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Abstract

The vertically integrated water budget of West Africa is investigated with a hybrid
dataset based on observational and modelling products elaborated by the African Monsoon
Multidisciplinary Analyses (AMMA) and with several numerical weather prediction (NWP)
products including the European Centre for Medium-Range Weather Forecasts (ECMWF)
AMMA reanalysis. Seasonal and intraseasonal variations are quantified over the period
2002-2007. Links between the budget terms are analyzed regionally, from the Guinean
coast to the Sahel zone. Water budgets from the NWP systems are intercompared and
evaluated against the hybrid dataset. Large deficiencies are evidenced in all the NWP
products. Hypotheses are proposed about their origins and several improvements are
foreseen. Copyright © 2010 Royal Meteorological Society
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I. Introduction

The large-scale water cycle of West Africa results from
the interplay of various coupled ocean—atmosphere—
land surface processes. The identification of the mech-
anisms involved and the scales at which they oper-
ate is a major objective of the African Monsoon
Multidisciplinary Analyses (AMMA) (Redelsperger
et al., 2006). Before the AMMA, only a few stud-
ies focused specifically on the West African mon-
soon (WAM) water cycle. These studies satisfacto-
rily revealed several key elements determining the
seasonal cycle of precipitation and the water cycle
of West Africa, such as the role of moisture trans-
ported by the southwesterly low-level monsoon flow
and the mid-level African easterly jet (Cadet and
Nnoli, 1987; Nicholson et al., 1997; Fontaine et al.,
2003). Synoptic variability was also evidenced in
the moisture fluxes at space- and timescales cor-
responding to African easterly waves (Cadet and
Nnoli, 1987). However, only a few studies focused
specifically on regional-scale water budgets (Brubaker
et al., 1993; Gong and Eltahir, 1996). Moreover,
very contrasting results were found about the mech-
anisms involved at the seasonal and multi-annual
timescales. A major reason for this lack of con-
sensus is the variety and composite nature of data
sources used. Among the different budget terms used
in these studies, evapotranspiration appears as the most
uncertain (Meynadier et al., 2010a). Furthermore, a
few other key timescales were almost not addressed
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so far (e.g. the diurnal cycle and intraseasonal
variability).

Numerical weather prediction (NWP) products have
been often used for computing the atmospheric part
of the water budget at global and regional scales
and quantifying variability at intraseasonal to inter-
annual timescales (Trenberth and Guillemot, 1995;
Roads ef al., 2002; Fontaine et al., 2003). However,
NWP products rely heavily on physical parameter-
izations, especially in the Tropics, and on observa-
tional data. In recent years, new precipitation products
and improved NWP model reanalyses have become
available. However, overall, an unprecedented exper-
imental and modelling effort was realized during the
AMMA. This was centred on 2006 with the Special
Observing Period (SOP), but many observing net-
works operated in enhanced mode from 2005 to 2007
and beyond.

This paper gives an overview of the large-scale con-
tinental water cycle studies conducted in the AMMA.
It covers mainly the intraseasonal to interannual
timescales of the atmospheric water budget using two
different approaches. A hybrid dataset was developed
by Meynadier et al. (2010a), which benefited from the
AMMA Land surface Model Intercomparison Project
(ALMIP) (Boone et al., 2009). This approach provides
an advanced, comprehensive atmospheric water bud-
get, including evapotranspiration, rainfall, atmospheric
moisture flux convergence, together with other sur-
face fluxes, such as runoff, soil moisture tendency
and net radiation. In the second approach, several
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NWP model reanalyses have been used and intercom-
pared with respect to the water budget. Given that
the radiosondes in Africa had large humidity biases
(Bock et al., 2007, 2008; Bock and Nuret, 2009; Nuret
et al., 2008), a special reanalysis was also run at the
ECMWEF in which a new radiosonde humidity bias
correction method was applied and many additional
offline data were assimilated (Agusti-Panareda et al.,
2009a, 2009b).

Some work in the AMMA also investigated the
oceanic water cycle. Namely, Marullo et al. (2009)
stressed the significance of the diurnal cycle in sea
surface temperature which could be important to
properly simulate the mean state and variability of the
WAM circulation. This appears as another promising
tool to study the WAM water cycle.

2. Data and methods

The vertically integrated atmospheric water budget
equation can be summarized as (Trenberth and Guille-
mot, 1995)

dPW +MFD =F — P (1)

where E is the evapotranspiration from the surface,
P is the precipitation at the surface, dPW is the
precipitable water vapour (PWYV) tendency and MFD
is the moisture flux divergence.

NWP models provide estimates for all terms inter-
vening in Equation (1) in the form of forecasted
variables. Analyzed variables (wind and humidity)
allow also dPW and MFD terms to be computed.
The computation of water budgets from NWP prod-
ucts suffers from various and different error sources
whether one considers forecasts (FC) or analyses
(AN). The forecast budget is closed, i.e. dPWgc +
MFDgc = Egc — Prc, but the balance between terms
can be quite unrealistic, considering for example,
drifts and spin up/down effects noticed in P, PWV
and in atmospheric circulation in the Tropics. Also,
the convection scheme has limited performance in
the Tropics leading to biases in Pgrc. On the other
hand, dPW and MFD terms can also be computed
from analyzed data. They are usually more accu-
rate in the sense they are closer to observations
than forecasts are. However, the direct computation
of MFD also introduces spatial and temporal sam-
pling errors. Although there are some advantages of
using NWP analyses, they do not provide estimates
for E and P. Combining the dPWan and MFDay
with Epc and Pgc is one possible way to investigate
the full water budget, but it has a major drawback.
Indeed, the data assimilation operation introduces cor-
rections (increments) to a short-term forecast used
as first guess. Hence, the combined AN/FC budget
is not closed: dAPWaN 4+ MFDaN # Epc — Pre. This
is especially true in the case of the ECMWF used
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in the present study extending from 412 to +36 h
ahead.

The hybrid dataset provides a different, nearly
independent water budget dataset. Surface water and
energy budget terms were simulated with nine land
surface models (LSMs) forced with satellite precipita-
tion (TRMM 3B42) and radiation products, with the
same land surface characteristics (Boone et al., 2009).
The nine E estimates were averaged and combined
with the forcing precipitation data, P from TRMM
and dPW from ECMWF Reanalysis (ERA)-Interim
reanalysis, to yield MFD as a residual from the budget
equation (so-called hybrid MFD)

MFDyyp = ELsm — Psar — APWnwp (2)

According to Meynadier et al. (2010a), the hybrid
water budget dataset set-up during the AMMA is more
accurate than the datasets used in previous studies,
especially for the £ and MFD terms. These authors
estimated the dispersion between several satellite pre-
cipitation products to £1 mm day~! for monthly
means over areas of ~3-10° km? during the core
of the monsoon. They also showed that the errors in
Ersm are correlated with the errors in Pg, and are
hence of similar magnitude. The multi-model approach
used in the ALMIP (Boone et al., 2009) shows that
the uncertainty in Epgy (estimated based on inter-
model spread) is relatively low compared to the other
surface water and energy budget terms. In addition,
comparisons to independent observations indicate that
estimates of Ep gy may be significantly improved com-
pared to those from past studies. The errors in MFDyyy,
and dPWywp are also very small (~0.2 mm day_l) at
the monthly mean scale. Presently, this dataset covers
the period 2002-2007.

The Global Positioning System (GPS) PWYV obser-
vations (Bock er al., 2008) also represent a useful
independent dataset which was used extensively for
the validation of NWP products and radiosonde data
at various timescales.

3. Results

3.1. Verification of NWP analyses and radiosonde
data with GPS PWYV data

Figure 1 presents an example of comparison of PWV
variability at timescales from diurnal to seasonal
cycles for three reanalyses and ECMWF-Integrated
Forecast System (IFS) operational analysis. All the
analyses show good agreement with GPS at timescales
more than 2 days but perform very poorly for the
diurnal cycle. ERA-Interim shows the best results
followed by ECMWE-IFS. The average biases are
small, except for NCEP Reanalysis II (NCEP2) which
is too moist. At individual sites, biases can reach
+3 kg m~2 or +20% PWV. Bock er al. (2007, 2008),
found similar results for the ERA-40 reanalysis and the
ARPEGE operational analysis. Bock and Nuret (2009),

Atmos. Sci. Let. 12: 51-57 (2011)
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PW\ comparison: NWP - GPS, 2005-2008.
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Figure I. Comparison of temporal variability of precipitable water vapour (PWYV) from GPS and numerical weather prediction
(NWP) models (from left to right: ECMWF-IFS, ERA-Interim, NCEP-RI, NCEP-R2), overaged over seven sites and period
2005-2008. Data were filtered according to the timescales of different processes: diurnal cycle (0.25— | day), synoptic disturbances
(2—6 days), short and long intraseasonal variations (6—24 and 30—90 days, respectively) and seasonal (>90 days). The plots show

(2) the standard deviation of PWV from NWP models, (b) the standard deviation of differences (PWV from model minus PWV

from GPS), (c) ratio of standard deviations (model over GPS) and (d) correlation coefficient between model and GPS.
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Figure 2. Seasonal cycle of the water budget from the hybrid dataset, in three latitude bands: GUI (6—10°N), SOU (10—15°N)
and SAH (15-20°N), all terms are monthly mean values averaged between 10°W and 10 °E, and over the years 2002—-2007.

established a link between radiosonde humidity biases
and biases in NWP model analyses. In some occasions,
radiosonde dry biases >7 kg m~2 were found with old
Vaisala RS80 sondes at daytime (e.g. in Tombouctou
and Niamey).

Meynadier et al. (2010a) also evaluated dPW from
several reanalyses with GPS observations and esti-
mated uncertainties in dPW of 5-6 mm day~' at
daily timescales and 0.15—0.35 mm day~' at monthly
timescales, locally.

Agusti-Panareda ef al. (2009a) showed that a new
ECMWF radiosonde humidity bias correction tai-
lored for the AMMA radiosonde data was effec-
tive at reducing the radiosonde bias. Data impact
experiments showed that the radiosonde bias cor-
rection combined with the additional AMMA SOP

Copyright © 2010 Royal Meteorological Society

data in 2006 improved the quality of ECMWEF analy-
ses (Agusti-Panareda et al., 2010). However, forecasts
were only improved slightly and large model biases
persist (e.g. temperature and humidity in the Sahelian
boundary layer and strength of the African easterly

jet).

3.2. The hybrid water budget

Meynadier et al. (2010a) analyzed the water budget
terms for three latitudinal boxes between 6°N and
20°N referred to as GUI, SOU and SAH boxes.
Figure 2 presents the seasonal cycle of the four budget
terms of Equation (2) in the three boxes. It can be seen
that West Africa is alternatively a source (E — P > 0
during dry season) and sink (E — P < 0O during wet
season) of moisture for the atmosphere. The magnitude

Atmos. Sci. Let. 12: 51-57 (2011)
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of the terms and balance between them is different
in the different boxes. The annual mean £ — P ~ 0
in the SAH box is largely endorheic. In the exorheic
SOU and GUI boxes, E — P < 0. Several limiting and
controlling factors of the regional water cycle were
evidenced by Meynadier et al. (2010a). The relation-
ship between evapotranspiration and precipitation was
shown to be very different between the Sahel zone
and the regions more towards the South and partly
controlled by the net surface radiation. Strong correla-
tions between precipitation and moisture flux conver-
gence were found over the whole region from daily to
interannual timescales and causality among monthly
mean anomalies was established. Namely, precipita-
tion anomalies were shown to be preceded by moisture
flux convergence anomalies and followed by MFD and
evapotranspiration anomalies.

3.3. Water budgets from NWP products

Meynadier et al. (2010b) intercompared water bud-
get terms from three global reanalyses, ERA-Interim
and NCEP reanalysis I and II, and compared them
to the hybrid water budget dataset at regional scales
and to GPS dPW observations at local scales. Biases
were evidenced in all three reanalyses in precipita-
tion and evapotranspiration. Both quantities are too
strong near the Guinean coast and too weak over the
Sahel zone. Moreover, the reanalyses provide an unre-
alistic view of continental West Africa as a moisture
source for the atmosphere (E — P > 0) north of 10 °N.
These biases are consistent with those diagnosed in
past studies, although in the case of ERA-Interim the

ALMIP /TRMM
20N /R 20N

ECMWF-IFS

O. Bock et al.

model is based on a more recent physics. Meynadier
et al. (2010b), completed their study with operational
products (analyses and forecasts) from ECMWEF-IFS,
NCEP-GFS and ARPEGE-Tropique in 2006 and with
the special ECMWF AMMA reanalysis. These more
recent NWP systems exhibited similar features as the
reanalyses. Figure 3 shows time-latitude diagrams of
E —P and P from all the models and the hybrid
dataset for comparison. In the ECMWF model fore-
casts (IFS, ERA-Interim and AMMA reanalysis) and
in NCEP reanalyses, E — P > 0 is especially marked
during the dry season and in the northern part of the
domain. This occurs in a region where soil mois-
ture is quite low during the dry season (Figure 2).
It suggests that evapotranspiration and precipitation
processes are poorly coupled in these NWP sys-
tems. At least, in the ECMWF AMMA reanalysis,
Agusti-Panareda et al. (2009b) detected large posi-
tive soil moisture analysis increments (i.e. moisture
is added to the subsurface at each analysis) which
produce excessive evapotranspiration in the subse-
quence short-term forecasts. The increments are due
to biases in temperature and humidity at 2 m in the
first guess. Large biases in the surface radiation budget
in the ECMWEF-IFS and ECMWF AMMA reanaly-
sis forecasts were also detected by Guichard et al.
(2010) and Agusti-Panareda et al. (2009b). These may
result from biases in the used aerosol climatology
and a lack of clouds in the forecasts over the Sahel
zone that were diagnosed by Agusti-Panareda ef al.
(2009b), with independent observations (aerosol opti-
cal depth from AERONET photometers and clouds
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Figure 3. Latitude-time diagram of E — P (shaded) and P (contour) from the hybrid dataset (ALMIP/TRMM) and from seven
numerical weather prediction (NWP) models (simulated variables), averaged over 10°W-10°E and over period from May to

September 2006.
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Figure 4. Similar to Figure 3 but for moisture flux divergence (MFD) (shaded) computed from analyzed variables and P (contour)
from simulated variables in the case of numerical weather prediction (NPW) systems. The MFD estimate from the hybrid dataset

is computed as a residual from the budget in Equation (2).

from CALIPSO and CloudSat satellites observations).
In NCEP-GFS, E — P < 0, but P is much too strong,
and in ARPEGE-Tropiques both E and P are too
weak. All these NWP systems thus have difficulties in
representing properly E and P over West Africa. These
results suggest that convection parameterizations may
not be adequate.

Figure 4 compares vertically integrated moisture
flux convergence computed from the analysis prod-
ucts of the various NWP systems. Depending on the
NWP system, a minimum of convergence or diver-
gence is seen north of the rainband (13—16 °N). This
is not seen in the hybrid dataset. Inspection of verti-
cal profiles reveals that this feature is mostly located
in the low levels (1000-800 hPa) at the southern
branch of an overturning shallow meridional circula-
tion (SMC) that is driven by the Saharan heat-low
to the north (Meynadier et al., 2010b). This circula-
tion appears too strong in the ECMWF model (either
IFS, ERA-Interim or the AMMA reanalysis), lead-
ing to subsidence and MFD around 15°N in August.
The origin of this enhanced SMC is attributed to
the biases identified in the surface energy budget
in the ECMWF model. Inspection of ERA-40 and
changes in ECMWF-IFS since 2002, namely, in the
aerosol climatology, tends to confirm this hypothe-
sis. It is also hypothesized that this feature added
to the presence of a deep layer of northerly dry air
advected at mid-levels (800—400 hPa) might block
the development of deep convection in the model
forecasts and hence hamper the northward propaga-
tion of the rain belt. A too strong SMC seems to be

Copyright © 2010 Royal Meteorological Society

present in all the NWP systems investigated in this
study.

4. Discussion and conclusions

The hybrid dataset was useful in diagnosing the
strength of several mechanisms of the WAM water
cycle not clearly established from previous work
(Meynadier et al., 2010a). Namely, links between E
and P, and P and MFD, were shown to be different
in the Sahel zone and more to the south revealing dif-
ferent surface—vegetation—atmosphere couplings and
marked seasonal cycle and interannual variability (not
shown here). Ongoing work is focused on shorter
timescales at which this dataset is pertinent too,
namely, the intraseasonal variability, synoptic scale
and diurnal cycle. At smaller spatial scales, GPS dPW
estimates also provide a means for investigating the
water budget associated with Mesoscale Convective
Systems (MCSs).

The hybrid dataset was also useful for evalu-
ating NWP products (Meynadier et al., 2010b). It
allowed the magnitude of a number of deficien-
cies in P, E and MFD terms from analyses, fore-
casts and reanalyses to be confirmed and quan-
tified. Significant closure errors (1-2 mm day~!)
were found, whatever the combination of NWP
products (analyses and forecasts) and hybrid prod-
ucts (Pg and Epsy). Nevertheless, reanalyses may
allow interannual monthly mean anomalies to be
estimated with more confidence over the region.
NWP systems also give insight into the vertical

Atmos. Sci. Let. 12: 51-57 (2011)
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dimension of the water cycle. Another indepen-
dent method based only on observations, especially
radiosonde data, is also under development (D.
Bouniol, personal communication). This method is
expected to provide an accurate vertical description
of the water and energy budget at mesoscales during
the SOP.

The NWP model intercomparison and comparison
with products elaborated by AMMA provided insight
into the origin of the model’s deficiencies. These are
mainly the convection scheme, soil moisture initial-
ization and radiosonde humidity biases. Experiments
conducted with the AMMA reanalysis showed that
the recent improvements in convection scheme and
radiosonde humidity bias correction slightly improved
the water budget forecasts in the ECMWF model:
the rain belt moved 1° to the north, and dPW and
MEFD biases were slightly reduced (Agusti-Panareda
et al., 2009b). Experiments with soil moisture ini-
tialized from ALMIP offline LSM simulations also
slightly improved the forecast (Agusti-Panareda et al.,
2009c). However, the gross biases highlighted above
were still present. More work is needed to further
improve the water cycle simulated by NWP models
over West Africa. The most promising improvements
are expected from an advanced modelling of inter-
actions between surface, aerosols, convective clouds
and radiative processes. Assimilation of new satel-
lite data sensitive to lower tropospheric humidity and
soil moisture are also expected to participate effi-
ciently to the improvement of the water cycle in
these models (De Rosnay et al., 2008; Karbou et al.,
2010).

Future work should also consider the role of sur-
rounding oceans, namely, quantifying the amount of
moisture of oceanic origin transported towards West
Africa and estimating the strength of continental water
recycling.
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