only appear in long rod rich 

phases in the vicinity of l=0.5. In this region of length ratio the stable phases are the S1 and S3 

structures. Since the transformation of the positional distribution function of the short rods 

from S1 to S3 is continuous, the second derivative of f2 must be zero with respect to z at z=0 

and this helps to locate the border of S1-S3 structural change. For this reason we have used the 

condition 0

0

2

2

2

=
=z

dz

fd
 to search for the S1-S3 transformation. 

 With the help of the nematic, smectic and columnar free energies we are in a position 

to construct the phase diagram of the system of short and long rods. Solving the phase 

equilibrium conditions we obtain the densities and compositions of the coexisting phases.  

The resulting phase diagrams are presented in the pressure-composition plane for the most 

important length ratios in Fig. 7. In the first system the lengths of the components are not far 
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from each other. Mixing the short and long rods does not result in a substantial change in the 

nematic-smectic A second order phase transition. Owing to the difference in the lengths only 

weak destabilization of the smectic phase can be seen with respect to the nematic one. 

Interestingly, the smectic-columnar biphasic region moves into the direction of lower pressure 

by adding short (long) rods to the system of long (short) rods. This means that, contrary to the 

smectic phase, the columnar phase becomes more stable with decreasing length ratio.  We can 

also observe weak fractionation between the coexisting phases. At around x=0.4 the 

coexisting smectic and columnar phases have the same composition, i.e. an azeotropic point 

bounds the stability region of the columnar phase. We can expect that the upper bound of the 

nematic and the lower bound of the columnar phase meet at lower length ratio.  This happens 

slightly above l=0.6. We can see that a first order nematic-columnar phase transition takes 

place at l=0.6 in a narrow composition and pressure range. The nematic-columnar phase 

transition is terminated by a critical endpoint where it meets the N-S critical line. At this point 

the critical phase coexists with the columnar phase. Interestingly, a pressure-induced S1-S2 

structural change takes place on the short-rod-rich side. This is due to the fact that the smectic 

layers get closer to each other with increasing pressure and the long rods enter into the two 

neighbouring layers. By moving into the interstitial region the long rods interact with only 

two layers; the packing entropy gain gives rise to the structural change in the smectic phase. 

In accordance with our results the system of short and long polysilanes shows only S1 

ordering both in short and long rod rich phases in the range of 0.59<l<1 [38].  At l=0.5 the 

smectic phase is microsegregated on the short rod side in accordance with Eq. (12), the 

nematic-columnar phase coexistence region widens, and a small region where the nematic-

smectic phase transition is of first order (with a corresponding three phase point) is detected 

close to a composition of 50%. In addition a S3 smectic structure occurs in a finite range of 

composition, which is rich in long rods.  The interesting lower pressure border of the S3 
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structure shows that the density of the short rods must exceed a minimum value to produce 

double layering.  At the lower length ratio of l=0.4 we obtained the same phase diagram as for 

l=0.5, except for the S1-S2 change and for the fact that the nematic-smectic phase transition is 

of second order. We can also observe that the fractionation of the N-C phase transition 

gradually increases with decreasing length ratio. The phase behaviour of the experimental 

system resembles closely the phase behaviour of the hard cylinder mixture, because the S3 

(S2) structure is stable at compositions rich in long (short) rods in the region of 0.34<l<0.59 

and the short rod rich smectic phase is microsegregated [38]. The phase diagram of l=0.3 

shows that a S2-S1 structural change takes place upon compression. In this case the short rods 

can accommodate in the interstitial region, but the compression moves the layers closer to 

each other and the short rods penetrate into the two layers. To avoid the double penetration 

the short rods move inside the layer and the system forms a monolayered smectic phase. Note 

that no S3 ordering takes place at l=0.3, which agrees with the experimental observations [38].  

Another interesting result is that the lower boundary of the columnar phase starts to move up, 

i.e. the columnar phase destabilizes due to the efficient S2 stacking. In addition the N-C phase 

boundary becomes very wide. At the lowest value of length ratio (l=0.15), we can clearly see 

the destabilization effect of the S2 stacking on the columnar phase.  The stability region of the 

smectic phase is very wide, while that of columnar moves up and becomes very narrow. The 

very short and the long rods do not want to form columns, but they segregate very strongly at 

high pressures: the short-rod-rich nematic phase is in coexistence with a microsegregated 

smectic phase. We have also examined the possibility of a nematic-nematic demixing 

transition, but it is always located in the biphasic region of the N- S2 phase boundary. Our 

attempts to find a stable N-N phase transition at very low length ratios has not been 

successful, because the N-S2   transition becomes wider and moves down into the direction of 

lower pressure.  
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 In summary, the occurrence of a stable columnar phase in the intermediate length ratio 

range is the result of the subtle interplay between translational, packing and mixing entropies. 

The short and long rods cannot accommodate together into the stacks of layers without high 

packing entropy loss. In addition the demixing of the smectic phase into phases rich in short 

and long rods is accompanied by high mixing entropy cost.  The existence of two-in-one 

smectic (S3) ordering in the vicinity of l=0.5 is due to the efficient packing of the short rods in 

the smectic layers of the long rods. 

 

3 Conclusions 

We have examined the phase behaviour of the binary mixture of short and long 

parallel hard rods as a function of length ratio using Onsager’s second virial theory. One- and 

two-dimensional Fourier expansions have been applied to represent the smectic and columnar 

phases, respectively. We have found that the stability regions of the nematic, smectic and 

columnar phases are very sensitive to the length ratio. The nematic phase can be stabilized by 

length bidispersity because either the short or the long rods do not fit into the 1D periodic 

structure of the smectic phase rich in long rods or rich in short rods. This commensuration 

problem is very strong in the vicinity of equimolar composition where the short components 

are trying to create a 1D periodic structure with a short smectic period, while the long rods 

prefer the formation of a smectic phase with long smectic period. A further consequence of 

the commensuration problem is the stabilization of the columnar with respect to the smectic 

phase at high pressures (densities). With decreasing length ratio the regime of smectic 

stability shrinks, while those of the nematic and columnar phases become more extended. At 

l=0.6 the nematic and columnar regions meet and a first-order nematic-columnar phase 

transition is stabilized. The region of the nematic-columnar phase transition widens and it 

becomes more fractionated with decreasing length ratio.  However, below l<0.4 the tendency 
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changes because the rods of the short component can fit into the interlayer region of the 

neighbouring layers and a microsegregated (bilayered) smectic phase may form. Due to the 

efficient packing of the bilayered smectic structure and the gain in the translational entropy, 

the region of the smectic phase widens, while the columnar phase is suppressed and shifted 

into the direction of higher pressures.  Therefore the stability of the columnar phase is limited 

by lower and upper bounds in the length ratio. To stabilize the columnar phase the best 

systems are those where the long rods are 2-3 times longer than the short ones.  No nematic-

nematic and smectic-smectic demixing transitions are found, since the strong nematic-smectic 

and nematic-columnar fractionations preempt the demixing transitions. We have shown that 

our binary mixture of short and long rods and that made of real polysilane molecules have the 

same types of smectic phases. In addition, the smectic phases in systems rich in short and long 

rods show the same structural changes with decreasing length ratio. Qualitative tests between 

theory and experiment to check the stability of nematic and columnar phases are not possible 

at the moment, because the objective of the study of Okoshi et al. [38] has been only the 

smectic ordering. 

In conclusion our study shows that the phase diagram of the short and long rods 

system can be very complex due to commensuration effects of the particle lengths. It remains 

an open question whether the orientational entropy contributions change the topology of the 

phase diagrams in the nematic, smectic and columnar regimes. We hope that our work 

provides a useful guide for future experimental works on rod-like mixtures exhibiting 

spatially ordered mesophases such as the recently synthesized binary mixture of helical 

polysilanes [38].     
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 Figures 

 

Figure 1. Phase sequences of the monodisperse system of parallel hard cylinders. The solid 

phase is not included in the model. 

 

Figure 2. Positional distribution function of a weakly ordered (a) and a strongly ordered 

columnar (b) phase at η=0.9.  The lattice constant of the columnar phase: (a)  a
*
= 1.41, (b)  

a
*
= 1.39. 

 

Figure 3. Columnar and nematic solutions in the pressure-packing fraction plane (reduced 

pressure:
0PvP β=∗

, packing fraction: 
0vρη = ) for the pure system of parallel hard cylinders. 

Dashed line connecting the filled squares shows the coexisting nematic and columnar phases. 

Filled diamond symbol locates the nematic-columnar bifurcation point. 

 

Figure 4. Nematic-smectic bifurcation of the binary mixture of short and long cylinders. a) 

Structure of the smectic phases in the length ratio-composition plane. 1=σ  means 

microsegregated (bilayered) smectic phase (S2), while 0=σ  denotes monolayered smectic 

phase (S1) b) Packing fraction (η) of nematic-smectic bifurcation in the length ratio-

composition plane. c) Smectic period ( 1/ Laa =∗ ) in the length ratio-composition plane. x is 

the mole fraction of long rods. 

 

Figure 5. Possible smectic phases of the binary mixture of short and long cylinders. a) 

Smectic phase where both components are in phase (S1). b) Microsegregated smectic phase 

where the distributions of the components are out of phase (S2). c) Smectic phase where the 
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components are in phase and the short rods forms two layers inside the layer of long rods (S3) 

For all cases the values of the mole fraction of long rods and the reduced pressure are 0.6 and 

4, respectively. The length ratios are 0.65 (a), 0.3 (b) and 0.5 (c). 

 

Figure 6. Structural change in the smectic phase as a function of length ratio in long rod rich 

a) and short rod rich phases b). The composition is x=0.99 in a), while it is 0.01 in b).   The 

value of the reduced pressure is 5 for all cases.  

 

Figure 7. Phase diagram of the binary mixture of short and long cylinders in pressure-

composition plane. The values of the length ratio (l=L2/L1): 0.65 (a), 0.6 (b), 0.5 (c), 0.4 (d), 

0.3 (e) and 0.15 (f). The horizontal short dashed lines connect either the nematic-smectic 

critical endpoint with the coexisting columnar phase or show the nematic-smectic-columnar 

three phase coexistences. In Fig. b) and e) the short dashed line connects also the terminal 

point of S1-S2  structural change with the coexisting columnar phase. The border of S1-S2, S2-

S1 and S1-S3 structural transformations are denoted as a dashed curve. The long dashed curve 

is the boundary of the unstable nematic-nematic demixing transition. We use the following 

notations: N-nematic, S1–monolayered smectic, S2-bilayered smectic, S3-two-in-one smectic  

and  C-columnar phase. x is the mole fraction of long rods. 
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Figure 2 a) 

 

 

Figure 2 b) 
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Figure 3. 
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Figure 4 a) 

 

Figure 4 b) 
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Figure 4 c) 
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Figure 6 b) 
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Figure 7 a) 
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Figure 7 b) 
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Figure 7 c) 
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Figure 7 d) 
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Figure 7 e) 
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Figure 7 f) 
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