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Non-asymptotic deviation inequalities for
smoothed additive functionals in non-linear
state-space models.

Cyrille Dubarry* and Sylvain Le Corff
April 25, 2012

Abstract

The approximation of fixed-interval smoothing distributions is a key
issue in inference for general state-space hidden Markov models (HMM).
This contribution establishes non-asymptotic bounds for the Forward Fil-
tering Backward Smoothing (FFBS) and the Forward Filtering Backward
Simulation (FFBSi) estimators of fixed-interval smoothing functionals.
We show that the rate of convergence of the L,-mean errors of both meth-
ods depends on the number of observations 7" and the number of particles
N only through the ratio T'/N for additive functionals. In the case of
the FFBS, this improves recent results providing bounds depending on

T/VN.

1 Introduction

State-space models play a key role in statistics, engineering and econometrics;
see [2, 11, 18]. Consider a process { X, };>0 taking values in a general state-space
X. This hidden process can be observed only through the observation process
{Y:}1>0 taking values in Y. Statistical inference in general state-space models
involves the computation of expectations of additive functionals of the form

T
Sr=Y h(Xi1,Xy),

t=1

conditionally to {Y;}~,, where T is a positive integer and {h;}_; are func-
tions defined on X2. These smoothed additive functionals appear naturally for
maximum likelihood parameter inference in hidden Markov models. The com-
putation of the gradient of the log-likelihood function (Fisher score) or of the
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intermediate quantity of the Expectation Maximization algorithm involves the
estimation of such smoothed functionals, see [2, Chapter 10 and 11] and [10].

Except for linear Gaussian state-spaces or for finite state-spaces, these smoothed
additive functionals cannot be computed explicitly. In this paper, we consider
Sequential Monte Carlo algorithms, henceforth referred to as particle methods,
to approximate these quantities. These methods combine sequential importance
sampling and sampling importance resampling steps to produce a set of random
particles with associated importance weights to approximate the fixed-interval
smoothing distributions.

The most straightforward implementation is based on the so-called path-
space method. The complexity of this algorithm per time-step grows only lin-
early with the number N of particles, see [4]. However, a well-known shortcom-
ing of this algorithm is known in the literature as the path degeneracy; see [10]
for a discussion.

Several solutions have been proposed to solve this degeneracy problem. In
this paper, we consider the Forward Filtering Backward Smoothing algorithm
(FFBS) and the Forward Filtering Backward Simulation algorithm (FFBSI)
introduced in [9] and further developed in [12]. Both algorithms proceed in two
passes. In the forward pass, a set of particles and weights is stored. In the
Backward pass of the FFBS the weights are modified but the particles are kept
fixed. The FFBSi draws independently different particle trajectories among all
possible paths. Since they use a backward step, these algorithms are mainly
adapted for batch estimation problems. However, as shown in [5], when applied
to additive functionals, the FFBS algorithm can be implemented forward in
time, but its complexity grows quadratically with the number of particles. As
shown in [8], it is possible to implement the FFBSi with a complexity growing
only linearly with the number of particles.

The control of the L,-norm of the deviation between the smoothed additive
functional and its particle approximation has been studied recently in [5, 6]. In
an unpublished paper by [6], it is shown that the FFBS estimator variance of any
smoothed additive functional is upper bounded by terms depending on 7" and
N only through the ratio T/N. Furthermore, in [5], for any ¢ > 2, a L,-mean
error bound for smoothed functionals computed with the FFBS is established.
When applied to strongly mixing kernels, this bound amounts to be of order
T/ VN either for

(i) uniformly bounded in time general path-dependent functionals,
(ii) unnormalized additive functionals (see [5, Eq. (3.8), pp. 957]).

In this paper, we establish L,-mean error and exponential deviation inequal-
ities of both the FFBS and FFBSi smoothed functionals estimators. We show
that, for any ¢ > 2, the L,-mean error for both algorithms is upper bounded
by terms depending on 7" and N only through the ratio T/N under the strong
mixing conditions for (i) and (ii). We also establish an exponential deviation
inequality with the same functional dependence in T" and N.



This paper is organized as follows. Section 2 introduces further definitions
and notations and the FFBS and FFBSi algorithms. In Section 3, upper bounds
for the L,-mean error and exponential deviation inequalities of these two algo-
rithms are presented. In Section 4, some Monte Carlo experiments are presented
to support our theoretical claims. The proofs are presented in Sections 5 and 6.

2  Framework

Let X and Y be two general state-spaces endowed with countably generated
o-fields X and V. Let M be a Markov transition kernel defined on X x X and
{9t}+>0 a family of functions defined on X. It is assumed that, for any z € X,
M (z,-) has a density m(x,-) with respect to a reference measure A on (X, X).
For any integers 7' > 0 and 0 < s < ¢t < T, any measurable function h on
Xt=5+1 "and any probability distribution y on (X, X), define

déf f X(dmO)QO(IO) Hle M(zu—la dxu)gu(xu)h(xst)
[ x(dzo)go(zo) TT—y M(2y_1,dzy)gu (@)

v
s=u"*

¢s:t\T[h] s (1)

where a,., is a short-hand notation for {a,
implicit and is dropped from the notations.

The dependence on go.7 is

Remark 1. Note that this equation has a simple interpretation in the particular
case of hidden Markov models. Indeed, let (2, F,P) be a probability space and
{X:}+>0 a Markov chain on (Q, F,P) with transition kernel M and initial distri-
bution x (which we denote Xo ~ x). Let {Y;}+>0 be a sequence of observations
on (Q,F,P) conditionally independent given o(X;,¢ > 0) and such that the
conditional distribution of Y, given o(X;,t > 0) has a density given by g(X,, )
with respect to a reference measure on ) and set g,(x) = g(z,Y,). Then, the
quantity @s.r[h] defined by (1) is the conditional expectation of h(Xs.;) given
YO:TI
Gsir[h] = E[h(Xse)[Yor] . Xo~x.

In its original version, the FFBS algorithm proceeds in two passes. In the

forward pass, each filtering distribution ¢; def ¢, for any ¢ € {0,...,T}, is

Nt Nt
( )

approximated using weighted samples { wp & , where T is the num-
=1

ber of observations and N the number of particles: all sampled particles and
weights are stored. In the backward pass of the FFBS, these importance weights
are then modified (see [9, 15, 16]) while the particle positions are kept fixed.
The importance weights are updated recursively backward in time to obtain an
approximation of the fixed-interval smoothing distributions {¢s:T\T}ST=0~ The
particle approximation is constructed as follows.

Forward pass Let {gév ot N | be iid. random variables distributed accord-

ing to the instrumental density py and set the importance weights w(])v £ def

dx/dpo( év’e) go( (I)V’é). The weighted sample {(fév’e,wév’e)}évzl then targets the



initial filter ¢o in the sense that ¢2'[h] def Zé\/:l wév*eh(gé”)/zle wév’z is a
consistent estimator of ¢g[h] for any bounded and measurable function h on X.
Let now {(¢2, w™)}¥ | be a weighted sample targeting ¢,_;. We aim at com-
puting new particles and importance weights targeting the probability distribu-
tion ¢s. Following [17], this may be done by simulating pairs {(IN:f, N4}
of indices and particles from the instrumental distribution:

7Ts|s(£a h) X wi\ﬁﬁﬁé(gi\ﬁi)P‘s(gi\ﬁi’ h’) ’

on the product space {1,..., N} x X, where {9 (5?1’[1)}9721 are the adjustment
multiplier weights and Ps is a Markovian proposal transition kernel. In the
sequel, we assume that Ps(x,-) has, for any € X, a density ps(z,-) with
respect to the reference measure A. For any ¢ € {1,..., N} we associate to the
particle £€N¢ its importance weight defined by:

N,IN:¢
WV def m(fs—l »fé\[’é)gs(gév’e)

s N, IN* NNt Ny
9s(607° Ips(§sr® 565 7)

Backward smoothing For any probability measure 7 on (X, X), denote by
B,, the backward smoothing kernel given, for all bounded measurable function
h on X and for all x € X, by:

det [ m(da’) m(z',z)h(z’)
By, h) = [ n(dz") m(a’,z)

For all s € {0,...,T—1} and for all bounded measurable function h on X7 =5+1,
¢s.7|7[h] may be computed recursively, backward in time, according to

¢S:T\T[h] = /B¢s (‘Terlad-Ts) ¢s+1:T\T(dxs+1:T) h(-rs:T) .

2.1 The forward filtering backward smoothing algorithm

: : Ne N
Consider the weighted samples {(gt Twy )} X drawn for any ¢ € {0,...,T}

in the forward pass. An approximation of the fixed-interval smoothing distri-
bution can be obtained using

el = [ Boy e do) 0 ppleen) bear) . (2)

and starting with ¢¥:T‘T[h] = ¢¥ [h]. Now, by definition, for all € X and for
all bounded measurable function h on X,

N N,i N,i
witm(§" x)
B N(.’L‘ h) = 5 5
P\ § : N N,¢ N,¢
o emws m(&s L)

h(&")




and inserting this expression into (2) gives the following particle approximation
of the fixed-interval smoothing distribution ¢g.7|r[h]

N N /T i } }
= 32 3 (T i) | < S (@ 67) L
i():l u=1

ir=1

where h is a bounded measurable function on X7+1,

N.j N.j &Ny
W Jm(t j;ft—i—i)

AN (i, j) & —, (i) ef{l,....,N}?, (4)
S wm(E e
and
N
QYL W (5)
=1

The estimator of the fixed-interval smoothing distribution (bé\fT‘T might seem

impractical since the cardinality of its support is N7+, Nevertheless, for addi-
tive functionals of the form

T
ST,r(fUO:T) = Z ht (Sﬁt—r:t) y (6)

where 7 is a non negative integer and {h;}_,. is a family of bounded measurable
functions on X" 1, the complexity of the FFBS algorithm is reduced to O(N"*2).
Furthermore, the smoothing of such functions can be computed forward in time
as shown in [5]. This forward algorithm is exactly the one presented in [10] as an
alternative to the use of the path-space method. Therefore, the results outlined
in Section 3 hold for this method and confirm the conjecture mentioned in [10].

2.2 The forward filtering backward simulation algorithm

We now consider an algorithm whose complexity grows only linearly with the
number of particles for any functional on X7+!. For any t € {1,...,T}, we
define

FN o (N wNi);0<s<t,1<i<N} .

The transition probabilities {AN }Z ' defined in (4) induce an inhomogeneous
Markov chain {J,}X_, evolving backward in time as follows. At time 7', the
random index Jr is drawn from the set {1, ..., N} with probability proportional
to (wéy’l, . ,wéV’N). Foranyt € {0,...,T—1}, the index J; is sampled in the set
{1,..., N} according to AY(Jy41,-). The joint distribution of Jo.r is therefore

given, for jo.r € {1,...,N}T+1 by
N,jr
oF

P [Jo.r = jor | F7 | = AY_ Gy gr—1) - AY (1, o) - (7)



Thus, the FFBS estimator (3) of the fixed-interval smoothing distribution may
be written as the conditional expectation

Oorirlh] =E [h( 0", ]TV’JT) ‘]:”}V} ;

where h is a bounded measurable function on X7 1. We may therefore construct
an unbiased estimator of the FFBS estimator given by

N

e — N,J§ N,J%

Hizyrlhl = NN b (&7 T) ®)
(=1

where {J{ 1L, are N paths drawn independently given F according to (7)
and where h is a bounded measurable function on X”7*!. This practical esti-
mator was introduced in [12] (Algorithm 1, p. 158). An implementation of this
estimator whose complexity grows linearly in N is introduced in [8].

3 Non-asymptotic deviation inequalities

In this Section, the L;-mean error bounds and exponential deviation inequalities
of the FFBS and FFBSi algorithms are established for additive functionals of
the form (6). Our results are established under the following assumptions.

A1l (i) There exists (0_,04) € (0,00)? such that o_ < o4 and for any
(z,2") € X2, o_ < m(z,2") < o, and we set p defy o_Jog.

(ii) There exists c— € R% such that [ x(dz)go(x) > c— and for any
t € N*, infyex [ M(z,dz’)gi(2') > c_.

A2 (i) Forallt >0 and all z € X, g¢(z) > 0.

(ii) supl|gi|eo < o0.
t>0

A3 sup|Vi]eo < 00, SUp|pPt|ec < 00 and sup|w,|s < 0o where
t>1 >0 >0

/ /
@)

def dx 2)ae (2 wi(z,z') =
wo(x) = dpo( Joo(®), (@) Ui (2)pe (2, 2')

Assumptions Al and A2 give bounds for the model and assumption A3 for
quantities related to the algorithm. A1(i), referred to as the strong mixing
condition, is crucial to derive time-uniform exponential deviation inequalities
and a time-uniform bound of the variance of the marginal smoothing distribution
(see [7] and [8]). For all function h from a space E to R, osc(h) is defined by:

osc(h) e sup [h(z) — h(2")] .
(z,2")EE2



Theorem 1. Assume A1-3. For all g > 2, there exists a constant C (depending
only on q, o—, o4, c—, sup|¥¢|eo and sup|w,|eo) such that for any T < oo, any
t>1 >0

integer v and any bounded and measurable functions {hs}1_

. - 1/2

< —71N osc(hs)? ,
g \/ﬁ r, T (; ( ) )
where St is defined by (6), ¢é\:rT|T is defined by (3) and where

V1I+ryT —r+1
)

H(ZS(I)VT‘T [ST,T] - ¢0:T|T [ST,T]

Ti\,}T(iéf\/r—Fl(\/l—l—r/\\/T—r—i-l—i—

Similarly,

1/2
~ C T
H(b(l)\:[T\T [ST.+] = ¢o.ri7 [ST.7] . < WT?’[T (; osc(hs)2> ,

where gé\:'TlT is defined by (8).
Remark 2. In the particular cases where r = 0and r =T, Té\fT =1+T+1/N
and T%T =T +1(1++/T+1/N). Then, Theorem 1 gives

1/2

T 2
| 68212 [57.0) = G0.rir [ST,O]Hq < C(Zs:o \/%hs) ) (1 N W) 7

and

T+1 T+1
H(z)(l)\:[T|T [St.7] = o177 [ST,T]Hq < C\/T (1 +14/ ;) osc(hr)? .

As stated in Section 1, theses bounds improve the results given in [5] for the
FFBS estimator.

Remark 3. The dependence on 1/v/N is hardly surprising. Under the stated
strong mixing condition, it is known that the L;-norm of the marginal smoothing

estimator ¢£V—r:t|T[h]’ t € {r,..., T} is uniformly bounded in time by Hgi)i\im‘T[h] Hq <

Cosc(h)N~'/2 (where C depends only on ¢, 0, 04, c_, sup|t¢|eo and sup|w;|uo)-
t>1 >0

The dependence in /7 instead of T reflects the forgetting property of the filter

and the backward smoother. As for r < s < t < T, the estimators qSinT:S‘T[hs]

and ¢V t|T[ht] become asymptotically independent as (¢t — s) gets large, the

L,-norm of the sum ZtTZT gbi\'_r:tlT[ht] scales as the sum of a mixing sequence
(see [3])-



Remark 4. Tt is easy to see that the scaling in y/T/N cannot in general be
improved. Assume that the kernel m satisfies m(x, «’) = m(z’) for all (z,2’) €
X x X. In this case, for any ¢ € {0,...,T}, the filtering distribution is

[ m()gi(@)hy(x)d
oelhe] = Tm@g@dr

and the backward kernel is the identity kernel. Hence, the fixed-interval smooth-
ing distribution coincides with the filtering distribution. If we assume that we
apply the bootstrap filter for which ps(z,z’) = m(a’) and ¥s(x) = 1, the esti-
mators {gbf‘fT [h¢]}eqo,..., 7y are independent random variables corresponding to
importance sampling estimators. It is easily seen that

/T
< m 9 .
- CogtagXT {osc(ha)} N
q

Remark 5. The independent case also clearly illustrates why the path-space
methods are sub-optimal (see also [1] for a discussion). When applied to the
independent case (for all (z,2') € X x X, m(z,2’) = m(2’) and ps(z,2’) =
m(z")), the asymptotic variance of the path-space estimators is given in [4] by

T

Z ' [he] — ¢4 [he]

t=0

Lo.77[ST,0]
def — m(g% m(gt[ht - ¢t(ht)]2) m(g%[hT - ¢T(hT)]2)
= mlgr)? m(g:) m(gr)?
= [ mgd) migslhs — 6s(hs))?) | mg?lhe — $u(ho)]?)
> {S_O mig)?  mlg) | mig)? }
x(g5lho — do(ho)]?)
x(90)?

The asymptotic variance thus increases as T2 and hence, under the stated as-
sumptions, the variance of the path-space methods is of order T?/N. It is
believed (and proved in some specific scenarios) that the same scaling holds for
path-space methods for non-degenerated Markov kernel (the result has been for-
mally established for strongly mixing kernel under the assumption that o_ /o
is sufficiently close to 1).

We provide below a brief outline of the main steps of the proofs (a detailed
proof is given in Section 5). Following [8], the proofs rely on a decomposition
of the smoothing error. For all 0 < ¢ < T and all bounded and measurable
function h on X7*! define the kernel L; 7 : XiT1 x x®7T+1 — [0,1] by

T
L rh(zo.) déf/ H M (xy—1,dzy)gu(zy)h(zo.T) -
u=t+1



The fixed-interval smoothing distribution may then be expressed, for all bounded

and measurable function h on X7+, by

Go:¢/¢ [Le,7h]
Sorirlh] = AT
ozir (/] Go:¢1¢ (L, 71]
and this suggests to decompose the smoothing error as follows

AN 1) E 6 (8] — docryr ]

_ a q’)é\{t‘t [Lirh] B ¢(]J\{t71|t71 [Li—1,7h]
t=0 ¢E’J\:It\t [LtTl] ¢é\:ft—1|t—1 [Lt—lle] 7

where we used the convention

Oy loar ] gollorh)
¢EI)\;]_1|_1 [L_l,Tl] N [Lo,Tl] 0:T|T 1] -

Furthermore, for all 0 <t < T,

¢é\:[t\t [Lerh] = /Cb(l)\{t|t(d$0:t)Lt,Th($0:t)

— [ 6By (o i)+ By (o1, o) Lurh (o)

- / N (A ) L h(xr) |

where Ei\fT and L; 7 are two kernels on X x X®(T+1) defined for all 2, € X by

Lirh(z:) déf/B@fl(l‘t’dﬂ?t—l)'"B¢o($17d9€0)Lt,Th(930:t)

L) / By (2, dwe1) -+ By (@1, dwo)La rh(zo)

For all 1 <t < T we can write

¢(])\:]t|t[Lt»Th] _ ¢é\:]t—1\t—1[Lt—17Th] _ ¢£V[£iYTh] _ (bz{\il[‘ci\il,Th]
¢(I)\{t|t[Lt,T1] ¢6Yt_1\t_1[Lt—1,T1] ¢i7v[£iYT1] ¢£V—1[££v—1,T1}

1 Nt AN RN
= LN h) - S
o (L] <¢f ezt S 1LY 1]

and then,
_ N ) )
N 12@:1‘*’?{ Gé\,fTh(fgv)

AZJY[h'] = )
; Nt 25:1 Wiv’éﬁt,Tl(ftN’é)

(10)

(11)

wzw) |

(12)



with G}V is a kernel on X x X @(T+1) defined, for all z; € X and all bounded
and measurable function h on X7+, by

o O L1 h]
GNph d_fg ok tlitng ()
7 P

where, by the same convention as above,

e LoTh
G(I)\,[Th(xo) o Lo, rh(zo) — mﬁog"l(.ﬁo) )
olLo, 1]

Two families of random variables { CtJYT( f)}t , and {D }th , re now
introduced to transform (12) into a suitable decomposition to compute an up-
per bound for the L;,-mean error. As shown in Lemma 1, the random vari-
ables {wt ZG){VT (§tN Z)}é , are centered given F/¥,. The idea is to replace

-1 22:1 WL, p1(NY) in (12) by its conditional expectation given F | to
get a martingale difference. This conditional expectation is computed using the
following intermediate result. For any measurable function h on X and any
te{0,...,T},
o1y [Mgih]

PN (13)

E [w!" e AL =
Indeed,
E [ (e )| 7Y
m(e €N g (€N
AT (AN

1y N,i
\ . i Mg da)g(x)
(Zwt 1967 n) Z / s (EE)P 6, )m(ﬁfvii;pt@i&ti,x)h(x)

=E h(fiv’l) FYy

-1 N
- (i) X [t anaene
i=1
_ ¢y [Mgih
O 1[0]

This result, applied with the function h = £; 71, yields

oy [Mgi Lo 1] _ Gy [Le1,71]
o 1[04 o 1[04

For any 0 < ¢t < T, define for all bounded and measurable function i on
XTJrl7

E [wf Lo r1(e")| FYL) =

10



Nt
f&] 12 peGEET) )

“ ‘ﬂt,T1|oo

def Lr1(e)
DN (h) = E[ 1ferlle ) |£tT1|

N,e
_ O] g e GG

t )
Pty {‘%:TIITI:J =1 1L 710
CN (h) def 1 B d)é\f_l[,&t]
t,T Nzﬁt 1(¢; o
N W D ol [
N N 3 (¢N.£
GNAh(ETT)
N_l N,EL . 15
’ Z:ZI‘% |L:,71]00 (15)
Using these notations, (12) can be rewritten as follows:
) T
Y = 30 D)+ 3 ) o
t=0 =0

For any g > 2, the derivation of the upper bound relies on the triangle inequality:

T
+>_llefr sz, -

q 1=0

HAN ST'/‘ tT STr

where St is defined in (6). The proof for the FEBS estimator ¢é\:[T|T is com-
pleted by using Proposition 1 and Proposition 2. According to (16), the smooth-
ing error can be decomposed into a sum of two terms which are considered sep-
arately. The first one is a martingale whose L;-mean error is upper-bounded by

(T'+ 1) /N as shown in Proposition 1. The second one is a sum of products,
L,-norm of which being bounded by 1/N in Proposition 2.

The end of this section is devoted to the exponential deviation inequality
for the error AY[S7,,] defined by (9). We use the decomposition of AN [St ]
obtained in (16) leading to a similar dependence on the ratio (7' + 1)/N. The
martingale term DiNT(ST r) is dealt with using the Azuma-Hoeffding inequality

while the term C 7(ST.) needs a specific Hoeffding-type inequality for ratio of
random variables.

Theorem 2. Assume A1-3. There exists a constant C' (depending only on o_,
o4, T, C_, sup|19t\oo and Sup|wt|oo) such that for any T < oo, any N > 1, any

€ >0, any mteger r, and any bounded and measurable functions {hs}7.

)

CNeg? CNe
<2exp | — T 2 + 8exp | — T ,
(_)T,T Zs:r OSC(hS> (1 + T) Zs:r OSC(hs)

11

s=r’

P { ’%:T‘T [St.r] = d)(l)\:[T|T [ST,r]




where St is defined by (6), ¢(J)\:[T|T is defined by (3) and where

Orr & (1+r){A+r) AT —r+1)} . (17)

Sitmilarly,

P { ’%:T‘T [St.r] = 5(1)\:[T|T [ST,r]

)

CNe¢? CNe
<dexp | — = 5 +8exp | — = ,
GT,T Zs:r OSC(hS) (1 + T) Zs:r OSC(hs)

where EEéV:TlT is defined by (8).

4 Monte-Carlo Experiments

In this section, the performance of the FFBSi algorithm is evaluated through
simulations and compared to the path-space method.

4.1 Linear gaussian model

Let us consider the following model:

Xip1 =Xy +o,Us
Y; =Xi+o,V¢,

where X is a zero-mean random variable with variance %, {U:},~, and
{Vi},>o are two sequences of independent and identically distributed standard
gaussian random variables (independent from Xg). The parameters (¢, 0., 0y)
are assumed to be known. Observations were generated using ¢ = 0.9, o, =

0.6 and o, = 1. Table 1 provides the empirical variance of the estimation of

the unnormalized smoothed additive functional Zy ZtT:oE [X¢|Yo.r] given

by the path-space and the FFBSi methods over 250 independent Monte Carlo
experiments. We display in Figure 1 the empirical variance for different values
of N as a function of T for both estimators. These estimates are represented
by dots and a linear regression (resp. quadratic regression) is also provided for
the FFBSi algorithm (resp. for the path-space method).

In Figure 2 the FFBSi algorithm is compared to the path-space method
to compute the smoothed value of the empirical mean (7' + 1)~!'Zy. For the
purpose of comparison, this quantity is computed using the Kalman smoother.
We display in Figure 2 the box and whisker plots of the estimations obtained
with 100 independent Monte Carlo experiments. The FFBSi algorithm clearly
outperforms the other method for comparable computational costs. In Table
2, the mean CPU times over the 100 runs of the two methods are given as a
function of the number of particles (for T' = 500 and T' = 1000).

12



Table 1: Empirical variance for different values of T' and N.

Path-space

T N 300 500 750 1000 1500 5000 10000 15000 20000

300 137.8 1194 63.7 46.1  36.2 12.8 7.1 3.8 3.0
500 290.0 2153 1925 1619 80.3  30.1 14.9 11.3 7.4
750 4749 3945 3329 250.5 206.8 71.0 35.6 244 21.7
1000 673.7 593.2 505.1 483.2 3264 1164 70.8 37.9 34.6
1500 1274.6 1279.7 916.7 804.7 655.1 233.9 163.1  89.7 80.0

FFBSi

N
T 300 500 750 1000 1500
300 5.1 3.1 2.3 1.4 1.0
500 9.7 5.1 3.7 2.6 2.2
750 11.2 7.1 4.9 3.7 2.6
1000 16.5 10.5 6.7 5.1 3.4
1500 25.6 14.1 7.8 6.8 5.1

Table 2: Average CPU time to compute the smoothed value of the empirical
mean in the LGM

T =500 FFBSi Path-space method

N 500 500 5000 10000
CPU time (s)  4.87 0.24 247  4.65
T = 1000 FFBSi Path-space method
N 1000 1000 10000 20000
CPU time (s) 16.5 0.9 8.5 17.2

4.2 Stochastic Volatility Model

Stochastic volatility models (SVM) have been introduced to provide better ways
of modeling financial time series data than ARCH/GARCH models ([14]). We
consider the elementary SVM model introduced by [14]:

Xip1 =X +0Upqq
Xt
Yi=pBe2V;,

2
where X is a zero-mean random variable with variance ﬁw, {Ut};>0 and
{Vi},> are two sequences of independent and identically distributed standard

13
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Figure 1: Empirical variance of the path-space (top) and FFBSi (bottom) for
N =300 (dotted line), N = 750 (dashed line) and N = 1500 (bold line).

gaussian random variables (independent from Xg). This model was used to
generate simulated data with parameters (¢ = 0.3,0 = 0.5, = 1) assumed to
be known in the following experiments. The empirical variance of the estimation
of Zr given by the path-space and the FFBSi methods over 250 independent
Monte Carlo experiments is displayed in Table 3. We display in Figure 3 the
empirical variance for different values of N as a function of T for both estimators.

5 Proof of Theorem 1

We preface the proof of Proposition 1 by the following Lemma:

Lemma 1. Under assumptions A1-3, we have, for any t € {0,...,T} and any
measurable function h on XT+1:

Nt GRrh(§)

N
(i) The random variables { w, are, for all N € N:
|£t,T1|oo =1

14
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Figure 2: Computation of smoothed additive functionals in a linear gaussian
model. The variance of the estimation given by the FFBSi algorithm is the
smallest one in both cases.

Table 3: Empirical variance for different values of T and N in the SVM.

Path-space method

T N 300 500 750 1000 1500 5000 10000 15000 20000

300 92.7 337 220 178 123 3.8 2.0 1.4 1.2
500 116.3 84.8 64.8 535 30.7 114 6.8 4.1 2.8
750 184.7 187.6 134.2 1200 658 29.1 12.8 7.3 7.7
1000 307.7 2404 2447 182.8 1332 43.6 245 15.6 11.6
1500 512.1 487.5 4455 359.9 2495 909 52.0 32.6 29.3

FFBSi

N
T 300 500 750 1000 1500
300 1.2 0.6 0.5 0.4 0.2
500 2.1 1.2 0.8 0.6 0.4
750 3.7 1.8 1.4 0.9 0.6
1000 4.0 2.7 1.8 1.3 0.9
1500 7.3 3.8 3.1 1.6 1.4

(a) conditionally independent and identically distributed given Fi~ , ,
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N = 300 (dotted line), N = 750 (dashed line) and N = 1500 (bold line) in the
SVM.

(b) centered conditionally to FJ ; .
where GY\ph is defined in (3) and LY} is defined in (11).
(ii) For any integers r, t and N:

T

< Zpmax(t—svs_r_t70)OSC(hs) ) (18)

S=r

Gi\,[TST,r(fth)
|£t,T1‘oo

where St and p are respectively defined in (6) and in A1(i).

Ly r1(z) > 9= und Li_171(z) >, 9=

111) For all x € X, > >c_— .
(i) T T TS T

Proof. The proof of (i) is given by [8, Lemma 3].
Proof of (ii). Let IIs_,.s 1 be the operator which associates to any bounded

and measurable function h on X" 1! the function IIs_,.s 7h given, for any (zo,...,2r) €
XTJrl7 by

Hs—r:s,Th(xO:T) dﬁf h(xs—r:s) .

16



Then, we may write S, = ZST:T IIs_ .5 7hs and GQITST}T = Zir Gé\fTHS,T;S’ThS.
By (3), we have

Gi\)[THS—TIS,ThS('rt) _ ‘Ci\’[THs—r:s,Ths(xt) . d)t 1[ t—1, TH‘S 7'351Th3]
E:{YTl(zt) ﬁf],\,]Tl(xt) ¢t L 1T1] 7

and, following the same lines as in [8, Lemma 10],

|Gi]\’]THsfr:s,Ths|oo < ps_r_tosc(hs)|£t,T1|oo if ¢ <s-—r )

|GiYTHS,r;5’ThS|OO < p'fosc(hs)|Lirl]o if t>s,
where p is defined in A1(i). Furthermore, for any s —r <t < s,
|G£YTHS—7":3,Ths‘oo < Osc(hs)|£t,T1|oo ,
which shows (ii).
Proof of (iii). From the definition (10), for all x € X and all t € {1,...,T},

T

Ly T1 /m z $t+1)gt+1 $t+1 H M fu 17d$u)gu($u)>\(dxt+1)>
u=t+2

hence, by assumption Al,

Ll <oy /9t+1($t+1)Et+1,T1($t+1)>\(d$t+1)

Lirl(z) >0- /9t+1(It+1)£t+1,T1(It+1))\(dIt+1) ;

which concludes the proof of the first statement. By construction, for any x € X
and any t € {1,...,T},

Livrl( /demgt( NLorl(a')

and then, by assumption Al,

ﬁt 1T1 / ﬁtTl( ) o_
M(z, dx >c_— .
\ztmx @) o 2 o

O

Proposition 1. Assume A1-3. For allq > 2, there exists a constant C (depend-
ing only on q, o_, o4, c_, sup|19,5|OC and sup|wt|m) such that for any T < oo,

any integer v and any bounded and measumble functions {hs}T_ on X1,

S=T

T

Z ST’I“

t=0

1/2
c T
§\/—N\/1+r(\/1+r/\\/T—r+1) (;080(hs)2> ,

a
(19)
N . .
where D, is defined in (14).
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Proof. Since {DiZYT(STﬂ“)}o<t<T is a is a forward martingale difference and ¢ >

2, Burkholder’s inequality (see [13, Theorem 2.10, page 23]) states the existence
of a constant C' depending only on ¢ such that:

|

Moreover, by application of the last statement of Lemma 1(iii),

T q

Z ST’I"

t=0

T

Z STT‘

t=0

< CE

¢iv—1[19t] < 0+ SUP¢>q V¢ oo
N Lyl | o_C_ ’
d)t_l ‘Lt,Tl‘oo
and thus,
r NN T T v
S < 7P Pt>0 17tIoo E N1 N,¢
B[S Dl | < (T S (vryay) ||
=0 t=0 (=1
N N,2
where ai\'TZ def w,fv ’fo’roTi'fl(ff). By the Minkowski inequality,
T T N q 2/q 1/2
S DN (S| < Z(mlwzagg D @)
=0 q t=0 =1

Since for any ¢t > 0 the random variables {aiv Té }e are conditionally indepen-
1

dent and centered conditionally to F/¥,, using again the Burkholder and the
Jensen inequalities we obtain

N q
E S | | 7Y, | < oneze 12@[ 2
=1 (=1
T q
<C meax(ts,srt,o)osc(hs)] Nq/2 , (21)

where the last inequality comes from (18). Finally, by (20) and (21) we get

1/2

ZD ST'/‘

2
T T
< CN—I/Q Z (Z pmax(t—s,s—'r'—t,o)Osc(hs))

q t=0 \s=r

18



By the Holder inequality, we have

T
3 el o)

S=T

., 1/2 - 1/2
< <Z pmax(ts,srt,0)> % (Z pmax(ts,srt,O)OSC(hs)2>

S=rT

§ 1/2
<CoViEr (Z Pmax(”’”tmosc(hS)Q> ’

S=T

which yields

T

Z STT

t=0

1/2
< ON—1/2 (I+m) (Zosc ) .

q

We obtain similarly

T T
ZDI{YT(STJ‘) < CN_1/2(1+T)1/QZOSC(h
t=0 s=r
which concludes the proof. 0

Proposition 2. Assume A1-3. For allq > 2, there exists a constant C' (depend-
ing only on q, o_, o4, c—, sup|¥t|eo and sup|w;|eo ) such that for any T < 400,
t>1 t>0

any 0 < t < T, any integer r, and any bounded and measurable functions
{hs}iz, on X7+,

C T
e Szl < 57 22 P Dose(h) (22)

where C}N ‘7 is defined in (15).

Proof. According to (15), C/V.(S7,,) can be written

CtJYT(ST,T) = UtJ,VTVt],VTWtI,VT ’ (23)
where
N@Gt ST T(Er )
UN _ 12[ 1 Iirl‘:t 71|
t, T N?]_Qj]t\[ )
N N,1 N0
_ Lir1(§) NeLer1(§ )
VN - N 1 E N,1%~t, t Fo_ —wit > t ;
o ;( URRVIRSTIN e R VAP T
WtNT _ NflgN
; N1 Ler1(END) Nu:t 1674’
E [wt \LZI;TI\ ‘]:t 1} N~ 12@ 1w \LTtTf\m
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and where Q¥ is defined by (5). Using the last statement of Lemma 1, we get
the following bound:

E N,lEt,Tl(fiNJ) Fol = ARV VIV [
VA T - LARIOH
C_0O_
Z P
‘1975|ooo-+
Lorl(&™) _ oo
ILerlles 04

which implies

s () = o

o (ST | <C|U, ‘ T’ ’VtJ\H and we can use the decomposition

)]

N0 def N G{\_[TST,T(E:V’E) SN def Ar_1AN N,1| =N
where at,T = w; W and Qt =N Qt . By (13)7 E Wy ]:t—l =

Then,

712@ latT n 12@ 1atT <]E{~
t

Ut],VTVt],\If“ = th\% N N
e[ar|7] " ae (e

N
%ﬁg}t] and then, by Al(ii), A3 and (18),
t—11Yt

E [ﬁt

Therefore,

—1
1 < |rl9t|<><> and ZZ 1 tT < C|19t|00 Z max(t—s,s—r— to)ObC(h ) )
L] e QNE[ ] =

t],VT(ST,T)’ <C<017{V+Zs Tpmax(t $,8—T— tO)OSC( 5)03,7%\[) where

N
Nt Lol } being bounded and conditionally
|[:f T 1 ‘ oo =1

independent given 77, following the same steps as in the proof of Proposition
1, there exists a constant C' (depending only on ¢, o_, o4, c— and sup|w,|eo)
>0

N

1,N def N1 Nt 2,N def

LN <y, Yy and CEY vy ’E[
=1

The random variables {

such that [[V,%[|, < CN~Y2. Similarly

N
—1 N,¢
N Z a4y,
=1

c Zf:r pmax(t—s,s—r—t,O)OSC(hs)

N1/2 ’
2q
and B o
[ [] 7eca] -0, < 777
The Cauchy-Schwarz inequality concludes the proof of (22). O
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The proof of Theorem 1 is now concluded for the FFBS estimator d)é\:[T|T [ST.+]
and we can proceed to the proof for the FF'BSi estimator. We preface the proof
of Theorem 1 for the FFBSi estimator qﬁéVT‘T by the following Lemma. We first

define the backward filtration {Qt T}TH
def
gT+1T - ]:T )
OGN L FN Vo {JL1<U<Nt<u<T}, Vte{o,...,T}.

Lemma 2. Assume A1-3. Let £ € {1,...,N} and T < +o0. For any bounded
measurable function h on X™t1 we have,

(i) for all u,t such thatr <t <u<T,

N7Jf—7‘:t N Jt rit U—
‘E [h ( t—rit ) 1ILVT:| —-E [h ( t—rit ) gu+1 T:| < p“"losc(h)
where p is defined in A1(i).
(i) for all u,t such thatt—r <u<t—1<T,
N Jt it N Jt it
‘E|:h<t rit ) zZXT:|_E|:h(t rit ) ’l]LV+1,T:| < osc(h) .

Proof. According to Section 2.2, for all £ € {1,...,N}, {JV1T_  is an in-
homogeneous Markov chain evolving backward in time with backward kernel
{ANYIZ For any r <t < u < T, we have

B |1 (607 loe] — 2 0 (e205)

N#ju
. w
=3 [t - (Mt + 5 1 )|

gu+1 T:|

u

Jtiu
t+1 t—rt1
X HAéVfl(je,jeq) Z H AN Gie, je— 1)h( ] ,ittu) .
{=u Jt—rit—1 L=t

The RHS of this equation is the difference between two expectations started with
two different initial distributions. Under A1(i), the backward kernel satisfies the
uniform Doeblin condition,

. wy
v(zmy)e{l?"'vN}Q AN(Z ])>7QN7

S

and the proof is completed by the exponential forgetting of the backward kernel
(see [2, 7]). The proof of (ii) follows exactly the same lines. O
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To compute an upper-bound for the L,-mean error of the FFBSi algorithm,
we may define the difference between the FFBS and the FFBSi estimators:

51TV [ST,T] = %\:{T\T [ST,T] - ¢é\:fT|T [ST,T] : (25)

Proof of Theorem 1 for the FFBSi estimator. The difference between the FFBS
and the FFBSi estimators, 6%, defined in (25), can be written

N‘]tNﬁt t—r:t
() - (€50
T
NwaVf*t NJtrt
E[ht(t rit )gﬁT}_E[ht<t rit )
t—r

5§“V [ST,T] =

M=

==

t

Il
3

gu+1 T:|

2=

Zl\lH
M= 1 11
] = EMH

~
Il
—
<
I
=)
I
sz
~

where

(u+r)AT

def t7t
(s Z E{ht(t it )

t=r

el

For all £ € {1,...,N} and all u € {0,..., T}, the random variable ()¢ is g{){T-
measurable and E [(ngu“ 7] = 0 so that (}* can be seen as the increment
of a backward martingale. Hence, since ¢ > 2, using the Burkholder inequality
(see [13, Theorem 2.10, page 23]), there exists a constant C' (depending only on
g, 0—, 04, Cc—, sup|¥t|eo and sup|w;,|s) such that:

t>1 >0

gu+1 T:| .

a2/aY /2
] | (26)

Then, since the random variables {¢):¢}V | are conditionally independent and
centered conditionally to Qév+17T, using the Burkholder inequality once again
implies:

T
167 [Srll|, <C{ D E l N~
u=0

N
1 N,¢
>

=1

N

Z CN,K

=1

N

GYrr| < ON9/Z 1ZE[!@W

Glax| - @D
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Furthermore, according to Lemma 2(i),
t—r:t N Jtlv :’/‘ t
e (5 o] o o (5227
N Jt (at f N thv f‘ t
{ (t rit ) } [ht(t rit )gu+1T:|

(u+r)AT

< Zp“_tosc(ht) + Z osc(hy) . (28)

t=r t=u+1

u

<D |E

t=r

gu+1 T:|

(u+r)AT

Ly

t=u+1

Putting (26), (27) and (28) together leads to

9y 1/2
C T (u+r)AT

H51]Y [ST,r]Hq < ﬁ Z Z p(“_t)voosc(ht)

u=0 t=r

Using the Holder inequality as in the proof of Proposition 1 yields

Ny

and the proof of Theorem 1 for the FFBSi estimator is derived from the triangle
inequality:

T 1/2
|62 S]], < 7\/1%-7" (\/1+r/\\/T—r+1) <Zosc(hs)2> ;

H¢0:T|T (St,r) — G%YT\T (Str)|| < HA%STw]Hq + H‘%FV [ST’T]Hq ’

where AN[S7,] is defined by (9) and 6% [Sr,.] is defined by (25). O

6 Proof of Theorem 2

We preface the proof of the Theorem by showing that the martingale term of
the error AN[Sr ] (which is defined by (9)) satisfies an exponential deviation
inequality in the following Proposition.

Proposition 3. Assume A1-3. There exists a constant C (depending only on
o_, o4, C_, sup|19,5|Oo and sup\wt\oo) such that for any T < oo, any N > 1,

any € >0, any mteger r and any bounded and measurable functions {hs}1_, on

X7‘+1
2
ERIe —L )
Or1 Y, 05¢(hg)?

where DiYT is defined in (14) and O, 1 is defined by (17).

T

Z STT’

t=0
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Proof. According to the definition of DV, (Sr,) given in (14), we can write

N(T+1)

ZD STr = Z U;]Cv,
k=1

where for all ¢ € {0,...,7} and £ € {1,...,N}, vN,., is defined by

Nt
P e o
Nt+£ — N Li_1rl t |£tT1|oo )
[L¢,71]c0 ’

and is bounded by (see (18))

T
‘U]Jti’t+[| < C«Nfl Zpmax(tfs,sfrft,o)osc(hs) )

S=T

Furthermore, we define the filtration {HN } e TH)

(efl,..., N}, by:

, for all t € {0,...,T} and

Hiive dﬁf}_t]il VU{(“fv’i7fiv’i> 1< SE} ;
with the convention F, = o(Yy.r). Then, according to Lemma 1, {Uk}N(T+1)

is martingale increment for the filtration {H% }N(T+1) and the Azuma-Hoeffding
inequality completes the proof. O

Proposition 4. Assume A1-3. There exists a constant C' (depending only on
o_, 04, C_, sup|19,5|oo and sup\wt\oo) such that for any T < oo, any N > 1,

any € >0, any mteger r and any bounded and measurable functions {hs}1_. on

Xr+1
CNe
< 8exp | — . 30
{ } o P < (I+7) ZZ:T osc(hs)> (30)

where CNL(F) is defined in (15).

T

Z ST’I‘

t=0

Proof. In order to apply Lemma 4 in the appendix, we first need to find an
exponential deviation inequality for C’tIYT(STJ) which is done by using the de-
composition CV.(Sp,) = UPN VW given in (23). First, the ratio UY, is
dealt with through Lemma 3 in the appendix by defining

an NN WM GN S (6N ) 1Lorl e
by N 12?1%{\[,@7
b jef[ HFN ] = oy (Mgl JoN [0

B Yo /19400 -
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Assumption Al(ii) and A3 shows that b > 8 and (18) shows that |ay/bn| <
C(1+r) max. {osc(ht)}. Therefore, Condition (I) of Lemma 3 is satisfied. The

2Ne?
S QQXP _W 5
oo

establishing Condition (ii) in Lemma 3. Finally, Lemma 1(i) and the Hoeffding
inequality imply that
]
N¢?

3
2w |2, (ZST:r pmax(t—s,s—r—t,o)osc(hs))

bounds 0 < w! < |wi|so and the Hoeffding inequality lead to

N

NS (W - Bl FYL))

{=1

]P’[bNb|Ze]ElIP’ > e

Pllay| > ¢] = > e

H 1Zwi”G 57,60 /1071 oo

<2exp | —

Lemma 3 therefore yields

CNe?
T max(t—s,s—r—t,0) ?
O

P{|Ut{VT| > 6} <2exp | —

Then th\} is dealt with by using again the Hoeffding inequality and the bounds

N, def N Lor1(eNY
O<b < |wt|oo7Whereb Wy W

NS B [0 5 2 ]
=1

E[]P’ Nli(b% E [ |72
(=1

Finally, Wt{VT has been shown in (24) to be bounded by a constant depending

> €

ftJLH < 2exp (fC’NEQ) .

only on o_, oy, c—, sup|¥y|eo and suplw,|oo: |W| < C so that
t>1 t>0 ’

P{|CM(Srr)| > e} <P{ UM V| > e/C <P{UM| > e 4P { V| > e}

where

T
def max(t—s,s—r—t,0) 4 def €
SR\ Pl Josc(hs)/C - and - ew = \/C ST pmax(t—ss——t00s0(hy)

s=r
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Therefore,

P{’CtJYT(ST,r” > E} < 4€Xp (_ - CNe > -

Zs:r pmax(tfs,sfrft,O) OSC(hS)

The proof of (30) is finally completed by applying Lemma 4 with

CN
ZZZT pmax(tfs,sfrft,O)OSC(hs)

X =Cp(Sr,), A=4, By= ., oy=1/2.

O

Proof of Theorem 2 for the FFBS estimator. The result is obtained by writing

Z 7(ST,r) >5/2}+IP’{ >s/2} ,

t=0
and using (29) and (30). O

T

Z STr

P{|AY[ST,,] |>€}<]P’{
=0

Proof of Theorem 2 for the FFBSi estimator. We recall the decomposition used
in the proof of Theorem 1 for the FFBSi estimator:

0 [Sr.r] = ZZC“

=1 u=0

where §% [St.] is defined by (25). Since {C,iv’z}évzl are Go'; measurable and
centered conditionally to G, +1,7 using the same steps as in the proof of Propo-
sition 3, we get

CNe?
P {|67 [Sr.]| > e} <2 - ’
{|67 [Sts]| > €} < exp( O ZZ:T osc(hs)2>

where ©,. 1 is defined by (17). The proof is finally completed by writing

¢O:T\T [ST,T] - %\;’Tw [ST,T} = Ag[ST’T] + 57]\“, [STJ’] )

and by using Theorem 2 for the FFBS estimator. O

A Technical results

Lemma 3. Assume that ay, by, and b are random variables defined on the
same probability space such that there exist positive constants 8, B, C, and M
satisfying

(i) lan/bn| < M, P-a.s. and b > 3, P-a.s.,

(1i) For alle >0 and all N > 1, P[|Jby —b] > €] < Be=CN¢
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(iii) For alle >0 and all N > 1, P[lay| > €] < Be ON(/M)*,

Then,
an Gﬂ 2
P{‘bN >e}Bexp CN<2M>
Proof. See [8, Lemma 4]. O

Lemma 4. For T >0, let {X;}I_, be (T + 1) random variables. Assume that
there exists a constants A > 1 and for all 0 < t < T, there exists a constant
By > 0 such that and all e > 0

P{|X;| > e} < Ae B,

Then, for all0 <~y <1 and all € > 0, we have

T
p el A peyay
t=0 S 1=y

ZXt >
def 1 < 1 B
B= TTI;Bt :

Proof. By the Bienayme-Tchebychev inequality, we have

T
]P’{ > 5} :P{exp tH > e”Ba/(T'H)}
t=0
H e

> X

T
> X

It remains to bound the expectation in the RHS of (31) by A(1 —~)~!. First,

by the Minkowski inequality,

q]

. ~BY
H —Z%q!(TH)qu
R (znxt@

o
Moreover, for ¢ > 1, E [|X;|?] can be bounded by

where

< e 7Be/(THDE [exp
- T+1

T

S

t=0

T

712)()5

t=0

E

exp

E[|1X:%] :/ P{IX:| >€1/q}d5§A/ e B e = BC{T7
0 0 t
Finally,
T o0
vB A
E — X A 4= .
lexp | M
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