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Wavelet Packets of Nonstationary Random
Processes: Contributing Factors for Stationarity
and Decorrelation

Abdourrahmane M. ATTO!, Member, IEEE and Yannick BERTHOUMIEU?2, Member, IEEE

Abstract—The paper addresses the analysis and interpreta-
tion of second order random processes by using the wavelet
packet transform. It is shown that statistical properties of the
wavelet packet coefficients are specific to the filtering sequences
characterizing wavelet packet paths. These statistical properties
also depend on the wavelet order and the form of the cumulants
of the input random process. The analysis performed points out
the wavelet packet paths for which stationarization, decorrela-
tion and higher order dependency reduction are effective among
the coefficients associated with these paths. This analysis also
highlights the presence of singular wavelet packet paths: the
paths such that stationarization does not occur and those for
which dependency reduction is not expected through successive
decompositions. The focus of the paper is on understanding
the role played by the parameters that govern stationarization
and dependency reduction in the wavelet packet domain.
This is addressed with respect to semi-analytical cumulant
expansions for modeling different types of nonstatonarity and
correlation structures. The characterization obtained eases the
interpretation of random signals and time series with respect
to the statistical properties of their coefficients on the different
wavelet packet paths.

keywords: Wavelet Transforms ; Nonstationary Random
Processes ; Cumulant analysis.

I. INTRODUCTION

Information processing from signals and time series is
substantially simpler when the data follows from indepen-
dent and identically distributed, iid, random variables. As
iid assumption is irrelevant for most practical applications,
the challenging issue of representing the data in some
transform domain, in order to meet or approach the above
iid statistical property arises naturally. In this respect, a
suitable transform is required to have stationarization and
decorrelating properties and, more generally, to reduce
higher order dependencies between the random variables
describing the time evolution of the random process under
consideration.

Among the transforms that approximately achieve this
goal, wavelet decompositions are highly effective because
wavelets operate unconditionally with respect to the input
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process and tend to achieve the desirable stationarization
and decorrelating properties for a large class of stochastic
processes, see [1], [2], [3], [4], among others. This class
contains stationary random processes (see for instance [4],
[5], [6], [7], [8]) and some nonstationary random processes
such as cyclostationary random processes and processes
with stationary increments (the literature on the topic is
abundant and instructive, see [1], [2], [3], [9], [10], [11],
(12], [13], [14], [15], [16], [17], [18], [19], [20], [21]).

The statistical properties of the wavelet coefficients of
second order random processes are specific to the wavelet
transform used. For instance, the statistical properties of the
continuous wavelet tranform have been addressed in [13]
and [16]. In these references, a characterization is provided
in order for stationarity to hold true for the coefficients of
some second order nonstationary random processes. How-
ever, it is shown in [1] that the above characterization does
not apply when considering the discrete wavelet transform,
due to the multiscale decomposition scheme involved in
the latter.

Furthermore, when considering the discrete wavelet
packet transform, it is shown in [8] that for stationary
random processes, the decorrelating property involved by
this transform is not a trivial consequence of the charac-
terization derived for the discrete wavelet transform in [5],
[6], [7]: the wavelet order has no impact in the latter case
whereas this order plays an important role in the derivation
of wavelet packet statistical properties. Furthermore, it is
shown in [3] that the statistical properties of the wavelet
packet transform of a fractional Brownian motion are path-
dependent and the generalization from the case of the
discrete wavelet transform (see [9], [10], [11], [12], [17])
requires large wavelet orders as well.

A significant drawback of the discrete wavelet transform
in terms of decorrelating properties is the residual correla-
tion occurring among the coefficients located at first levels
of this transform. For strongly correlated processes, this
residual correlation can be significant, impacting informa-
tion processing, whereas very few issues exist since these
coefficients have to be processed as well: otherwise, infor-
mation is lost. One solution could consist in designing the
wavelet filters adaptively with respect to the input random
process and the specification of some desirable statistical
properties. See for instance [22] where the wavelet filters
may change from one scale to another depending on the
input random process, in order for the wavelet transform to



meet some specifications. For certain stochastic processes
with compact time/spatial supports, sometimes referred to
as reciprocal processes, an alternative consists in modeling
their statistical dependencies by using pyramidally coarse
to fine organized trees, [23], [24], [25], [26]. Such tree-
like decomposition schemes can be exploited to develop
filtering algorithms (that essentially operate smoothing)
and the corresponding filters can somehow be associated
with wavelet filters. Both issues given above constrain the
wavelet decomposition to be conditional with respect to the
input random process.

In many situations involving information processing from
a huge number of observations, a fixed representation is
of much interest. In this respect, the present work relates
to non-adaptive frameworks, in continuation of [1], [2],
[3]. In order to obtain a general framework which can
make stationarization and decorrelation effective for a large
class of random processes, we consider the discrete wavelet
packet transform, in continuation to [3], [4]. The insight
in using wavelet packets is the fact of splitting again, the
subbands that have not reached a given stationarization or
decorrelation level.

The consequence of the above splitting scheme is a
description of wavelet packet paths through a double in-
dexed sequence, where the indices are the decomposition
level j and the frequency index n. This double indexed
sequence have the particularity that the frequency index
n=n(j) depends on j, which makes the use of dominated
convergence theorems prohibited (see [8] where it is shown
that the Lebesgue dominated convergence theorem does
not apply for deriving the limit of the autocorrelation
functions of the wavelet packet coefficients per path). This
is why direct inference from the case of the discrete wavelet
transform [1] to the case tackled in this paper (wavelet
packet transform) does not apply directly.

More specifically, the analysis presented hereafter is
performed with respect to the key parameters that gov-
ern stationarization and dependency reduction in wavelet
packet coefficients: the number of vanishing moments of
the wavelet function and the wavelet order. As highlighted
below, these two parameters have different roles, but they
can be aggregated in a capital parameter when considering
standard families of wavelet functions.

The results given in the paper describe the impact of
these parameters on the statistical properties of the wavelet
packet coefficients for a large class second order random
processes. A random process pertaining to this class is such
that its cumulant of order N can be expanded in 3 terms:
a projective term (with dimension N —1), a stationary term
(which lies along the dimension N —1) and an N-variate
polynomial term. Furthermore, the paper also points out
the singular wavelet paths: the paths associated with nodes
(subbands) such that no stationarization can occur and
those for which dependency reduction is not expected to
hold true.

The paper is organized as follows. In Section II, we
present notation and some preliminary assumptions used
throughout the paper. Section III deals with the conditions

under which stationarization occurs for wavelet packet
coefficients. Section IV provides asymptotic results on the
decorrelation and the higher order dependency reduction
that can be reached for the class of random processes in-
troduced in Section III. Section V discusses the contribution
of such an analysis to characterize generalized fractionally
integrated random processes from the identification of
singular wavelet packet paths. Section VI concludes the
work and mentions some prospects.

II. PRELIMINARY NOTATION AND ASSUMPTIONS
A. Wavelet paths and subbands

Throughout the paper, Hy denotes a scaling filter and W,
is the scaling function associated with this filter. Similarly,
H; denotes the wavelet filter associated with Hy and W,
is the wavelet function associated with Hj, [27], [28]. The
functional subspace of L?>(R) generated from the translated
versions of W, is denoted by Wy (input space).

The wavelet packet decomposition assumes splitting Wy o
into orthogonal subspaces W;o and W;; and continu-
ing the splitting recursively on every subband W;j, for
obtaining Wj 12, and Wj12,41. The splitting involves
paraunitary wavelet filters (Hp, H;) at every decomposition
level (see [28] for details).

Let Hel,HEZ,...,Hej) be the sequence of wavelet filters
successively applied for decomposing Wy, with €, € {0, 1}
for every £ €{1,2,..., j}. This sequence is associated with a
unique wavelet packet subspace W; ,, (subband), where

J
n=n(j)=)Y e/’ e9)
r=1

A full wavelet packet path £, starting from the root
node Wy, is specified from the infinite sequence (He,)
of filters to be used in the recursive splitting scheme.
This is equivalent to associating path 22 with the infinite
binary sequence {e;},cn indexing the sequence of filters
given above. At the decomposition level j, in path 22,
the frequency index is n = ng(j) given by Eq. (1) where
the corresponding subsequence {€/},-; . ; is composed of
the j first term of the infinite binary sequence associated
with 2. For convenience, we will use either the notation
P = {ej}jeN or the notation & = (wo,o,{wj,ny(j)}je,\,) in-
volving the subbands associated with the filtering sequence
(He,) jeny see [4] for more details on wavelet packet path
characterization.

The approximation path, hereafter denoted by 22, is the
wavelet packet path such that: n = ng(j) =0,Vj e N. All
other paths are said to be detail paths.

Assume that orthonormal wavelet transforms are con-
cerned. Then W;, is generated from the sequence of
wavelet functions {Wj . : k € Z}, where W;,, () = W, ,(- -
2/k), with Wj , satisfying, in the Fourier domain':

i
[] He, @ w)
/=1

FWj () =217 FWow),

TFourier transform: Zf (w) :ff(t)e’i‘”tdt if feLl(®).
R



the above equality holding in L?(R) sense. Note that de-
pending on the binary sequence {€/},-,, . ; associated with
n, then the decomposition involved is
- a discrete wavelet transform when n € {0,1} at every
decomposition level,
. a full discrete wavelet packet transform when n €
{0,1,...,2¢ — 1} for every decomposition level ¢, 1< ¢ <
Jj
We consider the wavelet packet framework in the following.

B. Vanishing moments

A wavelet function W) is said to have r vanishing mo-
ments if

ftmwl(t)dtzo, for every m=0,1,...,r—1. 3)
R

Let ./%j,n'k(m) denote the (m + 1)-th moment of the
function Wink me{0,1,2,...}:

M n, (M) =thij,n,k(t)dt. 4)

Under the condition given by Eq. (3) and if we assume
that the paraunitary filters (Hp, H;) have finite impulse
responses, then for n # 0, we have:

M k(M) =0, for every m=0,1,...,r - 1. 5)

It follows that W; , . has at least r vanishing moments.

Note that by construction, every wavelet function W; is
with at least one vanishing moment whereas the contrary
holds for the scaling function W, (see for instance [27]).
Thus, we have .4 1 (0) # 0 whereas .4, (0) = 0 for every
ne{l,2,...,27 -1}

C. Preliminary assumptions

Let X be a second order real random process, continuous
in quadratic mean. Let R(f,s) = E[X(#) X(s)] be the autocor-
relation function of X. Assume that

//RZ R(t, )W ok (DW] p (s)d s < 0. ®)

Then, the projection of X on subband W;, yields coef-
ficients that define a discrete second order real random
process cj,,, with:

Cj,n[k]=ju;X(t)Wj,n,k(t)dt, kez, @

The statistical properties of cj,, depend on the analytical
form of R(t,s). In what follows, we assume that this auto-
correlation function admits the following expansion:
Condition (ACF)

The AutoCorrelation Function, ACE can be written in the

form:
R(t,s)= F()+F(s) + SL(t—-5) + Y. apqt’s? (8)
—— N—— 1<p,g<M
Stationary term | ,
Bivariate-polynomial

Projective terms

with
F(OWj (D) € L'®)

and
P STW; (D W) 0 (s) € LT (R?)

for every 1< p,q < M, where & is an even function.

Due to the symmetry of the autocorrelation function, we
can order the terms of the bivariate-polynomial with respect
to one of the variables ¢, s. Therefore, we call M, the degree
of the bivariate-polynomial involved in Eq. (8). It is worth
noticing that in Condition (ACF) above, no restriction is
imposed on M. In practice, when the degree M is fixed
(for modeling purpose, for instance), then only bivariate
monomial terms with high degrees are excluded from the
bivariate-polynomial of Condition (ACF). Now, when M
tends to infinity, the expansion Eq. (8) involves Taylor-
like expansions and analytic power series when both F
and .# are polynomial functions and monomial coefficients
are chosen adequately. From these considerations, we have
that Condition (ACF) is reasonable for approximating the
autocorrelation functions of a wide class of random signals
and time series.

From now on, under Eq. (8), the Fourier transform &.%
of ., when it exists, will refer as the spectrum of X. The
justification of this terminology follows as a consequence
of the properties of the wavelet packet coefficients of X: an
adequate choice of the wavelet function leads to stationary
wavelet coefficients for the decomposition of X and makes
possible the definition of a power spectral density of the
form given by

1
Yinl@) = - F S )| FWn@)|

for the subband W; , wavelet packet coefficients, see The-
orem 1 for details.

A specific class of random processes considered in this
work is characterized by spectra &% with the following
form:

FL(w) = ANw) x ¥ (w), 9)

where w € [-m, 7] and ¥ is a “fractional K-factor” function
with the form given by

K o2
Yw) =[]
k=1{2|cosw —wl}

T (10)
This form allows for a substantial generalization of the
definition of a wide class of fractionally integrated random
processes, as illustrated below.

Note that the spectrum &.% of such a random process
may be unbounded in neighborhoods of many frequency
points, denoting the presence of possibly several long
memory parameters governing the behavior of this random
process. Depending on the form of function A, we will use
the following terminology from the literature on stochastic
processes and time series:

1) K-factor FI random processes
If A(w) =1 in Eq. (9), then &#.¥ is the spectrum of a K-
factor Fractionally Integrated (FI) random process. The
case of the standard FI random process corresponds to
K=1and y;=1.



2) K-factor FEXP random processes
Let

L
Aw) =[] e @, (11)
=0

where (v¢)¢=o,1,.,1 are piecewise continuous functions
satisfying vo = 1, vy(@) = vy(-w), and the matrix
(Ve(2rmIN))1<m<m* 0<r<L is non-singular for any nat-
ural number N. Then &% is the spectrum of a K-
factor Fractional EXPonential (FEXP) random process.
The case of the standard FEXP random process [29]
follows by letting K=1 and y; = 1.

3) K-factor GARMA random processes

The spectrum &#.% of a K-factor GARMA (Gegenbauer
AutoRegressive Moving Average) random process is of
the form Eq. (9) [30], [31], [32], with ¥ given by Eq.
(10) and

Oe”iv) |1 —Z§=19pe_ipw)z
(I)(e*la))

(12)
[

Parameters (¢,)¢ model the contribution of autoregres-
sive terms and parameters (6,), correspond to moving
average contributions.

Note that when K =1 and v; =1, then &#.% is known
from the literature as the spectrum of an ARFIMA
(AutoRegressive Fractionally Integrated Moving Aver-
age) random process. Further details concerning the
properties of ARFIMA random processes can be found
in [33], [34], [35], [36], [37], [38], [39], [40], among
others.

Before detailing the characterization of the wavelet
packet coefficients of random processes having autocorre-
lation functions with the form Eq. (8), let us provide some
examples of such random processes.

Example 1 (WSS random processes)
For a Wide Sense Stationary (WSS) random process X(1),
we have Rx(t,s) = Rx(t—s,0) = Rx(t—s) = #(t-5s) (thus, F =
0 and the autocorrelation admits no bivariate polynomial
term). As a consequence, the terminology of “spectrum”
used for . is the “natural” one since X is stationary.

A stationary K-factor GARMA (Gegenbauer AutoRegres-
sive Moving Average) model [30], [31], [32] satisfies in the
time domain

K
OB) [[ (1-2yiB+ 32)5" X(1)=0B)Z(1),
k=1

(13)
where Z(f) is a zero-mean white noise with variance ¢?,
functions ©, ® are defined by ©(B) = -Y,_,6,B", ®(B) =
1—23:1 (qu", B is the backshift operator: BX(t) = X(t—1)
and I represents the identity operator.

The following conditions are required in order to ensure
wide sense stationarity for a random process X satisfying
disctinct. In addition, one among the following conditions
must holds true:

i) 6r<1/2 and |yl <1, for every ke {1,2,...,K},

ii) 0x<1/4 and |wi| =1, for every k€ {1,2,...,K}.
Finally, the zeros of functions ©(x) and ®(x) need to be
distinct and must lie outside the unit circle. [

Example 2 (Trend and stationary autocorrelation)
Consider a random process Z with mean pz(¢) and sta-
tionary autocorrelation function Rz(t,s) = Rz(t —s). Define
a zero-mean random process X(t) from

X(8)=Z(t) - pz(D).
Then, X has autocorrelation function
Rx(t,8)=Rz(t—3$)—uz()uz(s).

Assume that p is a polynomial function, pz(#) = 22/1: *0 aptk,
that does not reduce to a constant (otherwise, X is wide-
sense stationary). Then an expression of the form Eq. (8)
follows for the autocorrelation function of X by letting
F(t) =Rz (1), F(t) = a3l2+ag x 224:1 art* and the bivariate
polynomial is 224:1 22/[:1 aiay kst [

Example 3 (Polynomial moments)

The autocorrelation function of a random process with
finite order polynomial moments satisfies the form Eq. (8).
Consider for instance the polynomial random modulation
defined by

M*
X =Y Xpt*,
k=0
where (Xi)y—o1,. m* iS a sequence of zero-mean uncor-
related random variables. Let o3 = E[XZ] for every k €

{0,1,..., M"}. Then, random process X have autocorrelation
function

.....

M#
Rx(t,5)= ) 0 (ts)",
k=0
which can be written in the form Eq. (8) by letting F(¢) =
03/2 and & =0. "

Example 4 (fBm and Linear transformations of fBms)
The nonstationary random processes given below have no
bivariate polynomial terms in their autocorrelation expan-
sion. In this respect, we only specify the close form of the
projective and stationary terms.

1) fBm random process
For a zero-mean fractional Brownian motion (fBm),
we have F(f) = () = |t|*™ where H =0 is the Hurst
parameter.

2) fBmMA random process
Consider now a random process X resulting from the
linear filtering of an fBm random process Z by using a
filter with finite impulse response. We assume for the
sake of simplicity the following first order moving aver-
age model (process X is an fBmMA random process):

X =Z®W)+aZ(t-Top), (14)



where Z(t) is a zero-mean fBm with Hurst parameter
H. Then we have

L) =1+ad)tP +a(jt+ Tl +1t- Tol*)

and
F(O=0+a) (1t +alt- 1o,

Example 5 below concern some random processes for
which an expansion of the form Eq. (8), when it exits, does
not necessarily simplify the derivation of the properties of
wavelet coefficient autocorrelation functions.

Example 5 (Separable autocorrelation)

Many stochastic processes admit separable autocorrelation
function: R(t,s) = v(t)v(s). For instance, this is the case for
the random cosine modulation X(f) = Zcoswyt, where Z is
a random variable: this random process have autocorrela-
tion function

Rx(t,s) = E[Z%] coswgt cOswys.

Assume that function v has no finite order polynomial
expansion’ (example of the random modulation above).
Then, deriving an expansion of the form Eq. (8) is not
straightforward® and does not necessarily ease the wavelet
coefficient analysis*. Nevertheless, the separability of the
autocorrelation function with respect to variables t, s is use-
ful for establishing the properties of the wavelet coefficient
autocorrelations which, themselves, appear to be separable
(see Example 5 [Continued]).

[

Remark 1

Some specific random processes have very intricate auto-
correlations that are not separable and cannot be expanded
in the form Eq. (8) straightforwardly. For instance, the
autocorrelation function of a zero-mean multifractional
Brownian motion (mfBm) is [41]:

R(t,s) = C(H(1), H(s)) (tH(t)+H(s) + SH(t)+H(s) —lt- slH(t)+H(s))

with

T'2x+1DI'Qy+1)sinwxsinz
Clx,y) = V- y y

2T(x+y+Dsin(z(x+y+1)/2)

This form involves several compositions of non trivial
functions and does not follow Eq. (8), unless further sim-
plifying assumptions are used concerning the behaviour of
the time-dependent Hurst parameter. The class of mfBm
random processes given above requires a specific case study
for the derivation of the statistical properties of its wavelet
packet coefficients. [

20ne can note that if v is a polynomial, expansion of the form Eq. (8)
follows from monomial and binomial terms of the product v(£)v(s), as it
can be seen in Example 2.

3When v is an entire analytic function, expansion of the form Eq. (8)
can be obtained from the power series of v.

4Remark 2 below emphasizes that a bivariate polynomial expansion with
infinite order does not make it possible to simplify the wavelet coefficient
autocorrelation function.

We now consider the higher order cumulants of the
random process X. Let N €N and denote by

Cum(tl) L,..., tN) = Cum{X(tl))X(tZ)v--~1X(tN)}y

the cumulant of order N of the random process X. We
recall that the cumulant generating function can be seen as
the logarithm of the moment generating function and the
relationship between cumulants and moments is:

cum(fy, t,..., IN)

N
=Y DM lk-1IxE
k=1

IT X(t[)] x

les

x-xE| [] X(t)

fESk

(15)

El]] X

5652

’

where, for a given k, 1 < k < N, the summation extends over
all partitions (s1,52,...,5¢) of the set {1,2,..., N}. The above
cumulant is hereafter assumed to belong to L' RN)uL?([RN).
For N =2, we will also consider the following assumptions:

Condition (C1)
The cumulant cum(ty, t1, to,..., tn) can be written in the form

cum(iy, t1, t2,..., IN)
:FN(tOr tlru-) tN)
+FN(ty — 1o, 1 — To, ..., ty — o)

qo g1 qn
* Z Qq0,q1,-qn to tl tN
1<qo,q1,-»qN<My

(16)

where function FN, the projective term, is of the form:

N
FN(IO) tl;-'-; tN) = ZF[(tO) t];--'rt[—lit[+l)--w tN)
/=0

and function N (stationary term) is such that
yN(tkl - tkor---y tkN - tko) :yN(tl - t();--w tN_ tO)

for any permutation {ky, ky,...,kn} of {0,1,...,N}.

Condition (C2)

F[(tly t2)-”) tN) X ij,n,[l(tl)
X Wi e, (12) X ... x Wj o (£n) € L' (RY)

where Fy is any of the function involved in the sum defining
projective term FN and

1IN W (10) ... Wi e (E8) € LERNTY.

ITI. STATIONARIZATION

Subband wavelet and wavelet packet coefficients of sta-
tionary random processes are stationary [4], [5], [6], [7], [8].
For the class of nonstationary random processes satisfying
Condition (ACF), this section presents theoretical results
establishing their wide sense stationary, provided that the
wavelet used has at least r = M + 1 vanishing moments,
where M is the degree of the bivariate-polynomial in-
volved in Eq. (8). Furthermore, assume that: 1) conditions
(C1), (C2) are satisfied and, 2) the sequence (My)ns2



of multivariate-polynomial degrees involved in Eq. (16) is
bounded, with My, = sup{My : N = 2}. Then, strict sense
stationarity of the subband coefficients of X follows from
wavelets having r = max{M, My} + 1 vanishing moments.
These results are formalized in Theorems 1 and 2.

In the rest of the section, an upper index r (notation
cfn R]’Yn, cum] , and J%’ ) will be used to specify that
wavelet subbands are generated from a wavelet function
W; having r vanishing moments. We will also assume that
the wavelet filters are with finite impulse response. From
this assumption and by using the notation of Section II-B,
we have: J%J.r'n’k(p) =0 for every n#0 and p=0,1,...,r—1.

A. Wide-sense stationarity

Let R; n be the autocorrelation function of the discrete
random process ¢’ = representing the wavelet packet coef-
ficients of X on subband W; n

R’ [k, 0] :ffRzR(t, W (OWT | (s)dids.

Assume that condition
Fyw; (0 € L'R),
and thus, we have:

(17

(ACF) holds true. Then
tPsIW] (OW] () € L'

Rk O] = Jljr,nj(O)x(fF(t)Wrnk(t)dt)

AT, 0) x (fRF(t)er,n,[(t)dt)

+ Z a}?,q ‘/ﬂjr,n,l(q)

.
'/%j,n,k(p) X
1<sp,gsM

+ffy(t—s)
RJR

Taking into account Eq. (5), it follows that R]r. .
on. ¥ when n#0 and r =M+ 1:

W]r,n,k(t) W]’yn,[(s)dtds.

only depends

Lk, 0] = ffﬂ’(t—s)er’n,k(t)W]r,nj(s)dtds. (18)
If we assume further that:
f L(t—s)W k(t) [(s)dtds<oo

and that . has a Fourier transform (in L'(R) or L?(R)
sense), then we have, using the same notation and with
the above assumptions:

Theorem 1

Under Condition (ACF), and if we assume that X is with
zero-mean or have a polynomial mean of order M, then
the discrete random sequence c”, w70, is wide sense
stationary for r = M +1: R’ alk [] ]'n[k 4], with

2 i
R]f.,,l[m]=gfmgy’(w)\9mﬁn(w)‘ e M dw.  (19)

When the wavelet function used has enough vanishing
moments, it follows from Theorem 1 that: for random pro-
cesses with autocorrelation function given by Eq. (8), pro-
jective and bivariate-polynomial terms do not impact the

autocorrelation functions of the wavelet packet coefficients.
From Theorem 1, function .# plays an important role in the
wavelet coefficient autocorrelation function. As mentioned
throughout the paper, . is the contribution of a stationary
term in the autocorrelation function of a - not necessarily
stationary - random process. Hence, from Theorem 1, one
can associate a spectrum %.% to a nonstationary random
processes that have wavelet autocorrelation restricted to the
contribution of ..

Remark 2

Consider the decomposition of a random process X with
autocorrelation function Ry given by Eq. (8) and let &2 be
a wavelet packet path, with & # %,

If Rx admit no bivariate-polynomial term, then wavelet
filters have the same stationarization effect. Indeed, only
the first moment is required for annihilating the pro-
jective terms and all wavelets functions Wink n#0,
have their first moments that vanish: Mj’y ak(©@ =0 for
every n #0 and every r =1, by construction. In contrast,
when a bivariate-polynomial term is present in Ry, then
only wavelets with r = M + 1 vanishing moments have the
desirable stationarization property. Note that some standard
families of wavelet functions are synthesized so that their
number of vanishing moments can be arbitrarily large
(Example of Daubechies and spline wavelets). However, for
these families, order r = oo is not attainable in practice due
to the fact that it requires for the wavelet filters to have
infinite impulse responses.

The following discusses the consequences of Theorem 1
on the decompositions of 1) the random processes obtained
by detrending a random process with stationary autocorre-
lation and 2) the fBm and fBmMA random processes.

Example 2 [Continued] (Trend and stationary autocorre-
lation)

If X is the random process defined in Example 2, with
uz() = 224:*0 aktk, then stationarity follows for wavelet
packet coefficients of X when the wavelet function has
r = M* +1 vanishing moments. L]

Example 4 [Continued] (fBm and Linear transformations
of fBms)
1) fBm random process
If X is a fractional Brownian motion with Hurst param-
eter H, 0 < H <1, then only one vanishing moment is
required for stationarity to holds true for its the wavelet
coefficients. By applying the Fourier transform (from

the distributional sense) to .#(¢) = |¢|*H, we have
0?D(H)
FL(w) = W’ (20)

where D(H) =T(2H +1)sin(7H) and T is the standard
Gamma function. Note that the result above can be
proven without referring to the theory of distributions,
as performed in [11] (wavelet framework) and [3]
(wavelet packet framework). Note also that the result
above holds true for the detail wavelet packet subbands

A : the wavelet functions generating these
) j=1,n#0



subbands have at least one vanishing moment, by

construction. In contrast, the approximation subbands

(W; 0) ., are characterized by scaling functions having
V) jz

no vanishing moment and the coefficients associated
with these subbands remain nonstationary.

2) fBmMA random process
With the same remarks as above, the detail wavelet
subbands of the fBmMA random process defined in Eq.
(14) are stationary for r = 1 and have autocorrelation
function given by Eq (19), where

o?D(H) (1+ a® +2a cos Tyw)

FSL (W)= w2+

21
|

The following example deals with the particular case of
a separable autocorrelation.

Example 5 [Continued] (Separable autocorrelation)

Let X be a random process having autocorrelation func-
tion R(t,s) = v(£)v(s). Assume that v € L}(R)UL?(R) and that
model Eq. (8) with a finite order M fails for R(¢,s).

Then the autocorrelation function of the sequence c’.,n
associated with the decomposition of X have the following
form:

R}, [k, 01 = U} (KIUT 1]

with

ur k1= f FV@)FW],(-w)e™? dw.

Consequently, we can conclude that c]r. "
in general.

Consider for instance the random modulation X(¢) de-
fined in Example 5. Assume that E[Z%] = 1. Then we have

is nonstationary,

1( i i
Uj k= 3 (e kI W] (o) + ek F W] o)

and we derive U’ WLkl = QWJ’ (wg) cos2/wok for even
wavelet functions. Thereby, autocorrelation function of c

is RJ’.n[k,Z] = (?ern(wo)) cos2/wokcos2/wgl. This auto-
correlation function have, up to a scaling factor, the same
form that of X. ]

B. Higher order stationarity

Let N be a natural number. The cumulant of order N+1
of the random process c]r. . 1s given by

cum oLk l1,€2,...,CN]
—cum{ ],n[k] ,,n[fﬂ

=f dtds;dss...
RN+1
] n,0q (SI)W 1,00 (SZ)

When N =1, then cum [k /] = [k,¢] and wavelet
packets are wide sense statlonary undner condition (ACF)
and further assumptions used in Section III-A. These as-
sumptions are supposed to hold true in this section and
we also assume that conditions (C1) and (C2) hold true.
Then, if we proceed as in Section III-A and if we take into

C]r‘nwz]...

dsycum(t, sy, S2,...,

C]r,nMN]}
SN)W]-r,n‘k(l‘)

j, n[N(SN)-

account the null-moment condition given by Eq. (5), we
obtain

[k ZlyZZ) [ ]

Zf dtds;ds,...
RN+1
Wj.r’n’gl(t+sl)W].r,n'42(t+ $2)...

cum

dsy N (51, 82,0, SNIW] 1 (D)

W]'n!N(t+ SN)

for r = My +1, that is: cum”, n[k,£1,€2,...,€N] depends only
on the stationary term .#*.

Furthermore, let us assume that:

SN 182,00, SIW], ((OW] | (E+51)

XW/ 0, (1+52).. (t+sy) e 'R

J’l[N

and that the Fourier transform of &N exists. Then,
cum [k l1,05,...,¢N] can be written in the following form
glven 1n Theorem 2.

Theorem 2
With the same assumptions used in Theorem 1, con-
ditions (C1), (C2) and the assumptions used above
for guaranteeing the existence of the different integrals
involved in the expansion of the wavelet packet cu-
mulants, we have: ¢ , n#0, is strictly stationary for
r >max{M Moo} +1. ForN>1 cum [k l1,05,...,0N] =
cum [ﬁl k,0»—k,....,0n— k], wzth
cum’ lky, ka, ..., knl
:m Ndwldwg...dwN
e—iMj(klwl+k2a)2+...+kNwN)
gyN(_wl, —W2,..., _U)N)
ﬂijn(—wl —w2 —... —(UN)
ngr‘n(wl)gl/Vj’,n(wz)...gwjf’n(wm.
Remark 3

In presence of nonstationary terms in the cumulants of X,
the stationarization properties obtained in Theorems 1 and
2 are not likely to hold true for the approximation path 2.

Indeed, as mentioned in Section II-B, any subband W] n=0

for j =1 is generated from scaling functions {Wr 0k" ke Z}
having no vanishing moment. Thus the contribution of the
projective and the multivariate polynomial terms do not
annihilate: this implies that higher order stationarity does
not occur for the approximation coefficients, in general.

IV. DEPENDENCIES

This section presents some results concerning the ca-
pability of wavelet packets for decorrelating the coeffi-
cients of stochastic processes satisfying assumption (ACF).
It provides additional results concerning higher order de-
pendency reduction induced by wavelets on stochastic
processes satisfying assumptions (ACF), (C1) and (C2)).



From Theorem 1, the autocorrelation function of the
wavelet packet coefficients can be written in the form of
Eq. (19), under the assumption that the wavelet function
Wi has r = M +1 vanishing moments. Distributing c]
as a sequence of decorrelated coefficients involves finding
parameters that make R]’.'n[m] vanishes for every m € Z\ {0}.
Since no restrictions are imposed on &%.#, apart those
required for integrability, then the parameters that govern
the behavior of R;,n are the shape and the support of
FW; .

One can probably design a wavelet function, depending
on the close form of &#.% so as to yield vanishing R]r.]n[m],
for m # 0. In such a scenario, the wavelet function is
computed adaptively with respect to the input random pro-
cess spectrum, yielding a Karhuren-Loeve-like expansion.
The first limitation of this approach is that an adaptive
consideration can be restrictive when a large class of
stochastic processes is concerned. In addition, the above
consideration is also limited because the spectrum & .& is
usually unknown.

In order to seek for wavelet decorrelating capability,
unconditionally with respect to the input process, the
remaining parameter is the size of the support of & Wj’] W
Indeed, by drastically reducing this size, we can expect to
reduce the amplitude R]r [m]. Note that support reduction
is the trick used to construct the Shannon wavelets: by
dividing the support of & W]r per 2 when j increases,
spectrum &.¥ is analyzed on a very tight frequency interval
when j is large. In this respect, these wavelets provide
us with a framework for analyzing wavelet decorrelating
properties.

Theorem 3 below formalizes the above heuristic con-
siderations. In this theorem, as well as in the rest of the
paper, we need to describe & W’ with an additional
parameter that relates to the size of the support of & Wr
or, equivalently, describes how close & W’ is, with respect
to the corresponding Shannon wavelet functlon For the
sake of generality, this parameter needs to be different with
the number r of vanishing moments of the wavelet function
Wy since the support size of a function is not necessarily
connected with the number of vanishing moments of this
function. However, for the standard family of wavelet filters,
the support size is linked to the number of wavelet vanish-
ing moments [27] so that we can save notation. Section IV-A
below provides this connection.

A. Wavelet order: the connection between the wavelet sup-
port size and the number of wavelet vanishing moments

Consider a filter with impulse response hy = (hy[4]) sez.
Let us define, up to a factor 1/ V2, the Fourier transform of
hy by: )

Hyw)=— Y holf1e71@.
o(w) \/_éezi ol4]

The non-negative integer s such that Hy admits the

polynomial factorization [42]

1+ei@)° :
Hy(w) = (T) Q(e'), (22)

is called the filter order and is also called s-regularity in [43].
The factorization given by Eq. (22) assumes that Q has no
poles or zeros at w = n. From this factorization, it follows
that order s describes the flatness of Hy at w =0 and w = 7.
It is worth stressing that Hy(r) = 0 so that increasing the
flatness of Hy at w = & involves reducing the support size
of H(].

Assume now that Hy is a scaling filter [27], [28], [43].
Let H; be the wavelet filter associated with Hy: (Hy, H)
is a couple of paraunitary filters. Then the same remark
as above holds true for H; due to this paraunitary condi-
tion: by inversing the role played by w =0 and w = 7, it
follows that increasing the flatness of Hy at w =7 involves
increasing the flatness of H; at w =0 and, consequently,
this implies reducing the support size of H;. Furthermore,
the wavelet function & Wj inherits the above properties of
H; by taking into account that FWi(w) = H1(5)F Wo(%5).
Moreover, parameter s is exactly the number of vanishing
moments (parameter r in the previous sections) of the
wavelet function Wj.

From the above analysis, we decide to recover the upper
index r in the notation of wavelet functions (see Section
I1I). However, this index will be written with the following
conventional notation: “[r]”, meaning that wavelet func-
tions have r vanishing moments and are generated from,
or generate paraunitary filters with order r (factorization
given by Eq. (22)). These wavelets will be said with order r.

If we consider standard families of wavelet filters such as
Daubechies, Symmlet or Battle-Lemarié spline filters, then
the filters corresponding to r =1 and r = +oco are respec-
tively the Haar and the Shannon filters. These filters play an
important role in describing the filter families mentioned
above: for a given order 1 < r < +oo, the shapes of a couple

of paraunitary filters (He[r ]) o1 can be inferred by their
€€{0,

closeness to the shapes of (HE[H o
e€eq,
filters, or (H?) cefo,1; Shannon paraunitary filters. This as-
sumption is reasonable because when the order r increases
from 1 to +oco, then the sequence (Hem)

Haar paraunitary

converges
[r]=1

almost everywhere to H> and the shapes of (Hg[r ]) vary
r

smoothly between the shape of He[l] and that of HS on both
frequency intervals |-7/2,7/2[ and 1—n, —n/2[U]n/2, n[ (see
[3] for details).

B. Correlation structure

This section provides the decorrelating properties of
wavelet packets for the coefficients of stochastic processes
satisfying Condition (ACF). These properties are conse-
quences of some asymptotic results, depending on the
wavelet decomposition level and the wavelet order. Stating
these asymptotic results require a whole wavelet packet
path specification. This specification is addressed by using
the notation of Section II-A.

Let |z] denotes the largest integer less than or equal to
the real z and G be the permutation recursively defined by
G@2l+e)=3G({)+e-2 {%J With the same notation and
assumptions proposed in Section III-A, we have:



Theorem 3
— — {r] [r]
Let 2 = { }]eN (WO 0’{W] ng (j)
wavelet packet tree. Assume that & # %y where %, is
the approximation path.
Assume F& is continuous at the frequency wg

defined by

} ) be a path in the
]E

G .
wp = lim 2T (23)
j_.+oo 2]
[r] ;
Then the autocorrelation R]rn ) fc] ngr(j) uniformly
satisfies:
lim | lim RV _[k]|=ZFL(0x)5kl. (24

j—+oo\lrl—=+00 112 )

Proof: Since the contributions of the nonstation-
ary terms induced by the projective and the bivariate-
polynomial terms annihilate when & # 2%, then the result
follows by mimicking the proofs of [8, Proposition 1, The-
orem 1]. |

Let us consider the approximation path 22, the unique
path not being concerned by Theorem 3. From Eq. (23), 2%
is a path associated with the limit frequency w = 0. More
precisely, we have:

Proposition 1
wyp =0 P =29,.

Proof: Proposition 1 follows by noting that % is the
unique path such that the sequence (ng(j)) jen Of fre-
quency indices associated with path 22 can be upper
bounded by a constant independent with j. ]

Remark 4

From Proposition 1, the approximation path is the unique
path associated with frequency w = 0. By considering The-
orem 3, it follows that asymptotic decorrelation cannot be
expected in the neighborhood of the null frequency, even
when w =0 is a continuity point of the spectrum %.%:
in addition with the contribution of &.%, one must take
into consideration, the terms issued from projective and
bivariate polynomial terms.

The decorrelating properties stated in Theorem 3 are
effective for detail wavelet packet paths associated with
a spectrum &.% which is regular once restricted on the
support of & W’ . In the following, we focus on the
implications of Theorem 3 with respect to singularities in
Z &, respectively for K-factor FI - FEXP - GARMA, fBm and
fBmMA type spectra, whether the input random process is
stationary or not. From now on, a path associated with a
frequency v will be denoted by 22,.

Example 6 (Singular paths)
1) [Singular paths for FI, FEXP, fBm, fBmMA type
spectra]

In the following contexts, the unique singular path is
2, (function &#.# has a unique singular point, the pole
w =0), when X is:

- a standard FI random process (K =1, y; =1 and
A(w) =1 in Eq. (12)) that does not reduce to a
white Gaussian process (thus, 6§ #0),

- a standard FEXP random process (K =1, y; =1
and A(w) is given by Eq. (11)), with § #0,

- an fBm (see Eqg. (20)) or an fBmMA random process
(see Eq. (21)), with 0< H< 1.

Thus, ¢ ﬂ 0
path & # 24,.

2) [Singular paths for ARFIMA type spectrum]

Assume that the above standard FI process is con-
strained to follow an ARMA representation, that is,
X 1is associated with a rational function A(w) in Eq.
(12) and as such, defines an ARFIMA random process.
Assume that A(w) has Q* distincts and non-null poles
Wy, l = 1,2,...,Q*.

Then, #.# has poles {0,w1,w,...,wq~} and asymptotic
decorrelation follows for all wavelet packet paths, ex-
cept for the paths associated with the above poles.

3) [Singular paths for K-factor FI, FEXP type spectrum]
Assume that X is either a K-factor FI or a K-factor
FEXP process. Then, it follows from Eq. (10) that the
poles of . are the Gegenbauer frequencies

tends to decorrelate with j,r in every

Ly, k=1,2,... K.

Thus, the decorrelating properties of the wavelet
packet coefficients concern paths &2 ¢ {,@o,g’wck tk=
1,2,...,K}.

4) [Singular paths for K-factor GARMA type spectrum]
For a K-factor GARMA random process, in addition
with the pole w =0, spectrum &% admits Q* poles
issued from function A and K poles resulting from
function ¥. When the number K* = Q* + K+1 of poles
of % is large, then, decorrelating the wavelet packets
at small decomposition levels is unfeasible. Indeed,
first, decorrelation is unreachable in at least the K*
paths. Second, due to the sharpness of the spectrum
near its poles, the decorrelation requires very large
decomposition levels in any path associated with a
frequency that lie in the neighborhood of a spectum
pole.

wG; = COos

C. High order dependencies
Similarly as in Section IV-B, the filter order plays an im-
portant role for high order dependency reduction through
wavelet packet paths. When this order is maximal, that is,
when the Shannon filters are concerned, we have:
[kly k2) .y k ]
2](N+1 )2
(27_[)]\, fAN dwldwg...
7121(k1w1+k2w2+.‘.+k1vw1v)
gyN(—wl,—wg,...,
]lAj,G(n) (w1 +wy +...

cum
dwN
(25)

—WN)
+wp).



where A;\,,G(n) = Aj,G(n) X Aj,G(n) X ... X Aj,G(n)~

_ N times ) )
The above cumulant involves computing the integrand

in Eq. (25) on the narrow hypercube A;VG( -
{r]
{wjvng(jJ
P £ P, Let wg, = (wwp,ws,...,wzx) and assume that there
N et

Let & = (w[”

0,0’ }jeN) be a wavelet packet path,

N times
exists a neighbourhood Vv of wf, where #V is bounded.
7

Then, in path 2, cum$

jn
when j tends to co.
. . N
More precisely, let jo such that Ajo,G(n,@ Goy ng. Such
a natural number exists since the diameter of A g tends
to 0 as j tends to infinity. Then, for any j = j, and any
natural number N =2, we have:

[ki, ko,...,kn], n=ng(j), vanishes

N
2 loo
EEE

cum? [k1, Kz, k| <

where | fivllo denotes the L*° norm of the function f
restricted on support V. This gives the decay order of the
the cumulant of order N =2 of X.

Finally, since the sequences of filters considered in this
paper (see Eq. (22)) converge to the Shannon filters when
their order r increases. Then, it is reasonable to expect that
higher order filters will yield cumulant decay with a factor
that is close to the decay induced by the Shannon filters.

D. Statistical dependencies: the role of the wavelet support
sizes

From the theoretical results given above, it follows that
statistical dependency reductions are strongly linked to the
width of the support and the shape of %W, ,. By consid-
ering Eq. (2), then the dependency reduction also relates
to the support size of the wavelet filters (Hy, H;), smaller
support sizes being expected to yield stronger dependency
reductions. This section provides details on the effective size
of the support of the wavelet packet equivalent filter H; ;,
used for computing c;,, from the input random process X.
The illustrations concern Daubechies wavelets [28].

From Eq. (2), the equivalent filter applied to obtain the
subband (j, n) wavelet coefficients is 2/I2H jn(w), with:

J
Hjn(@) = |[] H, @ 'w) |. 26)
/=1

When j =1, the filter involved in Eq. (26) is either the
scaling filter Hy (low-pass) or the wavelet filter H; (high-
pass). When j > 1, then H; , is obtained from a combina-
tion of low-pass (when €, =0) and high-pass (when ¢, =1)
filterings.

Figure 1 provides the graphs of Hg.f]n(w) corresponding to
some Daubechies filters, for a decomposition level j =5 and
frequency indices n = 0,20. We recall that the Daubechies
scaling filter is obtained from Eq. (22), where Q is the
Daubechies polynomial (see [28]). We recall also that the

10

Daubechies filters with order r = 1 correspond to Haar
filters defined for €€ {0,1} by

HY () = % (1 +a —Ze)e_i“’) 27)

and Daubechies filters with order r = co are the Shannon
filters satisfying

Hi @)=Y I (@-270),
leZ

where Ag = [-n/2,7/2]) and Ay = [-n,—7w/2]U[n/2,7].

As it can be seen in Figure 1, the Daubechies filters with
[r] =7 have tight supports and the analysis performed in the
paper suggests that dependency reductions can be reason-
ably attained in non-singular paths by using these filters:
when analyzed on a small window size, a polyspectrum
Z N with regular shape can be seen as approximately
constant on this support.

(28)

V. IDENTIFICATION OF A SINGULAR WAVELET PACKET PATH
AND STOCHASTIC MODELING

From theorems 1, 2, 3 and the results of Section IV-C, it
follows that under the null-moment condition, then detail
wavelet packet coefficients become stationary in the wide
sense (resp. strict sense) for processes satisfying conditions
(ACF) (resp. (C1), (C2)). In addition, correlation and higher
order dependency reduction follow, provided that the de-
composition level and the filter order are large enough.
The above properties depend on the shape of the input
process spectrum: decorrelation is attained in any detail
path of the wavelet packet tree associated with a frequency
wg that is a continuity point of the spectrum %.%. Higher
order cumulant decay occurs in any path associated with a
frequency wg such that the polyspectrum Z.#N,N =2, is
bounded in a neighborhood of wg.

In practice, when modeling of random signals or time
series is concerned, then it is convenient to first identify
singularities of the spectrum. Note that when dealing with
discrete time stochastic processes, the main singularities of
interest are those associated with the poles of %#.#, and
thus, associated with paths for which decorrelation is not
expected to follow.

In order to identify the wavelet packet path * = {e;‘} o
J€

associated with a given pole w*, 0 < w* < 7, we need to
find the sequence of frequency indices (ng- ;) jery Such that
J
i—¢ .
€;2/7" and satisfying
=1

(/=

A G(ngz*(j))ﬂ
lim ——— =
j—+oo 2J

*

From the partitioning of the interval [0,7[ that realize the
supports of the Shannon wavelet functions & Wj, when
n=0,1,...,2/ -1, the index associated with frequency w* is
the non-negative integer:

(] 2w
gy =G - ,

where G~! is the inverse of the permutation G.
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(1] [71 [20]
|H5,o ‘Hs,o |H5,o ]
= Shannon mm— Shannon mm— Shannon
N | .
(1] [7] [20]
) j J

5,20

—

= Shannon

b >N

— ) aub[7]
mm— Shannon

m— aub[20]
mm— Shannon

L]k L

Fig. 1. Equivalent wavelet packet filters Hg]n@ ) (w)

‘ after 5 decompositions. Filters are given (in blue) for orders r = 1,7,20, where r = 1 corresponds to

the Haar filters. Equivalent Shannon filters (r = co) are represented (in red) as references corresponding to the “ideal” cases. The filtering sequences used
for obtaining equivalent filters are those involved in the firsts 5 terms associated with paths 2y and 23,,4. These sequences are (h([)r], hor], h([)r ], h([)r ], h([)r ])

for path 2% and (hgr],h([)r],hgr],h([)r],h([)r]) for path %3;/4.

The following example determines the path 9’37” asso-
ciated with frequency w = 3n/4. For j = 2, path ?}’;Tn is
characterized by frequency indices

G(n%{(])) = \‘3 X Zj_ZJ =2j—1 +2j—2.

Thus, by using the inverse permutation G7! (see [3]), this
path is characterized by the frequency indices n%( J) =
207142173 for j=3.

In practical applications where we want to identify a
fractional model (FI, ARFIMA, GARMA, etc) from the ob-
servation of a stochastic process, the presence of narrow
peaks within a spectrum inform us with the presence of
poles in the wavelet packet spectrum of the process under
consideration. At this stage, the relevance of the spectrum
estimation is crucial since it determines the selection of the
model. In particular, in situations where some poles are very
close to each other, the estimation method is required to
discriminate the corresponding spectrum peaks.

The following experimental results show that wavelet
packet spectrum, [3], can be particularly adapted to such
situations. It is worth noticing that the role of these ex-
periments concerns the relevancy of a spectrum estimated
from data and do not concern “parameter estimation from
a given spectrum estimate”. For more details on parameter
estimators (in wavelet and the Fourier domain), the reader
can refer to [44], [45], [46], see also [47], [48] for the robust

estimation of the autocorrelation function in presence of a
long memory parameter.

Consider a random process with ARFIMA type obtained
by letting K =1, v, =1, 0 =1, 6 =1/2, 6 =1, ¢; =
el iz ) = @2102 (1 — 7192 (¢l@1 4 ¢192)) in Eq (13), with
w1 =31/4—Aw and w, =37/4+ Aw. This random process is
nonstationary since its parameters do not satisfy conditions
given in Example 1. However, a spectrum &% of the form
given by Eq. (12) is associated with this random process, in
the sense of [49]. According to the parameters given above,
the function A involved in this spectrum admits 2 poles
located at frequencies w; and w.

When Aw is small, the poles w; and wy; of &% are
close to each other and lie on both sides of the “central”
frequency 3m/4. To analyze the sensitivity of the wavelet
packet spectrum with respect to the closeness of poles in
the spectrum, we let Aw € {7/48,7/72}. We then synthesize
the corresponding ARFIMA processes and compute their
spectra by using the wavelet packet method described in
(3].

Figure 2 presents the wavelet packet spectra obtained,
as well as spectra computed by using Welch’s method
(averaged and modified periodogram computed on the
basis of the discrete Fourier transform). As it can be seen
in this figure, the two poles are well detected by using the
wavelet packet method (narrow peaks in the neighborhoods
of the poles). In contrast, the peaks tend to overlap when
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Fourier-Welch

Wavelet Packets

Aw =m/48

Aw=m/72

Fig. 2.

“Fourier-Welch” and “Wavelet packet” spectra of ARFIMA processes, where any ARFIMA function B used admits two poles at frequencies

w =3m/4+ Aw. The graphs are given for Aw =7/48 and Aw =n/72. The “central” frequency 37/4 is marked by a vertical (red) line.

using Welch’s method for small values of Aw.

When considering the wavelet packet method, the pos-
itive half support of & W][ry]l has width 7/2/ if we assume
that ideal Shannon wavelet function is used (r = +00). In
this respect, we need a wavelet packet decomposition with
J =5 (resp. J=6) levels in order to expect for differencing
significantly spectra peaks that are located at a distance of
2Aw from each other, when Aw =7/48 (resp. Aw = /72).

Note that the spectra given in Figure 2 have been ob-
tained with J =6 decomposition levels and the Daubechies
wavelet with order r = 7. It follows from these spectra that
order r =7 suffices for the discrimination of the two peaks.
Thus, wavelet packet spectrum is efficient for characterizing
spectra of generalized fractional random processes. The
main concluding remark for this section is the following:
for the wavelet packet spectrum estimation, one needs to
choose a sufficiently large J and order r to avoid confusing

some spectra peaks which are close to each other.

From the above experimental results, it follows that
wavelet packets are relevant for the analysis of second order
random processes and well adapted for the characterization
of generalized fractional random processes.

VI. CONCLUSION

The paper has investigated the statistical properties of
the wavelet packet transform of second order random
processes. The analysis performed has highlighted the
important role played by the wavelet vanishing-moment
condition in the stationarization property of the wavelet
packet transform. The decorrelating properties are strongly
linked on 1) the support width and 2) the shape of the
Fourier transform of the wavelet packet functions.

Theoretical results stating the statistical dependency re-
duction in the wavelet packet domain hold true for a



wide class of nonstationarity random processes. This class
is characterized by some cumulant expansions having as
nonstationary contributions, projective and bivariate poly-
nomial terms given in the paper. These results are path-
dependent: the coefficients associated with any random
process X pertaining to the class-of-interest become sta-
tionary and tend to decorrelate in a path & # 2, when the
decomposition level and the filter order increases, provided
that the limit frequency wg is not a singular point of the
wavelet packet spectrum associated with X.

When the wavelet packet coefficients have become sta-
tionary the impact of non-summability of the autocorrela-
tion function of some subband wavelet packet coefficients
has been analyzed. The analysis has highlighted that non-
summability of the autocorrelation function associated with
some subbands results in singular wavelet packet paths:
these paths are associated with frequencies such that the
spectrum of the input random process is unbounded in
the neighborhood of these specific frequencies. Stochastic
modeling for processes yielding singular wavelet packet
paths can thus be addressed by associating generalized
fractional processes having poles that are located at the
above specific frequencies.

By exhibiting singular wavelet packet paths and by pro-
viding their interpretation with respect to the form of the
polyspectra of the input random process, the paper has
made a contribution in the analysis, modeling and synthesis
of generalized fractional processes. For these random pro-
cesses, the paper have also emphasized the relevancy of the
wavelet packet based spectrum estimation, in comparison
with Fourier based spectrum.
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