
HAL Id: hal-00548105
https://hal.science/hal-00548105v1

Preprint submitted on 26 Dec 2010 (v1), last revised 1 Sep 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelet Transforms of Nonstationary Random
Processes: Contributing Factors for Stationarity and

Decorrelation
Abdourrahmane Atto, Yannick Berthoumieu

To cite this version:
Abdourrahmane Atto, Yannick Berthoumieu. Wavelet Transforms of Nonstationary Random Pro-
cesses: Contributing Factors for Stationarity and Decorrelation. 2010. �hal-00548105v1�

https://hal.science/hal-00548105v1
https://hal.archives-ouvertes.fr


1

Wavelet Transforms of Nonstationary

Random Processes: Contributing Factors for

Stationarity and Decorrelation
Abdourrahmane M. ATTO1, Yannick BERTHOUMIEU2

1,2 Université de Bordeaux, IPB, ENSEIRB-MATMECA,

IMS, CNRS UMR 5218,

351 cours de la libération, 33405 Talence Cedex, France

Abstract

The paper presents some statistical properties of the wavelet transforms, in the framework of

nonstationary random processes. It investigates the factors that make wavelet subband coefficients

behave as stationary discrete sequences. Conditions are given under which stationarization, decor-

relation and higher order dependency reduction occur among the wavelet coefficients of a large

class of nonstationary random processes. The paper also highlights the presence of singular paths,

i.e. the paths such that no stationarization occurs and those for which no dependency reduction are

expected through successive decompositions. The overall presentation focuses on understanding the

role played by the parameters that govern stationarization and dependency reduction in the wavelet

domain. This is performed with respect to semi-analytical expansions of cumulants for modeling

different types of correlation structures that characterize many random processes.

keywords: Wavelet Transforms ; Nonstationary Random Processes ; Cumulant analysis.

I. INTRODUCTION

Statistical signal processing and time series analysis are substantially simpler, not simplistic,

assuming that data collected are issued from independent and identically distributed random vari-
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ables. In this respect, suitable representations for a random process relate to transforms that have

stationarization and decorrelating properties and, more generally, transforms that make it possible

to reduce higher order dependencies between the random variables describing the process time or

spatial evolution. Among transforms that approximately achieve this goal, wavelet decompositions are

highly effective because wavelets operate unconditionally with respect to the input process and tend

to achieve the desirable stationarization and decorrelating properties for a large class of stochastic

processes. This class contains stationary random processes (see for instance [1], [2], [3], [4], [5]) and

some nonstationary random processes such as fractional Brownian motions ([6], [7], [8], [9], [10],

[11], [12], [13], [14]) and fractionally differenced processes ([15]).

This paper points out the key parameters that contribute to make the wavelet coefficients become

stationary and tend to be distributed as independent and identical. These parameters are the

null moment condition and the wavelet order in governing the stationarization and dependency

reductions induced by wavelet transforms. The paper describes how these parameters impact the

statistical properties of wavelet and wavelet packet coefficients of many nonstationary random

processes. The class of random processes under consideration is characterized through cumulant

expansions. A random process pertaining to this class is such that its cumulant of order N can be

expanded in 3 terms: a projective term (with dimension N −1), a stationary term (which lies along

the dimension N −1) and an N -variate polynomial term. Furthermore, the paper also points out the

singular wavelet paths: the paths associated with nodes (subbands) such that no stationarization

can occur and those for which dependency reduction is not expected to hold true.

The paper is organized as follows. In Section II, we present some preliminary notation and assump-

tions used throughout the paper. Section III deals with the conditions under which stationarization

occurs for wavelet packet coefficients. Section IV provides asymptotic results on the decorrelation and

the higher order dependency reduction that can be reached for the class of nonstationary processes

introduced in Section III. This section also presents an heuristic approach based on paraunitary

filtering for understanding the theoretical results obtained. Section V discusses the contribution of

such an analysis to characterize ARFIMA and GARMA type random processes in the wavelet domain.

This section emphasizes that wavelet packet spectra of many real world texture images behave like

ARFIMA and GARMA spectra. Section VI concludes the work and mentions some prospects related

to the results given in the paper.
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II. PRELIMINARY NOTATION AND ASSUMPTIONS

A. Wavelet subbands

Throughout the paper, H0 denotes a scaling filter and W0 is the scaling function associated with

this filter. Similarly, H1 denotes the wavelet filter associated with H0 and W1 is the wavelet function

associated with W0, [16], [17]. The functional subspace of L2(R) generated from the translated versions

of W0 is denoted by W0,0 (input space).

Let
(
Hε1 , Hε2 , . . . , Hε j

)
be the sequence of wavelet filters successively applied for decomposing

W0,0, with ε` ∈ {0,1} for every ` ∈ {1,2, . . . , j }. This sequence defines a wavelet packet subspace W j ,n

(subband ( j ,n)) where the frequency index n at decomposition level j is

n = nP ( j ) =
j∑

`=1
ε`2 j−`. (1)

Sequence
(
Hε1 , Hε2 , . . . , Hε j

)
can thus be associated with the path P ( j ) = {

ε1,ε2, . . . ,ε j
}

with root node

W0,0 and terminal node W j ,n (see [5] for more details).

Assume that orthonormal wavelet transforms are concerned. Then W j ,n is generated from the

sequence of wavelet functions {W j ,n,k : k ∈Z}, where W j ,n,k (·) =W j ,n(·−2 j k), with W j ,n satisfying, in

the Fourier domain1:

FW j ,n(ω) = 2 j /2

[
j∏

`=1
Hε`(2`−1ω)

]
FW0(ω), (2)

with equality holding in L2(R) sense. Note that depending on the binary sequence
{
ε1,ε2, . . . ,ε j

}
that

characterizes P ( j ), then W j ,n is associated with

• a wavelet decomposition when nP (`) ∈ {0,1} for every ` ∈ {1,2, . . . , j },

• a full wavelet packet decomposition when nP (`) ∈ {
0,1, . . . ,2`−1

}
for every ` ∈ {1,2, . . . , j }.

For the sake of generality, we consider the wavelet packet framework in the following.

B. Vanishing moments

A wavelet function W1 is said to have r vanishing moments if∫
R

t mW1(t )dt = 0, for every m = 0,1, . . . ,r −1. (3)

Let M j ,n,k (m) denote the (m +1)-th moment of the function W j ,n,k , m ∈ {0,1,2, . . .}:

M j ,n,k (m) =
∫
R

t mW j ,n,k (t )dt . (4)

1Fourier transform: F f (ω) =
∫
R

f (t )e−iωt dt if f ∈ L1(R).
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Under the condition given by Eq. (3) and if we assume that the paraunitary filters (hε)ε∈{0,1} have

finite impulse responses, then for n 6= 0, we have:

M j ,n,k (m) = 0, for every m = 0,1, . . . ,r −1. (5)

It follows that W j ,n,k has at least r vanishing moments.

Note that by construction, every wavelet function W1 is with at least one vanishing moment

whereas the contrary holds for the scaling function W0 (see for instance [16]). Consequently, M j ,0,k (0) 6=
0 whereas M j ,n,k (0) = 0 for every n ∈ {1,2, . . . ,2 j −1}.

C. Preliminary assumptions

Let X be a zero-mean second order real random process, continuous in quadratic mean. Let

R(t , s) = E[X (t )X (s)] be the autocorrelation function of X . Assume thatÏ
R2

R(t , s)W j ,n,k (t )W j ,n,k (s)d td s <∞. (6)

Then, the coefficients of the projection of X on subband W j ,n define a discrete sequence of zero-

mean second order real random variables:

c j ,n[k] =
∫
R

X (t )W j ,n,k (t )d t , k ∈Z, (7)

The statistical properties of the wavelet coefficients of X depend on the analytical form of R(t , s).

In what follows, we assume that this autocorrelation function admits the following expansion:

Condition (ACF)

The autocorrelation function R can be written in the form:

R(t , s) = F (t )+F (s)︸ ︷︷ ︸
Projective terms

+ S (t − s)︸ ︷︷ ︸
Stationary term

+ ∑
1Ép,qÉM

αp,q t p sq

︸ ︷︷ ︸
Bivariate-polynomial

(8)

with

F (t )W j ,n,k (t ) ∈ L1(R)

and

t p sqW j ,n,k (t )W j ,n,`(s) ∈ L1(R2)

for every 1 É p, q É M.

Due to the symmetry of the autocorrelation function, we can order the terms of the bivariate-

polynomial with respect to one of the variables t , s. Therefore, we call M , the degree of the bivariate-

polynomial involved in Eq. (8). It is worth noticing that in Condition (ACF) above, no restriction
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is imposed on M . In practice, when the degree M is fixed (for modeling, for example), then only

bivariate monomial terms with high degrees are excluded from the bivariate-polynomial of Condition

(ACF). Now, when M tends to infinity, the expansion Eq. (8) of the autocorrelation function involves

a Taylor-like expansion when both F and S are polynomial functions and monomial coefficients

are chosen adequately. From these considerations, we have that Condition (ACF) is reasonable for

modeling to approximate the autocorrelation functions of a wide class of stochastic processes.

Example 1

For stationary processes, we have F = 0 and for a fractional Brownian motion, we have F (x) =S (x) =
|x|2H where H is the Hurst parameter. Both processes admit no bivariate polynomial terms.

Now, let N ∈N and denote by

cum(t0, t1, t2, . . . , tN ) = cum{X (t0), X (t1), X (t2), . . . , X (tN )}

the cumulant of order N +1 of X . The above cumulant is hereafter assumed to belong to L2(RN+1)

and to be finite.

When higher order properties are concerned, i.e. N Ê 2, we will also consider the following

assumptions:

Condition (C1)

The cumulant cum(t0, t1, t2, . . . , tN ) can be written in the form

cum(t0, t1, t2, . . . , tN )

= F N (t0, t1, . . . , tN )

+S N (t1 − t0, t2 − t0, . . . , tN − t0)

+ ∑
1Éq0,q1,...,qNÉMN

αq0,q1,...,qN t q0
0 t q1

1 . . . t qN
N

(9)

where function F N , the projective term, is of the form:

F N (t0, t1, . . . , tN ) =
N∑
`=0

F`(t0, t1, . . . , t`−1, t`+1, . . . , tN )

and function S N (stationary term) is such that

S N (tk1 − tk0 , . . . , tkN − tk0 ) =S N (t1 − t0, . . . , tN − t0)

for any permutation {k0,k1, . . . ,kN } of {0,1, . . . , N }.
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Condition (C2)

We have:

F`(t1, t2, . . . , tN )×W j ,n,`1 (t1)

×W j ,n,`2 (t2)× . . .×W j ,n,`N (tN ) ∈ L1(RN )

and

t q0
0 . . . t qN

N W j ,n,`0 (t0) . . .W j ,n,`N (tN ) ∈ L1(RN+1).

III. STATIONARIZATION

Subband wavelet packet (and therefore wavelet) coefficients of stationary random processes are

stationary [1], [2], [3], [4], [5]. For the class of nonstationary random processes satisfying Condition

(ACF), this section presents theoretical results stating that their subbands wavelet coefficients are

wide sense stationary, provided that the wavelet used has at least r Ê M+1 vanishing moments, where

M is the degree of the bivariate-polynomial involved in Eq. (8). Furthermore, if conditions (C1), (C2)

are satisfied and the sequence (MN )NÊ2 of multivariate-polynomial degrees involved in Eq. (9) is

bounded, with M∞ = sup{MN : N Ê 2}, then strict sense stationarity of the subband coefficients of X

follows from wavelets having r Ê max{M , M∞}+1 vanishing moments. These results are formalized

in Theorems 1 and 2. In the rest of the section, an upper index r (notation cr
j ,n , Rr

j ,n , cumr
j ,n and

M r
j ,n,k ) denotes that wavelet subbands are generated from a wavelet function W1 having r vanishing

moments. We will also assume that the wavelet filters are with finite impulse response. Specifically,

from Section II-B, we have: M r
j ,n,k (p) = 0 for every n 6= 0 and p = 0,1, . . . ,r −1.

A. Wide-sense stationarity

Let Rr
j ,n be the autocorrelation function of the sequence cr

j ,n of subband W j ,n wavelet coefficients.

Assume that condition (ACF) holds true. Then F (t )W r
j ,n,k (t ) ∈ L1(R), t p sqW r

j ,n,k (t )W r
j ,n,`(s) ∈ L1(R2)

and thus, we have:

Rr
j ,n[k,`] = M r

j ,n,`(0)×
(∫
R

F (t )W r
j ,n,k (t )d t

)
+M r

j ,n,k (0)×
(∫
R

F (t )W r
j ,n,`(t )d t

)
+ ∑

1Ép,qÉM
αp,qM r

j ,n,k (p)×M r
j ,n,`(q)

+
∫
R

∫
R
S (t − s)W r

j ,n,k (t )W r
j ,n,`(s)d td s
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Taking into account Eq. (5), it follows that Rr
j ,n only depends on S when n 6= 0 and r Ê M +1:

Rr
j ,n[k,`] =

∫
R

∫
R
S (t − s)W r

j ,n,k (t )W r
j ,n,`(s)d td s. (10)

If we assume further that: Ï
R2

S (t − s)W r
j ,n,k (t )W r

j ,n,`(s)d td s <∞.

and that S has a Fourier transform (in L1(R) or L2(R) sense), then we have, using the same notation

and with the above assumptions:

Theorem 1

Under Condition (ACF), the discrete random sequence cr
j ,n ,n 6= 0, is wide sense stationary for

r Ê M +1: Rr
j ,n[k,`] ≡ Rr

j ,n[k −`], with

Rr
j ,n[m] = 1

2π

∫
R
FS (ω)

∣∣∣FW r
j ,n(ω)

∣∣∣2
e i 2 j mωdω. (11)

From Theorem 1, it follows that both projective and bivariate-polynomial terms have no impact

on the wavelet packet autocorrelation functions when the wavelet function used has enough van-

ishing moments. Therefore, stationarity of wavelet packet coefficients follows under an integrability

condition on S .

Example 2

If X is a fractional Brownian motion with Hurst parameter H , then from the formalism given above,

applying the Fourier transform to F (x) =S (x) = |x|2H can be infered from the distributional sense.

This leads to:

FS (ω) = σ2Γ(2H +1)sin(πH)

|ω|2H+1
, (12)

where Γ is the standard Gamma function. However, note that the result can be proven without refer-

ring to the distributions, as performed in [8] (wavelet framework), [14] (wavelet packet framework).

Remark 1

Assume that P 6=P0. Then, in absence of a bivariate-polynomial term, wavelet filters have the same

stationarization effect. Indeed, only the first moment is required for annihilating the projective terms

and all wavelets functions W j ,n,k , n 6= 0, have their first moments that vanish: M r
j ,n,k (1) = 0 for every
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n 6= 0 and every r Ê 1, by construction. In contrast, when a bivariate-polynomial term is present in

the autocorrelation function of X , then only wavelets with r Ê M +1 vanishing moments have the

desirable stationarization property.

B. Higher order stationarity

Let N ∈N. The cumulant of order N +1 of the random process cr
j ,n is given by

cumr
j ,n[k,`1,`2, . . . ,`N ]

= cum
{
cr

j ,n[k]cr
j ,n[`1]cr

j ,n[`2] . . .cr
j ,n[`N ]

}
=

∫
RN+1

dt ds1 ds2 . . .dsN cum(t , s1, s2, . . . , sN )W r
j ,n,k (t )

W r
j ,n,`1

(s1)W r
j ,n,`2

(s2) . . .W r
j ,n,`N

(sN ).

When N = 1, then cumr
j ,n[k,`] = Rr

j ,nn
[k,`] and wavelet packets are wide sense stationary under

condition (ACF) and further assumptions used in Section III-A. These assumptions are supposed to

hold true in this section and we also assume that conditions (C1) and (C2) are satisfied. Then, if

we proceed as in Section III-A and if we take into account the null-moment condition given by Eq.

(5), we obtain:

cumr
j ,n[k,`1,`2, . . . ,`N ]

=
∫
RN+1

dt ds1 ds2 . . .dsN S N (s1, s2, . . . , sN )W r
j ,n,k (t )

W r
j ,n,`1

(t + s1)W r
j ,n,`2

(t + s2) . . .W r
j ,n,`N

(t + sN )

for r Ê MN +1 that is, cumr
j ,n[k,`1,`2, . . . ,`N ] depends only on the stationary term S N .

Furthermore, let us assume that:

S N (s1, s2, . . . , sN )W r
j ,n,k (t )W r

j ,n,`1
(t + s1)

×W r
j ,n,`2

(t + s2) . . .W r
j ,n,`N

(t + sN ) ∈ L1(RN+1)

and that the Fourier transform of S N exists, then, cumr
j ,n[k,`1,`2, . . . ,`N ] can be written in the

following form

cumr
j ,n[k,`1,`2, . . . ,`N ]

= 1
(2π)N

∫
RN

dω1 dω2 . . .dωN

e−i M j ((`1−k)ω1+...+(`N−k)ωN )

FS N (−ω1,−ω2, . . . ,−ωN )

FW r
j ,n(−ω1 −ω2 − . . .−ωN )

FW r
j ,n(ω1)FW r

j ,n(ω2) . . .FW r
j ,n(ωN )
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so that, with the assumptions encountered above and those used to obtain Theorem 1, we have:

Theorem 2

Under conditions (ACF), (C1), (C2), we have that cr
j ,n , n 6= 0, is strictly stationary for r Ê

max{M , M∞}+1: for every N Ê 1, cumr
j ,n[k,`1,`2, . . . ,`N ] ≡ cumr

j ,n[`1 −k,`2 −k, . . . ,`N −k], with

cumr
j ,n[k1,k2, . . . ,kN ]

= 1
(2π)N

∫
RN

dω1 dω2 . . .dωN

e−i M j (k1ω1+k2ω2+...+kNωN )

FS N (−ω1,−ω2, . . . ,−ωN )

FW r
j ,n(−ω1 −ω2 − . . .−ωN )

FW r
j ,n(ω1)FW r

j ,n(ω2) . . .FW r
j ,n(ωN ).

Remark 2

Stationarization properties obtained in Theorems 1 and 2 assume n 6= 0. When n = n( j ) = 0 for every

j , the path concerned is the approximation path denoted by P0 (all other paths are said to be detail

paths). This path is subject to a specific behavior because the subbands Wr
j ,n=0, j Ê 1, involved in

this path are generated from functions
{

W r
j ,n=0,k : k ∈Z

}
: these functions are scaling functions and

do not have vanishing moments. Thus the contribution of the projective and the multivariate terms

in the autocorrelation function of the approximation coefficients do not annihilate: this implies that

no stationarization can occur in general for the approximation coefficients. The same remark holds

true for higher order cumulants because of the contribution of the nonstationary terms involved in

the cumulants of X .

IV. DEPENDENCIES

This section presents some results concerning the capability of wavelets for decorrelating the

coefficients of stochastic processes satisfying assumption (ACF). It provides additional results con-

cerning higher order dependency reduction induced by wavelets on stochastic processes satisfying

assumptions (ACF), (C1) and (C2)).

From Theorem 1, the autocorrelation function of the wavelet packet coefficients can be written

in the form of Eq. (11), under the assumption that the wavelet function W1 has r Ê M +1 vanishing

DRAFT



10

moments. In Eq. (11), FS can be seen as the wavelet spectrum of the random process X . Distributing

cr
j ,n as a sequence of decorrelated coefficients involves finding parameters that make Rr

j ,n[m] vanishes

for every m ∈Z\{0}. Since no restrictions are imposed on FS , apart those required for integrability

condition, then the parameters that govern the behavior of Rr
j ,n are the shape and the support of

FW r
j ,n .

One can probably design a wavelet function, depending on the close form of FS so as to yield

vanishing Rr
j ,n[m], for m 6= 0. In such a scenario, the wavelet function is computed adaptively with

respect to the input random process, yielding a Karhuren-Loève-like expansion. The first limitation

of this approach is that such an adaptive consideration can be restrictive when a large class of

stochastic processes is concerned. In addition, the above consideration is also limited because the

spectrum FS is usually unknown.

In order to seek wavelet decorrelation capability, unconditionally with respect to the input process,

the remaining parameter is the size of the support of FW r
j ,n . Indeed, by drastically reducing this

size, we can expect to reduce the amplitude Rr
j ,n[m]. Note that support reduction is the trick used

to construct the Shannon wavelets: by dividing the support of FW r
j ,n per 2 when j increases, the

spectrum FS is analysed on a very tight frequency interval when j is large. In this sense, these

wavelets provide us with a framework for analyzing the decorrelation induced by wavelets.

Theorem 3 below formalizes the above heuristic considerations. In this theorem, as well as in

the rest of the paper, we need to describe FW r
j ,n with an additional parameter that relates to the

size of the support of FW r
j ,n or, equivalently, describe how close FW r

j ,n is, with respect to the

corresponding Shannon wavelet function. For the sake of generality, this parameter needs to be

different with the number r of vanishing moments of the wavelet function W0 since support size

of a function is not necessarily connected with the number of vanishing moments of this function

[16]. However, for the standard family of wavelet filters, the support size is linked to the number of

wavelet vanishing moments so we can save notation. Section IV-A below provides this connection.

A. Wavelet order: the connection between the wavelet support size and the number of wavelet vanishing

moments

Consider a filter with impulse response h0 = (h0[`])`∈Z. Let us define, up to a factor 1/
p

2, the

Fourier transform of h0 by:

H0(ω) = 1p
2

∑
`∈Z

h0[`]e−i`ω.
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The non-negative integer s such that H0 admits the polynomial factorization [18]

H0(ω) =
(

1+e−iω

2

)s

Q(e iω), (13)

is called the filter order and is also called s-regularity in [19]. The factorization given by Eq. (13)

assumes that Q has no poles or zeros at ω = π. From this factorization, it follows that order s

describes the flatness of H0 at ω= 0 and ω=π. It is worth stressing that H0(π) = 0 so that increasing

the flatness of H0 at ω=π involves reducing the support size of H0.

Assume now that H0 is a scaling filter [16], [17], [19]. Let H1 be the wavelet filter associated with

H0: (H0, H1) is a couple of paraunitary filters. Then the same remark as above holds true for H1

due to this paraunitary condition: by inversing the role played by ω = 0 and ω = π, it follows that

increasing the flatness of H0 at ω=π involves increasing the flatness of H1 at ω= 0 and, consequently,

this implies reducing the support size of H1. Furthermore, the wavelet function FW1 inherits the

above properties of H1 by taking into account that FW1(ω) = H1(ω2 )FW0(ω2 ). Moreover, parameter

s is exactly the number of vanishing moments (parameter r in the previous sections) of the wavelet

function W1.

From the above analysis, we decide to recover the upper index r in the notation of wavelet

functions (see Section III). However, this index will be written with the following conventional

notation: r , meaning that wavelet functions are generated from, or generate paraunitary filters with

order r (factorization given by Eq. (13)). These wavelets are also said with order r .

If we consider standard families of wavelet filters such as Daubechies, Symmlet or Battle-Lemarié

spline filters, then the filters corresponding to r = 1 and r = +∞ are respectively the Haar and

the Shannon filters. These filters play an important role in describing the filter families mentioned

above: for a given order 1 < r < +∞, the shapes of a couple of paraunitary filters
(
H [r ]
ε

)
ε∈{0,1}

can

be inferred by their closeness to the shapes of
(
H [1]
ε

)
ε∈{0,1}

, Haar paraunitary filters, or
(
H S
ε

)
ε∈{0,1},

Shannon paraunitary filters. This assumption is reasonable because when the order r increases from

1 to +∞, then the sequence
(
H [r ]
ε

)
[r ]Ê1

converges almost everywhere to H S
ε and the shapes of

(
H [r ]
ε

)
r

vary smoothly between the shape of H [1]
ε and that of H S

ε on both frequency intervals ]−π/2,π/2[

and ]−π,−π/2[∪]π/2,π[ (see [14] for details).

B. Correlation structure

This section provides decorrelating properties of wavelets for the coefficients of stochastic pro-

cesses satisfying (ACF). These properties are consequences of some asymptotic results, depending
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on the wavelet decomposition level and the wavelet order. Stating these asymptotic results require

a whole wavelet packet path specification. This specification can be achieved by considering the

infinite sequence of filter indices defined by P = {
ε j

}
j∈N or, equivalently, by indexing the subbands

involved by this filtering sequence: P =
(

W[r ]
0,0,

{
W[r ]

j ,nP ( j )

}
j∈N

)
. We use the above notation in the

following. See [5] for more details on such a characterization.

With the same notation and assumptions proposed in Section III-A, we have:

Theorem 3

Let P = {
ε j

}
j∈N =

(
W[r ]

0,0,
{

W[r ]
j ,nP ( j )

}
j∈N

)
be a path in the wavelet packet tree. Assume that P 6=P0

where P0 is the approximation path.

Assume FS is continuous at the frequency ωP defined by

ωP = lim
j→+∞

J (nP ( j ))π

2 j
,

where J is a permutation recursively defined by J (2`+ε) = 3J (`)+ε−2
⌊

J (`)+ε
2

⌋
.

Then, the autocorrelation R [r ]
j ,nP ( j ) of c [r ]

j ,nP ( j ) uniformly satisfies:

lim
j→+∞

(
lim

[r ]→+∞
R [r ]

j ,nP ( j )[k]

)
=FS (ωP )δ[k]. (15)

Proof: Since the contribution of the nonstationary terms induced by the projective and the

bivariate-polynomial terms annihilates when P 6= P0, then the result follows by mimicking the

proofs of [4, Proposition 1, Theorem 1].

Let us consider path P0, which is the sole path that is not concerned by Theorem 3:

Proposition 1

ωP = 0 ⇐⇒P =P0.

Proof: Proposition 1 follows from that the approximation path is the unique path such that

the sequence
(
nP ( j )

)
j∈N of frequency indices associated with path P can be upper bounded by a

constant independent with j .
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Remark 3

From Theorem 3 and Proposition 1, it follows that asymptotic decorrelation cannot be expected in

the neighborhood of the null frequency, even when ω= 0 is a continuity point of the spectrum FS .

C. High order dependencies

As in Section IV-B, the filter order plays an important role for dependency reduction through

wavelet packet decomposition levels. When this order is maximal, that is, when the Shannon filters

are concerned, we have:

cumS
j ,n[k1,k2, . . . ,kN ]

= 2 j (N+1)/2

(2π)N

∫
∆N

j ,J (n)
dω1 dω2 . . .dωN

e−i 2 j (k1ω1+k2ω2+...+kNωN )

FS N (−ω1,−ω2, . . . ,−ωN )

1l∆ j ,J (n) (ω1 +ω2 + . . .+ωN ).

where ∆N
j ,J (n) =∆ j ,J (n) ×∆ j ,J (n) × . . .×∆ j ,J (n)︸ ︷︷ ︸

N times

.

The above integral involves computing the integrand in Eq. (16) on the narrow hypercube ∆N
j ,J (n).

If we assume that S q ∈ L∞(RN ), then, cumS
j ,n[k1,k2, . . . ,kN ] vanishes when j tends to ∞. More

precisely, for any natural number N Ê 2, we have:

|cumS
j ,n[k1,k2, . . . ,kN ]| É ‖S N‖∞

M j (N−1)/2
.

Finally, since the sequences of filters considered in this paper (see Eq. (13)) converge to the

Shannon filters when their order r increases. Then, it is reasonable to expect that higher order filters

will yield cumulant decay with a factor that is close to the decay induced by the Shannon filters.

D. Wavelet filter support sizes

By considering Eq. (2), we can derive the “equivalent” filter applied to obtain the subband ( j ,n)

wavelet coefficients. This equivalent filter is 2 j /2H j ,n(ω), with:

H j ,n(ω) =
[

j∏
`=1

Hε`(2`−1ω)

]
. (17)

When j = 1, the filter involved in Eq. (17) is either the scaling filter H0 (low-pass) or the wavelet

filter H1 (high-pass). When j > 1, then H is obtained from a combination of low-pass and high-pass

filterings from P ( j ).
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From the analysis presented in this section, it follows that dependency reductions are strongly

linked to the width of the support and the shape of FW [r ]
j ,n and thus, those for H[r ]

j ,n . It follows

that tighter supports for H[r ]
j ,n would yield more dependency reduction because when observed on a

small window size, a spectrum FS with regular shape can be seen as approximately constant on

this support. This is what actually occurs for the Shannon filters (r = S ≡∞), in contrast with the

Haar filters (r = 1). Figure 1 provides the graphs of the Haar and the Shannon filters and Figure 2

provides the graphs of their equivalent filters H[r ]
4,0(ω) and H[r ]

4,1(ω) at decomposition level 4. The latter

are obtained from the filtering sequences (h[r ]
0 ,h[r ]

0 ,h[r ]
0 ,h[r ]

0 ) and (h[r ]
0 ,h[r ]

0 ,h[r ]
0 ,h[r ]

1 ), respectively. We

recall that, given ε ∈ {0,1}, the Haar filters are such that:

H [1]
ε (ω) = 1

2

(
1+ (1−2ε)e−iω

)
(18)

and that the Shannon filters satisfy:

H S
ε (ω) = ∑

`∈Z
1l∆ε(ω−2π`), (19)

where ∆0 = [−π/2,π/2] and ∆1 = [−π,−π/2]∪ [π/2,π].

(∣∣∣H [r ]
0

∣∣∣)
r=1,+∞

(∣∣∣H [r ]
1

∣∣∣)
r=1,+∞

Fig. 1. Haar (r = 1) versus Shannon (r =∞) low-pass and high-pass filters.

As can be seen in Figure 2, the frequency support of the equivalent filter of a sequence of Shannon

filtering is very tight whereas the contrary holds for the sequence of Haar filters.

V. STOCHASTIC PROCESSES INVOLVING SINGULAR WAVELET PACKET PATHS AND THEIR MODELING

From theorems 1, 2, 3 and the results of Section IV-C, it follows that under the null-moment

condition, then detail wavelet packet coefficients become stationary in the wide sense (resp. strict
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(∣∣∣H[r ]
4,0

∣∣∣)
r=1,+∞

(∣∣∣H[r ]
4,1

∣∣∣)
r=1,+∞

Fig. 2. Normalized equivalent filters H[r ]
4,0(ω) and H[r ]

4,1(ω) for the Haar (r = 1) and the Shannon (r = ∞) wavelets at

decomposition level 4, the filtering sequences used are (h[r ]
0 ,h[r ]

0 ,h[r ]
0 ,h[r ]

0 )) and (h[r ]
0 ,h[r ]

0 ,h[r ]
0 ,h[r ]

1 ), respectively.

sense) for processes satisfying conditions (ACF) (resp. (C1), (C2)). Under the same conditions, and

provided that the decomposition level and the filter order are large enough, then correlation and

higher order dependency reduction follow. The above properties depend on the shape of the input

process spectrum: the asymptotic results are attained in any detail path of the wavelet packet tree

associated to a frequency ωP which is a continuity point of the spectrum FS . Let us focus on the

paths for which no decorrelation can be expected. This is the case for paths associated with poles

of FS . We consider the following examples.

Example 3

[Singular paths for ARFIMA type spectrum]

Assume that FS has the following form:

FS (ω) = σ2∣∣4sin
(
ω
2

)∣∣δ ×B(ω), (20)

with ω ∈ [−π,π]. Then, X will said to be an ARFIMA process in the sense that its spectrum Eq. (20)

with respect to the wavelet packet transform is of ARFIMA type.

Let B(ω) = 1, then X is fractionally integrated with no autoregressive and moving average parts.

If δ= 0, then X is a white Gaussian process and the wavelet packet coefficients are uncorrelated at

every decomposition level. If δ 6= 0, then the unique pole of FS is ω= 0 and thus, c [r ]
j ,nP ( j ) tends to

decorrelate with j ,r in every path P 6=P0.

DRAFT



16

Now, consider

B(ω) =
∣∣1−∑p

k=1µk e−i kω
∣∣2∣∣1−∑q

`=1φ`e−i`ω
∣∣2 ,

that is, X is fractionally integrated with autoregressive parts “driven by” (φ`)` and moving average

parts driven by (µ`)`. Assume that B(ω) has K distincts and non-null poles ω` for `= 1,2, . . . ,K , with

K É q . Then, FS has poles ω ∈ {0,ω1,ω2, ...,ωK } and asymptotic decorrelation follows for all wavelet

packet paths, except for the paths associated with the above poles.

Example 4

[Singular paths for k-factor Gegenbauer type spectrum]

Assume that FS has the following form:

FS (ω) =
k∏

i=1

σ2{
2|cosω−ψi |

}2δi
.

FS is a k-factor Gegenbauer ARMA (GARMA) type spectrum and, as above, we will say that X is

a k-factor GARMA process. The poles of FS are the Gegenbauer frequencies

ωGi = cos−1ψi , i = 1,2, . . . ,k.

Thus, the decorrelating properties of the wavelet packet decomposition concerns paths P ∉ {P0,PωGi
:

i = 1,2, . . . ,k}.

In order to identify the wavelet packet path associated with a given pole ω∗, we need to find the

sequence of frequency indices
(
n( j )

)
j∈N such that n( j ) = nP ∗( j ) is subject to Eq. (1) and satisfies

lim
j→+∞

J (nP ∗( j ))π

2 j
=ω∗.

For instance, consider the ARFIMA process with: σ = 1, δ = 1/2, µ1 = 1, φ1 = e iω1 + e iω2 , φ2 =
e2iω2

(
1−e−iω2

(
e iω1 +e iω2

))
, where ω1 = 3π/4−∆ω and ω2 = 3π/4+∆ω. This process admits 3 poles at

frequencies ω= 0, ω1 and ω2. Small values are chosen for ∆ω so as to have ω1 and ω2 closer to the

“central” frequency 3π/4: ∆ω ∈ {π/48,π/72} in Figure 3. Note that the path associated with 3π/4 is

characterized by the frequency indices J (n( j )) = 2 j−1+2 j−2. Thus, by using the inverse permutation

J−1 (see [14]), this path is characterized by the frequency indices n( j ) = 2 j−1 +2 j−3 for j Ê 3.

We synthesize such an ARFIMA process and compute its spectrum by using the wavelet packet

method of [14]. Figure 3 presents the wavelet packet spectra obtained, as well as spectra computed

on Welch’s method (averaged and modified periodogram computed on the basis of the discrete
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Fourier-Welch Wavelet Packets

∆ω=π/48

∆ω=π/72

Fig. 3. “Fourier-Welch” and “Wavelet packet” spectra of ARFIMA processes, where any ARFIMA function B used admits

two poles at frequencies ω= 3π/4±∆ω. The graphs are given for ∆ω=π/48 and ∆ω=π/72. The “central” frequency 3π/4

is marked by a vertical (red) line.
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Fourier transform). As can be seen, the two poles of B(ω) (see Eq. (20)) are well detected by the

wavelet packet method in terms of narrow peaks in the neighborhoods of the poles. In contrast, the

peaks tend to overlap when using Welch’s method, when ∆ω is small.

In practice, the presence of singularities, in terms of narrow peaks, within the wavelet packet

spectrum can ease model selection from many stochastic processes encountered in real world data,

signals and images. Indeed, a path associated with a pole reflects a long memory behavior for certain

“events” characterizing the process since the wavelet packet autocorrelations are non-summable in

this path. In this sense, ARFIMA or GARMA models can be used to represent the input random

process, and wavelet packet spectrum makes explicit the form of the denominator of B . Note that

long memory property has been established to arise in biomedical and telecommunication signals.

The following highlights that it also arises in many real word texture images.

Wavelet packet spectra of some texture images are shown in Figure 4. The wavelet packet spectra

have been computed from the two-dimensional extension of the method given in [14]. Spectra

computed from the Fourier are also given in this figure, for comparison.

The spectra given in Figure 4 show peaks at zero frequency, reflecting the contribution of fractional

terms, as well as peaks at other spatial frequencies, indicating terms induced by ARMA-type poles.

As a matter of fact, the long memory hypothesis inducing these peaks can be inferred through a

visual analysis of the content of the input images: let us consider, for instance, the image “Fabric.11”.

This image is characterized by non-overlapping bands, every band having a specific content. These

bands replicate repeatedly, depending on certain spatial frequencies. We can mainly “distinguish”

two frequencies if we consider the two coarse bands. Moreover, we can say that these frequencies

are close since the occurrences of the bands approximately occupy the same space and interact

as an on-and-off system. The graph of the wavelet packet spectrum of this image clearly shows

these frequencies, whereas the graph obtained by computing the two dimensional discrete Fourier

transform exhibits only one peak (see Figure 4). Furthermore, from the wavelet packet spectrum of

the “Fabirc.11” image, we can see that the two frequencies under consideration are close, as stated

above by using the visual inspection criterion. It is worth emphasizing that the poorness of the

content of Fourier spectra is not due to a lack of resolution in the sampling step of the Fourier

transform. This poorness can be explained by noting that Fourier transform is sensitive to global

spatial regularity, whereas wavelet packets can capture local spatial regularity and lead to a more

informative spectrum.
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“D3” / Brodatz FFT “D3” WP “D3”

“Fabric.09” / VisTeX FFT “Fabric.09” WP “Fabric.09”

“Fabric.11” / VisTeX FFT “Fabric.11” WP “Fabric.11”

Fig. 4. Textures “Fabrics” from the VisTeX database.
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VI. CONCLUSION

In this paper, statistical properties of wavelet packet transform have been investigated when the

input process is not necessarily stationary. It has been shown that under some weak assumptions on

the autocorrelation function and the cumulants of X , the coefficients associated with the projection

of a random process X with respect to a path P 6= P0 become stationary and tend to decorrelate

when the decomposition level and the filter order increases, provided that the limit frequency ωP is

not a singular point of the wavelet packet spectrum associated with X . The analysis performed in the

paper has highlighted that the null-moment condition on the wavelet function plays an important

role in the stationarization induced by wavelet based transforms and the decorrelating properties are

strongly linked on the width of the support and the shape of the Fourier transform of the function

generating wavelet subbands. By exhibiting singular paths, the paper opens some new prospects

regarding the analysis and synthesis of stochastic processes: iid Gaussian modeling is not relevant

in these paths, even for large decomposition levels. These paths are associated with non summable

wavelet packet autocorrelations and reflect long memory behavior. This long memory property has

been shown to occur for specific texture images. In this respect, the analysis performed in the paper

opens some new prospects in texture modeling in that random processes with long memory property

such as ARFIMA and GARMA processes generalize standard ARMA processes used in Wold’s based

texture analysis [20].
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