R Renström 
  
P Lundberg 
email: patrik.lundberg@foi.se
  
B Lundberg 
  
Self-similar flow of a conical projectile on a flat target surface under conditions of dwell

Keywords: Conical projectile, Strength, Compressibility, Self-similar flow, Interface defeat, Dwell

In order to investigate the state of stress in a target material under conditions of interface defeat or dwell it is necessary to determine the load intensity at the interface of the flowing projectile material and the target. Previous studies for a cylindrical projectile geometry at normal impact under stationary conditions show that the load can be considered to be composed of three components, viz., those of inertia, compressibility and yield strength of the projectile material. In order to determine the influence of projectile shape, a conical projectile in axi-symmetric impact on a ridged, friction-free surface is studied by use of an analytical model for self-similar flow and numerical Autodyn simulations. It is shown how the maximum load intensity, and the position of the maximum, depends on the apex angle. Both the self-similar model and the Autodyn simulations show that the contribution to the load intensity from compressibility is positive below and negative above apex angles 80º. The influence of yield strength on the load intensity depends only weakly on the apex angle and therefore corresponds to that for a cylindrical projectile.
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Certain types of ceramic armours can defeat an incoming long-rod projectile on the surface of the ceramic material. This phenomenon, named interface defeat or dwell, was systematically studied and first reported by Hauver et al. [START_REF] Hauver | Ballistic performance of ceramic targets[END_REF][START_REF] Hauver | Enhanced ballistic performance of ceramic targets[END_REF] and later by Rapacki et al. [START_REF] Rapacki | Ceramics for armours-a material system perspective[END_REF]. Different matters concerning interface defeat have been dealt with in subsequent studies. For example, Lundberg et al. [START_REF] Lundberg | Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration[END_REF][START_REF] Lundberg | An experimental investigation of interface defeat at extended interaction times[END_REF][START_REF] Lundberg | Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[END_REF] determined the transition velocity (i.e., the maximum impact velocity at which interface defeat no longer can be maintained) for different target materials and studied the possibility of maintaining interface defeat for longer interaction times. La Salvia et al. [START_REF] Lasalvia | Microstructural and micromechanical aspects of ceramic/long-rod projectiles interactions: dwell/penetration transitions[END_REF][START_REF] Lasalvia | A predictive model for the dwell/penetration transition phenomenon[END_REF] developed a micromechanical model in order to predict the influence of ceramic microstructure on the performance of the ceramic material with respect to interface defeat, and Holmquist and Johnson [START_REF] Holmquist | A detailed computational analysis of interface defeat, dwell and penetration for a variety of ceramic targets[END_REF][START_REF] Holmquist | Modelling projectile impact onto pre-stressed ceramic targets[END_REF][START_REF] Holmquist | Modelling pre-stressed ceramic and its effect on ballistic performance[END_REF] modelled the target response during interface defeat and penetration, including effects of confinement and prestress.

In order to investigate the state of stress in a target material under conditions of interface defeat or dwell it is necessary to determine the contact pressure at the interface of the flowing projectile material and the target. This contact pressure has been analysed for a cylindrical projectile geometry at normal impact under stationary conditions [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF]. It was shown that the pressure is composed of three components due to the effects of inertia, compressibility and yield strength of the projectile material. While the contribution from inertia is the most important, those from yield strength and compressibility were found to be significant at representative impact velocities.

As the contact pressure depends on the shape of the projectile, it can be expected that the load intensity will be different for projectiles with, e.g., cylindrical and conical geometries. The influence of conical projectile shape on the transition velocity of silicon carbide has been studied

in [START_REF] Lundberg | Impact of conical tungsten projectiles on flat silicon carbide targets: Transition from interface defeat to penetration[END_REF]. The impact experiments and the numerical modelling of this study indicated a significant influence of the conical shape on the transition velocity.
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A conical projectile differs from a cylindrical projectile in the sense that the load intensity on the target surface under conditions of interface defeat will never become time-independent.

Such a projectile, with its apex in the front, gives a contact area on the target surface, which increases with time. Thus, the contact area has a moving boundary. In addition, the free surface of the projectile and the interior surface at which the material of the projectile passes from elastic to elastic-plastic state are moving. When yield strength is taken into account, the problem of determining the load intensity from a conical projectile under condition of dwell is both physically and geometrically non-linear.

In [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF], an approximate solution was determined for the stationary normal load intensity on a flat, rigid and friction-free target surface for axi-symmetric flow of a cylindrical projectile with consideration of the yield strength and compressibility of its material. In this paper, a corresponding study will be carried out for projectiles of conical shape, and comparisons will be made with projectiles of cylindrical shape. The analytical results obtained will also be compared with results of numerical simulations with Autodyn-2D.

Compressible flow with yield strength

Consider rotationally symmetric impact with velocity p v , where a dimensional variable is designated with an over-bar as in the sequel, between a long and straight conical projectile with apex angle of θ 2 in its front and a flat target surface as shown in Fig. 1. Because of the conical shape of the undisturbed projectile, the deforming projectile is assumed to be self-similar, i.e., its geometrical shape is assumed not to change with time. The material of the projectile is assumed to be linearly elastic and perfectly plastic with density ρ , Young's modulus E , elastic bar wave speed

2 / 1 0 bar ) / ( ρ E c =
where the subscript '0' has been added for 'incompressible flow', bulk modulus
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and yield strength y σ , and the target surface is con- sidered to be rigid and friction-free. Only the self-similar phase of the impact process is considered.

Above a transition surface ) , ( tr t r z z = the projectile material is in an elastic state, while below this surface it is in an elastic-plastic state. Above the transition surface, the axial stress is just below the yield strength of the projectile material, and the axial velocity is slightly below the impact velocity p v . The difference between these velocities, of the order of bar y

) / ( c E σ p v << , is neglected.
The load on the target surface is mainly due to the effect of inertia. Approximate contributions of compressibility and yield strength to this load are obtained by using a linear equation of state and by assuming that stresses and strain rates are related according to von Mises´ flow rule, respectively. It is assumed that the dimensionless compressibility K q / p 1 = α and yield strength p y / q σ β = are small, where

2 p p ) 2 / 1 ( v q ρ =
is the Bernoulli pressure based on the impact velocity of the projectile, and thus that y σ << p q << K .

The conditions of continuity for compressible, time-dependent and rotationally symmetric flow in cylindrical coordinates r , ϕ and z are then expressed as

0 1 = ∂ ∂ + ∂ ∂ + ∂ ∂ z v r v r r t z r ρ ρ ρ , ( 1 
)
where ρ is the density of the projectile, r v and z v are velocity components, and t is time. The equations of motion in the radial and axial directions are 

T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 7 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ∂ ∂ = - ∂ ∂ + ∂ ∂ z v v r v v t v r z r r r r z r r r rz rr ρ σ σ σ ϕϕ 1 , (2) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ z v v r v v t v z
ij ij ij s p + - = δ σ , ( 3 
)
where ij δ is the Kronecker delta. The equation of state for the projectile material is assumed to be

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = 1 0 ρ ρ K p , (4) 
where 0 ρ is the density at zero pressure 0 = p . According to von Mises´ flow rule, associated with the yield criterion

ij ij s s 2 y ) 3 / 2 ( σ =
, the components of the stress deviator are

d d s ij ij y 3 6 σ = , (5) 
where
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are the components and the norm of the rate of deformation tensor, respectively. Eqs. ( 1)-( 6) con- 

v v z - =
and the stress is uni-axial with y σ σ -= zz except in the vicinity of the free surface. Immediately below, the boundary conditions for the particle velocity are obtained from (i) continuity of the flow of mass and (ii) a jump in the flow of momentum through the transition surface [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF]. On the free surface of the projectile, the tractions should be zero.

It is assumed in accordance with reference [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF] that approximate boundary conditions can be formulated on the tangent plane ) ( ) , 0 ( tr

t b t z z = =
of the transition surface. These boundary conditions and those on the target are written as The time-dependent deformation of the projectile is assumed to be self-similar, which for time 0 > t justifies the choice of dimensionless quantities as

b z r r r v z v b r c d z v v v z r z z = < ≤ = ∂ ∂ + ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + - = ∂ ∂ - = , 0 , 0 , 1 3 6 , tr 2 2 y 2 tr p , (7) 0 , 0 , 0 , 0 = ≤ = ∂ ∂ + ∂ ∂ = z r r v z v v z r z , T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS
) ( 1 , 1 , 1 ; , p p p p z z r r t t z t v z r t v r t v z z t v r r ∂ ∂ + ∂ ∂ - = ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ = = , d t d d t d v v v t v b b ij ij i i = = = = = , , , , p 0 p ρ ρ ρ , ( 8 
) p p p , , q s s q p p q ij ij ij ij = = = σ σ .
An approximate solution for the load intensity ) 0 , ( ) ( zz r r q σ -= on the target surface will be sought. It is assumed that this load intensity can be expressed as the sum

) ( ) ( ) ( ) ( y c 0 r q r q r q r q Δ + Δ + = (9) 
of that due to inertia ) ( 0 r q , associated with incompressible potential flow, and disturbances

) ( ) ( ) ( 0 c c r q r q r q - = Δ and ) ( ) ( ) ( 0 y y r q r q r q - = Δ
due to the effects of compressibility and yield strength respectively. In Section 3, the contributions 0 q , c q Δ and y q Δ to the load intensity q will be expressed in terms of velocity fields 0 v ,

c 0 c v v v Δ + = and y 0 y v v v Δ + =
. Then, in Sections 4-6, approximate polynomial expressions will be determined for these velocity fields.
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Contributions to pressure on target surface in terms of velocities

In the absence of yield strength and with the assumption of potential flow, a potential [START_REF] Holmquist | Modelling projectile impact onto pre-stressed ceramic targets[END_REF] can be expressed in terms of the velocity components r v and z v by use of the relations

, ) , ( ) , 0 ( ) , ( 0 ∫ ∫ ′ ′ + ′ ′ = r r z b z r d z r v z d z v z r V
z r v z V v r V = ∂ ∂ = ∂ ∂ , . (11) 
Furthermore, Eqs. (3) and [START_REF] Lundberg | An experimental investigation of interface defeat at extended interaction times[END_REF] give

ij ij pδ σ - =
, and therefore the equations of motion (2) can be combined as

( ) ( ) 2 2 v V p + ⋅ - ∇ = ∇ - v x ρ , ( 12 
)
where x is the radius vector, v is the velocity,

v = v
, and where the definitions (8) of dimensionless variables have been used. Solving Eq. ( 4) for ρ , substituting into Eq. ( 12) and integrat-

ing with 0 ) , ( = b r p and z b r ) , ( - = v
, the unit vector in z -direction, gives the pressure

p 2 , 1 ) ( 2 1 exp q K v V b p = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - ⋅ + - + = α α α v x ( 13 
)
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11 in a projectile modelled as a compressible fluid with zero yield strength. The corresponding load intensity on the target surface

0 = z is ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + - + = = 1 ) ( 2 1 exp ) 0 , ( ) ( 2 c c c c c α α r r v v r V b r p r q , ( 14 
)
where the subscript 'c' has been added for 'compressible flow'.

For vanishing compressibility 1 α , Eq. ( 13) takes the form

2 ) ( 2 1 v V b p - ⋅ + - + = v x ( 15 
)
in a projectile modelled as an incompressible fluid with zero yield strength. The corresponding load intensity on the target surface

0 = z is 2 0 0 0 0 0 ) ( 2 1 ) 0 , ( ) ( r r v v r V b r p r q - + - + = = , ( 16 
)
where the subscript '0' has been added for 'incompressible flow'.

In the presence of strength, the second of the equations of motion (2) expressed in dimensionless variables and solved for

z zz ∂ ∂ / σ , becomes ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ∂ ∂ + ∂ ∂ - ∂ ∂ - + ∂ ∂ - = ∂ ∂ z v v r v v z v z r v r r r r z z z z r z z rz zz ρ σ σ T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 12 With rz σ ( ) d d rz / 3 / 6 β =
by Eqs. ( 3) and ( 5), and 1 = ρ , and after integration of Eq. ( 17)

from 0 = z to ∞ = z
, the load intensity on the target surface generated by the flow of a projectile material modelled as incompressible with yield strength can be expressed as

∫ ∫ ∞ ∞ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ - + ∂ ∂ - + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ - = - = 0 y y y y 0 y y y ) ( ) ( 2 1 3 6 ) 0 , ( ) ( dz z v z v r v r v dz d d r r r r r q z r z r rz zz β σ , ( 18 
)
where p y / q σ β = and the subscript 'y' has been added for 'yield strength'.

Incompressible potential flow

Equations for velocity

For incompressible potential flow, the equation of continuity [START_REF] Hauver | Ballistic performance of ceramic targets[END_REF] and the definition ( 11) of velocity potential, give

0 1 = ∂ ∂ + ∂ ∂ z v r v r r z r , 0 = ∂ ∂ - ∂ ∂ r v z v z r , (19) 
respectively, where also the definitions (8) of dimensionless variables have been used.

The velocity field sought should satisfy these relations with prescribed normal velocity v n ⋅ on the boundary of the deforming part of the projectile. As seen in Fig. 1, this part of the projectile is enclosed by three boundary surfaces, viz., the inflow, the free and the target boundary surfaces. However, neither the boundary itself nor the normal velocity v n ⋅ is known on the first two of these surfaces. of the inflow boundary was determined by consideration of balance of momentum [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF], but this method is not used here because of its complexity for conical geometry. Instead, it is assumed that b is propor-
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tional to the radius ) tan(θ = a
of the undisturbed contact area between the cone and the impact surface, Fig. 1. For vanishing apex angle, a corresponds to the radius of a cylindrical projectile.

For a conical projectile behaving as an incompressible fluid, it is assumed that

) tan( cyl 0 θ b b b = = . ( 20 
)
The particle velocity at the inflow boundary surface is assumed to be equal to the projectile velocity p v . The target boundary surface 0 = z is impenetrable, and hence the normal velocity component on this surface is zero. Accordingly, the normal velocities on the inflow and target boundary surfaces are

0 0 ), tan( ) 1 ( 0 , 1 b z b r v z = + < ≤ - = θ , (21) 0 , 0 , 0 = ≤ = z r v z ,
respectively. For potential flow, the additional boundary conditions in Eq. ( 7) are satisfied.
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Conditions on free boundary

The free boundary has unknown shape

) (z R r = and particle velocity v ) , ( z r v v =
. Therefore, the normal velocity v n ⋅ on this boundary is unknown. Expressions for this velocity are established as follows. At time 0 > t , a particle X initially on the un-deformed boundary is found at the position ) , ( t X x x = of the deformed boundary, Fig. 2 (a). In terms of the dimensionless variables

t v p / X X = and t v p / x x = , Fig. 2 (b)
, there is the corresponding relationship ( )

X x x = . ( 22 
)
The dimensionless velocity of a surface particle X is

X X x x X x x v ⋅ ∂ ∂ - = ∂ ∂ = ∂ ∂ = )) / ( ( 1 p p t v t t t v . ( 23 
)
In Appendix A, it is shown that the distance l along the deformed boundary from the leading

edge 0 = X of this boundary to the surface point ) ( X x , Fig. 2 (b), is X .
As the vector X has a constant direction defined by the half apex angle θ , Eq. ( 23) and the relation

X = l gives l l ∂ ∂ - = x x v . ( 24 
) T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 15 As t x = ∂ ∂ l / is a tangent vector to the boundary ) (z R r = at x , this relation gives x n v n ⋅ = ⋅ .
The components of n are

( ) 2 / 1 2 ) ( 1 - ′ + = R n r and ( ) 2 / 1 2 ) ( 1 - ′ + ′ - = R R n z
, and those of x are

) (z R x r =
and z x z = , which gives the normal velocity on the boundary

( ) 2 / 1 2 ) ( 1 R z R R ′ + ′ - = ⋅ v n . ( 25 
)

Radius of free boundary surface

The radius of the free boundary surface ) (z R must satisfy the condition of continuity of mass of the deformed volume of the cone and that of arc length of the free boundary, Fig. 2(b). These conditions can be expressed as These conditions can be expressed as

) ( tan ) 1 ( 3 2 2 3 0 ) ( 0 θ π ρ π b rdrdz b z R + = ∫ ∫ , ) cos( 1 ) 1 ( 0 2 / 1 2 θ b dz R b + = ′ + ∫ , (26) respectively 
-∞ = ′ ) 0 ( R , ) tan( ) 1 ( ) ( 0 0 θ b b R + = , ) tan( ) ( 0 θ = ′ b R , (27) respectively. 
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Polynomial expression for the shape of the free boundary

The shape of the free boundary of the deforming projectile is defined by the equation

) (z R r = . A differential equation for ) (z R
can be obtained from Eq. ( 25) as ( )

) ), ( ( ) ( ) ( ) ), ( ( z z R v z R z R z z R v z r z - = - ′ - , (28) 
where the components

( ) 2 / 1 2 ) ( 1 - ′ + = R n r and ( ) 2 / 1 2 ) ( 1 - ′ + ′ - = R R n z
have been substituted. This

nonlinear differential equation is singular at 0 = z .
In order to obtain an approximate solution for the radius ) (z R from Eq. ( 28), use will be made of the polynomial expressions

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ′ + ′ + ′ - = 6 ) ( 4 ) ( 2 ) ( 5 4 3 2 0 r z g r z g r z g v r , 4 4 2 2 0 ) ( ) ( ) ( r z g r z g z g v z + + = (29)
for the components of velocity. These expressions, with

2 2 + n g 2 2 ) 2 2 /( + ′ ′ - = n g n
are the first terms of infinite series which identically satisfy the conditions (19) of continuity and potential flow.

They are completely determined by the function ) ( 0 z g which here is taken as Substitution of Eq. (30) into Eq. ( 29) and the result into Eq. ( 28), and subsequent linearization, gives the linear differential equation

∑ = = N i i z c N z G z g 0 0 ) ; ( ) ( , (30) 
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z b R a z R a z R z a 1 0 0 0 1 ) ( ) ( - - = - ′ , (31) where ) 0 , ( ) 0 ( 
0 r 0 R v R R = = (32) 
according to Eq. ( 24). The coefficients 0 a , 1 a and 1 b and the velocity ) 0 , ( 0 r R v are expressed in terms of the coefficients i c in Appendix B, Eq. (B2).

The general solution of Eq. ( 31) is

, 1 0 z C R z C R m + + = (33) where ) /( 1 0 1 1 a a b C + = , 1 0 / a a m =
, C is arbitrary, and where 24), and minimizing the left hand side by use of the method of least squares.

1 0 < < m and 0 < C in order to make ) (z R finite for b z ≤ ≤ 0 and -∞ = ′ ) 0 ( R
) / ( ) ( l l ∂ ∂ - - x x x v 0 = , obtained from Eq. (

Compressible potential flow

General considerations

Compressibility will affect the flow of the deforming projectile, which can be seen from the equations of continuity (1) and state (4). Also, the velocities of the moving boundaries will be affected since compressibility limits these velocities to the speed of wave propagation in the projectile material.

Generally, the effect of compressibility in fluid flow is related to the Mach number

M dil / c v =
, where v is the flow velocity and

0 dil / ρ K c =
is the dilatational wave speed. It has
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been shown that there is an approximate correspondence between compressible and incompressible flow such that streamlines of compressible flow are locally reduced in length relative the streamlines of incompressible flow by the factor . Therefore, the position of the inflow boundary is approximated as

∫ - = - ≈ - = c 0 2 c c 2 p 0 2 m 0 2 m 0 c ) ) , 0 ( 1 2 1 1 ( ) 2 1 1 ( 1 b z dz z v b M b M b M b b . (34) 
Also, the radius of the free boundary ) (z R is affected as it is connected to the undisturbed cone at c b z = . In addition, it is affected by the decrease in volume that results from compression. Therefore, the conditions (26) of continuity of mass of the deformed volume and that of arc length of the free boundary become 

) ( tan ) 1 ( 3 ) ( ) 2 / 1 ( 2 ) 2 / 1 ( 2 3 c 0 2 m 2 p 0 ) ( 0 2 p c c θ π π π b dz z R p M dz rdr p M b b z R + = + = + ∫ ∫ ∫ , ( 35 
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-∞ = ′ ) 0 ( R , ) tan( ) 1 ( ) ( c c θ b b R + = , ) tan( ) ( c θ = ′ b R . ( 36 
)
The radius of the free boundary

) (z R
for compressible flow is determined similarly as in Section (35) is taken as the volumetric mean value of pressure 0 p of the incompressible field.

Equations for velocity with effect of compressibility

By use of Eqs. ( 4) and ( 13), the equation of continuity (1) can be expressed as

( ) ( ) 2 2 p 2 ) ) (( 2 v V M + ⋅ - ∇ - = ⋅ ∇ x v x v v . ( 37 
)
For a low Mach number p M , the velocity field is approximated as the sum

c 0 c v v v Δ + =
of the velocity 0 v of incompressible flow and a disturbance field c v Δ . By substituting c v , using

T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 21 = ∇ c V ) ( c 0 V V Δ ∇ + ∇ for c v v v Δ + = 0 c
, and neglecting terms of second order in

) ( c V Δ ∇
, Eq. ( 37) can be expressed as

( ) 0 5 , c 4 , c 3 , c 2 , c 1 2 p , c , c , c = + Δ + Δ + Δ + Δ + Δ + Δ + Δ γ γ γ γ γ z zz r rr zz r rr V V V V M V r V V , ( 38 
)
where indices after commas indicate derivation and the coefficients i γ are given by

2 2 0 0 1 2 r v rv r r - - = γ , (
)

r v v r r v r r r - + - ∂ ∂ = 0 0 0 2 2 2 γ , 2 2 0 0 3 2 z v zv z z - - = γ , (
) 

z v v z z v z z z - + - ∂ ∂ = 0 0 0 4 2 2 γ , (39) 
P I R C S U N A M D E T P E C C A ARTICLE IN PRESS 22 0 ) , ( , 0 ) , ( , 0 ) , ( c c c c c c = ∂ Δ ∂ = Δ = Δ b r z v b r v b r v z z r , 0 ) 0 , ( , 0 ) 0 , ( c 0 c = Δ = Δ r v R v z r , ( 40 
) 0 ) ) ( 1 ) ( 1 ( c c 0 2 c 2 c 0 = ′ + ′ Δ - ′ + Δ = Δ ⋅ ∫ ∫ b z r b c dz R R v R v dz v n
, respectively.

Polynomials for velocity of compressible flow

The velocity field 0 v of incompressible flow is approximated by the field (29), with 

3 c 1 c c ) ( ) ( r z f r z f v r + = Δ , 4 4 c 2 2 c 0 c c ) ( ) ( ) ( r z g r z g z g v z + + = Δ (41) 
with the functions

∑ = k k k n n z f z f c c ) ( and ∑ = k k k n n z g z g c c ) (
defined as polynomials in z up to the fifth degree. The polynomial coefficients are determined such that c v Δ satisfies the boundary conditions (40) and the condition of continuity (38).

The change of load intensity c q Δ on the target boundary due to compressibility is obtained from the difference of the load intensities c q and 0 q given by Eqs. ( 14) and ( 16), respectively,
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where 0 q is determined by the polynomial

) 11 ; ( ) ( 0 z G z g
= with coefficients given in Appendix B.

Incompressible flow with yield strength

General considerations

Elimination of the stress σ , the stress deviator s and the pressure p from the equations of motion (2) with constant density corresponding to incompressible flow, von Mises´ flow-rule ( 5) and the definition (3) gives ( )

v x v d ) ) (( 2 ) 3 6 ( ∇ - × ∇ = ⋅ ∇ × ∇ d β (42) 
in dimensionless form, where 1 = ρ has been substituted. Further, the boundary conditions [START_REF] Lasalvia | Microstructural and micromechanical aspects of ceramic/long-rod projectiles interactions: dwell/penetration transitions[END_REF] for velocity are expressed as

0 2 0 2 y 2 , 0 , 0 , 1 3 6 , 1 b z r r r v z v b r c d z v v tr z r tr z z = < ≤ = ∂ ∂ + ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + - = ∂ ∂ - = (43) 0 , 0 , 0 , 0 = ≤ = ∂ ∂ + ∂ ∂ = z r r v z v v z r z .
For a yield strength which is assumed here to be relatively small, i.e., 1 << β , the velocity field is approximated as the sum further satisfy conditions on the free boundary, which however is not utilised because of nonlinear implicit relations.

Polynomials for velocity of flow with yield strength

Approximating the components 

4 / ) ( 2 / ) ( 3 0 2 0 0 y r b z h r b z h v r - ′ + - ′ - = Δ , ) ( ) ( 0 2 2 0 0 y b z h r b z h v z - + - = Δ ( ) ( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + - - - - - - - - =
( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - - - - - - =
β ξ β β ξ β β ξ β β ξ β β ξ β ξ μ + + - - + - - - - - - - - + + + + - + + + = b b b b b b b b b b b 3 0 2 2 0 0 3 2 0 0 0 2 28 ) 1 ( 202 ) 15 14 )( 1 ( 21 ) 6 12 6 )( 1 ( 7 
β ξ β ξ β ξ β μ + + + + + + - + + + = b b b b b b (46) ) 49 ) 1 ( 168 ) 1 ( 156 (
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The last of these relations is a polynomial approximation of an implicit relation between ξ and β .

Simulations

Autodyn [START_REF] Birnbaum | Autodyn-an interactive nonlinear dynamic analysis program for microcomputers through supercomputers[END_REF], which is a coupled Euler-Lagrange (ALE) finite difference code, was used for simulation of the contact pressure distribution. The simulations were purely Eulerian.

Rotationally symmetrical impact between a long and straight conical projectile with apex angle θ 
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smallest zone, at the intersection of the axis and the target boundary, was 1/600 of a grid radius in both directions. From this point, the zone size increased geometrically, 0.78% per element axially and 0.42% radially. At the beginning of the simulations, the grid was filled with projectile material forming a cone. At the end of the simulation, an approximately self-similar flow had developed. Corresponding numerical results for a cylindrical projectile, = θ 0°, were taken from [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF].

Results and discussion

The stress-and velocity fields in the deforming apex of a conical projectile in axi-symmetric flow on a flat, rigid and friction-free target surface differs from those of a cylindrical projectile under corresponding flow conditions. For an impacting cone, self-similar flow persists from the start of impact, whereas for a cylinder the flow becomes stationary after an initial phase of transient flow. The mass of the undisturbed cone is self-similarly redistributed so that particles at the apex will be at the circle with radius ) , 0 ( ) (

0 t R t R =
as illustrated in Fig. 1. By Eq. ( 24) and Fig. 2, the radial velocity of the front of the displaced mass is found to be

≥ = p 0 v R v r ( ) p p )) cos( / 1 (tan v v ≥ + θ θ , if < < θ 0 90º
. For an incompressible fluid, this can be seen in Figs. 3 and4, where 1 ) 0 , (

0 0 > = R R v r
. This radial velocity differs from that of a cylindrical projectile, where the radial velocity on the target surface never exceeds p v . The discrepancy between the results of the self-similar model and those of the Autodyn simulations with projectile material D (incompressible fluid) observed in Fig. 3 is mainly due to the low-order approximation (33) used for the radius ) (z R of the free boundary.

The flow, extending self-similarly along the target surface, is similar to flows along inclined sides of ships in rough water [START_REF] Wagner | Über Stoss-und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Hauptaufsätze[END_REF] or along the surface of cones dropped into water [START_REF] Shiffman | The force of Impact on a Cone Striking a Water Surface (Vertical Entry)[END_REF]. Such flows enhance the load intensities significantly compared with stationary flows. Figures 5 and 6
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show that the load intensity in the interval 1 / 0 < ≤ a r increases with the apex angle θ 2 and can reach several times the Bernoulli pressure p q for an incompressible fluid. It can be seen that in the same interval there is good agreement between the results according to Eq. ( 16) and those of Autodyn simulations with projectile material D (incompressible fluid), Table 3, especially close to the axis of symmetry. By series expansion of the surface load ( 16) in terms of ) tan(θ , the stagnation pressure can be expressed as ) tan( 1) 0 (

0 θ k q + =
for small apex angles θ 2 , where ≈ k 1.38, see Fig. 6. The increase of load intensity with increasing apex angle likely affects the transition velocity for interface defeat, i.e., the maximum impact velocity at which interface defeat or dwell can no longer be maintained for a given combination of projectile and target materials [START_REF] Lundberg | Impact of conical tungsten projectiles on flat silicon carbide targets: Transition from interface defeat to penetration[END_REF]. Thus, if the influence of projectile strength and compressibility is neglected, the transition velocity for a cone can be expected to be reduced relative to that for a cylinder by the factor . The extending high-pressure region may affect the failure of the target by injecting projectile material into existing surface cracks [START_REF] Lundberg | Impact of conical tungsten projectiles on flat silicon carbide targets: Transition from interface defeat to penetration[END_REF].

For increasing apex angle, the maximum load intensity develops off centre, at a radius a r ≈ and increases compared to the value at the axis of symmetry, see Fig. 5. This can be explained by (i) the linear relation of the pressure and the curvature κ of the free boundary and (ii) the circumstance that the maximum curvature approaches the target surface for increasing apex angle, see Fig. 3.

In Fig. 5 it is seen that for = θ 45º the maximum pressure is almost p 3q which is 20% larger than the pressure p
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The contribution of compressibility to the load intensity for a compressible fluid is shown in Fig. 7. Both the self-similar model and the Autodyn simulations with projectile material B (compressible fluid), Table 3, show that the contribution is a function of the apex angle which is positive below and negative above 40 ≈ θ º. The positive contribution to the load intensity below 40 ≈ θ º is due to the increase in density of the projectile material (Eq. ( 4)). The negative contribution for larger angles θ seems to be explained by the effect of the density gradient (Eq. (C1)).

The yield strength of the projectile, modelled as an incompressible solid, substantially contributes to the load intensity as can be seen in Fig. 8. The influence of the apex angle on the contribution of strength is small and therefore similar to that for a cylindrical projectile. The discrepancy between the results for the self-similar model and of the Autodyn simulations with projectile material C (incompressible solid) is due to the omission of the effect of the disturbance velocity y v Δ on the shape of the free boundary.

For the self-similar model, Figs. 678show that at the impact velocity 1.5 km/s, representative of today's ordnance velocities, the contributions to the load intensity on the axis of symmetry from inertia, compressibility and strength were 1.76, 0.08 and 0.14, respectively, for a conical projectile with apex angle θ
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Length of free boundary

A relationship between X and x , Eq. ( 22), is found that gives a boundary condition for velocity in variables on the free boundary. Thus, since the unit tangent of the free boundary, expressed in the variable l of arc length, is

l ∂ ∂ / x
in the ) , ( z r -plane and further, since X has constant direction, the last term of Eq. ( 23) is written as

X X l l X X ∂ ∂ ∂ ∂ = ∂ ∂ = ⋅ ∂ ∂ x x X X x , (A1) 
where the relation between X and l are to be determined. With Eq. ( 24), the expression for the change of velocity, l ∂ ∂ / v along the free boundary is found as

X X l l X X l l l X X l l l l l ∂ ∂ ∂ ∂ - ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ - ∂ ∂ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ ∂ ∂ - ∂ ∂ = ∂ ∂ 2 2 1 x x x x v . ( A2 
)
Particle acceleration and pressure gradient are parallel in the motion of a material particle in perfect fluid flow. Since the pressure on the free boundary is a constant, the pressure gradient is directed perpendicularly to this boundary and therefore so is the particle acceleration. Furthermore, since according to Eq. ( 24), v is a function of l , the particle acceleration is

T P I R C S U N A M D E T P E C C A t l l l v t v l l v t t ∂ ∂ - = = ∂ ∂ = ∂ ∂ = ) ( ) / ( p p p 2 2 v v x a , (A3) l l v t ∂ ∂ - = ≡ v a a p ,
where a is the dimensionless particle acceleration. Eq. (A3) shows that . This equation and its solution are written as C must be zero. Furthermore, because of infinite length of the projectile and therefore that distant parts of the projectile surface should be unaffected, it is taken that

0 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ - X X l l . ( A4 
1 2 = C
, and thus there is the relation

X X l ≤ = 0 , (A5) Finally, since l ∂ ∂ / v relates to surface tangent t as l ∂ ∂ / v l l ∂ ∂ - = / t ) / /( κ ϑ ∂ ∂ - = t l n κ l - = ,
where ϑ and κ are the turning angle and the local curvature of the free boundary respectively, it
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32 is seen by Eq. (A3) and the equation of motion for a perfect fluid,

p t t -∇ = ∂ ∂ / 2 v ρ
, that the relation between particle acceleration, surface geometry and pressure gradient on the free boundary is expressed as 

t p t l t 2 2 ∇ - = = ∂ ∂ κ ρ ρ n v , (A6) n p l ∂ ∂ = - T P I R C S U N A M D E T P E C C A 1 b c b c b c b c + + + - - = , ( ) 11 
2 ) , ( R c R c R c z R v r - + - = .
For incompressible flow, the numerical values of the parameters 0 R , 1 C , m and the constant of integration C for different half apex angles θ are given in Table 1. 

T P I R C S U N A M D E T P E C C A T P I R C S U N A M D E T P E C C A T P I R C S U N A M D E T P E C C A T P I R C S U N A M D E T P E C C A
= -σ
on target surface for A, B, C and D projectile materials, half apex angles and impact velocities and relative sum q q q q ) ( y c 0

Δ + Δ + of contribution D 0 q q = , D B q q q c - = Δ and D C q q q y - = Δ
of inertia, compressibility and strength respectively and where A q q = . Data for o 0 = θ were taken from [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF]. Fig. 1.

Self-similar flow of a long conical projectile on a flat, rigid and friction-free target surface.

Fig. 2. Illustration of variables used in defining the properties of the free boundary. 

T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS
T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS
T P I R C S U N A M D E T P E C C A ARTICLE IN PRESS Table 3. Load intensity ) 0 ( ) 0 , 0 ( q zz = -σ
on target surface for A, B, C and D projectile materials, half apex angles and impact velocities and relative sum q q q q ) ( y c 0

Δ + Δ + of contribution D 0 q q = , D B q q q c - = Δ and D C q q q y - = Δ of
inertia, compressibility and strength respectively and where A q q = . Data for o 0 = θ were taken from [START_REF] Renström | Stationary contact between a cylindrical metallic projectile and a flat target under conditions of dwell[END_REF]. Dimensionless load intensity 0 q on target surface versus dimensionless radius a r / for incompressible fluid. Eq. ( 16 
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  determined, and where tr r is the radius of the free surface at b z = .

13 4. 2

 132 Conditions on the inflow and target boundaries

  flow. Further, the free boundary is assumed to be tangent to the target surface 0 = z and to the undisturbed cone surface at 0 b z = .

c to 8 c

 8 can be expressed in terms of the coefficients 9 c to 11 c and 0 b by use of the boundary conditions (21). See Appendix B, Eq. (B1).

2 =

 2 is assumed that the free stream Mach number of the projectile material p may affect both the boundary surfaces and the velocity field of the compressible projectile flow.Accordingly, it is assumed that for small α

  quantity m p is a mean value of the pressure in the deforming part of the projectile, as defined by the first of Eqs. (35). Also, conditions (27) become

4. 5 .

 5 Use is made of the expression (33) for ) (z R and conditions (35) and (36) instead of (26) and (27), respectively. An approximate value of c b is obtained by substituting 0 b for c b and 0 z v for c z v in the last member of Eq. (34). Further, an approximate value of m p to be substituted into Eq.

  v is assumed to satisfy the conditions (19) for incompressible irrotational flow, those on the inflow and target boundaries (21) and the condition (25) on the free boundary with 0 b replaced by cb given by Eq. (34). Furthermore, this velocity is assumed to satisfy the conditions (35) of continuity of mass of the deformed volume of the cone and that of arc length of the free boundary. This means that the velocity c v Δ must satisfy conditions on the boundaries of the deforming projectile such that it does not contribute to the in and out flow of mass on these boundaries, viz.

T

  

1 C

 1 , m and C of Eq. (33) for compressible flow. Further, the components of the disturbance field c v Δ are approximated as

3

 3 

  strength of the projectile material. The velocity field y v should satisfy the equation of motion (42) of incompressible flow with boundary conditions (43). The incompressible field 0 v is taken as the approximate field for 42 = N of Section 4.5. This field satisfies the first and third of the boundary conditions (43) at 0 b z = , but not the second condition as z the second and third of the boundary conditions (43) at 0 b z = , but not the first in which y v Δ should be zero. The disturbance velocity y v Δ should

  satisfy the equation of continuity, i.e., the first of Eqs. (19), and the boundary conditions (43), one obtains ( )

  , is substituted into Eq. (42). Then, by identification of the lowest-order powers

2Fig. 1 .

 1 and velocity p v , and a flat, friction-free and rigid target surface was considered for time 0 ≥ t . An elastic perfectly plastic constitutive model, with von Mises´ yield criterion and its associated flow rule together with the linear equation of state (4), was used for the projectile mate-An inflow boundary condition was used to simulate an infinitely long projectile, and an outflow boundary condition was used to let the projectile material leave the grid. Four different projectile materials were studied. The materials are labelled A (compressible solid), B (compressible fluid), C (incompressible solid) and D (incompressible fluid). The material A represents a tungsten alloy, while the hypothetical materials B, C and D have properties that are derived from those of A. Material data are presented in

  be expected to have a transition velocity that is 25% lower than that of a cylindrical projectile. Further reduction of the transition velocity can be expected as a significant surface load prevails in a region )

3

 3 

Fig. 3 .

 3 Fig. 3. Dimensionless free boundary

Fig. 5 .Fig. 6 .

 56 Fig. 5.Dimensionless load intensity 0 q on target surface versus dimensionless radius a r /

Fig. 7

 7 Fig. 7. Contribution

Fig. 1 .Fig. 2 .Fig. 3 .

 123 Fig. 1.Self-similar flow of a long conical projectile on a flat, rigid and friction-free target surface.

Fig. 6 .

 6 Fig.6.Contribution 0 q of inertia to dimensionless load intensity at stagnation point

  Fig. 8. Contribution

  stitute a system of 17 equations for the 17 unknown functions ρ , i

									v , ij d , d , ij σ , p and ij s ( i
	and	j	=	r	, ϕ	,	z	) of r , z and t .
			At the transition surface	z	z	( ) t r ,

tr

=

, the state of the projectile material changes from elastic to elastic-plastic. Immediately above this surface, the particle velocity is axial with p

  according to the first of the conditions Eq. (27). and the constant of integration C for different half apex angles θ are given in Table1. The

	0 b z = given by Eq. (27), with 0 b given by Eq. (20). Numerical values of the parameters 0 R , 1 C ,
	coefficients 9 c to 11 c are obtained from these values of 0 R , 1 C and m . The corresponding ap-	
	proximation of more accurate expressions (29) for velocity with N in Eq. (30) larger than 11. Such higher accu-) (z R given by Eq. (33) will be used as a known boundary in the determination of T P I racy is needed for the determination of the pressure p given by Eq. (15). R First, a polynomial (30) with 42 = N is substituted into the velocity components (29). With C S this choice of N , the coefficients 0 c to 9 c can be expressed in terms of the coefficients 10 c to 42 c
	M A N U b by use of the boundary conditions (21). Then the coefficients 10 and 0 c to 42							
					D E							
					T P							
			E C							
	C A							
	The four parameters 0 R , 1 C , m and the constant of integration C are determined by substitution
	of the solution	R	(z	)	from Eq. of	R	(z	)	and	(z R′	)	at

(33) into the conditions of continuity of mass of the deformed volume and of arc length of the free boundary (26) and into those of continuity m c are determined by substituting the velocity components into the relation on the free boundary ( )

Table 2 .

 2 Different combinations of impact velocities p v and materials were used in the simula-
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	. Projectile materials			
	Material	ρ (kg/m 3 )	G (GPa)	K (GPa)	y σ (GPa)
	A: Compressible solid	17600	160	285	1
	B: Compressible fluid	17600	160	285	0.001
	C: Incompressible solid	17600	160	28500	1
	D: Incompressible fluid	17600	160	28500	0.001

1 .(17)

. 2 q at the axis of symmetry.

=60º. For a cylindrical projectile, the corresponding contributions were 1, 0.03 and 0.15. Thus, the contributions to the load intensity from inertia and compressibility are significantly higher for a conical than for a cylindrical projectile, while the contributions from strength are similar.

2 κ ρwhere the second row results after multiplication with surface normal n .