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December 19, 2010

Abstract

Approximating joint smoothing distributions using particle-based methods is
a well-known issue in statistical inference when operating on general state space
hidden Markov models (HMM). In this paper we focus on non-asymptotic bounds
for the error generated by the computation of smoothed additive functionals. More
precisely, this contribution provides new results on the forward filtering backward
smoothing (FFBS) Lq-mean errors under appropriate mixing conditions on the
Markov kernel’s probability density function. The algorithm used has a computa-
tional complexity depending linearly on TN where T is the number of observations
and N the number of particles. The main improvement concerns the rate of con-
vergence of these norms which depends on T and N only through the ratio T/N for
additive functionals (i.e. with norm proportional to T ). This paper relies mainly
on recent exponential deviation inequalities on the smoothing error.

1 Introduction

State-space representations play a key role to model non-linear non-Gaussian time series
in statistics, information engineering and financial econometrics; see [3, 16, 26]. Let X be
a general-state space endowed with a countably generated σ-field B(X). Let (Mθ, θ ∈ Θ)
be a family of transition kernels on (X,B(X)) depending on some (finite or infinite
dimensional) parameter θ. For θ ∈ Θ, consider a Markov chain {Xθ

t }t≥0 on (X,B(X))
with initial distribution χ and transition kernel Mθ. The transition kernels are assumed
to be dominated: there exists a probability measure λ on (X,B(X)) such that for all
θ ∈ Θ, x ∈ X, Mθ(x, ·) ≪ λ(·). We denote the transition density function mθ(x, ·).
The observed time series {Yt}t≥0 takes values in a space Y endowed with a countably
generated σ-field B(Y). It is assumed that the observations {Yt}t≥0 are independent
conditionally to {Xt}t≥0 and that the conditional distribution given {Xt}t≥0 depends
only on Xt. It is also assumed that there exist a probability measure ν on (Y,B(Y)) and
a family of probability densities on (Y,B(Y)), (gθ, θ ∈ Θ), such that for any bounded
and measurable function h on Y and any t ∈ N:

Eθ [h(Yt)|Xt] =

∫
h(y)gθ(Xt, y)ν(dy) .

∗Département CITI, Institut Télécom/Télécom SudParis, France
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For T + 1 observations, T ∈ N
∗ and (s, t) ∈ N

2, s ≤ t ≤ T , the joint smoothing
distribution is defined, for all bounded and measurable function h on X

t−s+1, by

φθ
s:t|T [h]

def
= Eθ [h(Xs:t)|Y0:T ]

=

∫
χ(dx0)gθ(x0, Y0)

∏T
s=1 Mθ(xs−1, dxs)gθ(xs, Ys)h(xs:t)∫

χ(dx0)gθ(x0, Y0)
∏T

s=1 Mθ(xs−1, dxs)gθ(xs, Ys)
,

where au:v is a short-hand notation for (au, · · · , av). We denote by φθ
s

def
= φθ

s:s|s the

filtering distribution and by φθ
s|T

def
= φθ

s:s|T the marginal smoothing distribution.

For any T ∈ N
⋆, the log-likelihood of the observations Y0:T may be written as

θ 7→ ℓ(Y0:T , θ) = log

[∫
χ(dx0)gθ(x0, Y0)

T∏

t=1

Mθ(xt−1, dxt)gθ(xt, Yt)

]
.

Parameter estimates can be obtained by maximizing the log-likelihood function with re-
spect to the parameter θ ∈ Θ using either a gradient ascent algorithm or the Expectation-
Maximization (EM) algorithm introduced in [8]. Under appropriate regularity condi-
tions, the score function can be computed using the so-called Fisher identity:

∇θℓ(Y0:T , θ) =

T∑

t=0

φθ
t|T [∇θ log gθ(·, Yt)] +

T∑

t=1

φθ
t−1:t|T [∇θ logmθ(·, ·)] . (1)

The estimation of the score function therefore requires the computation of a path-space
smoothed additive functional. Similarly, the E-step of the EM algorithm requires the
computation of the conditional expectation of the complete-data log-likelihood defined,
for any (θ, θ′) ∈ Θ2, by:

Q(θ, θ′) =

T∑

t=0

φθ′

t|T [log gθ(·, Yt)] +

T∑

t=1

φθ′

t−1:t|T [logmθ(·, ·)] . (2)

The computation of (1) and (2) may be seen as a specific example of estimation of a
smoothed additive functional

φ0:T |T (ST ) =
T∑

t=1

φt−1:t|T (ht) , (3)

where for a family of bounded measurable functions {ht, t ≥ 0}, ht : X2 → R, ST is
defined on the path-space X

T+1, for any x0:T ∈ X
T+1, by

ST (x0:T ) =
T∑

t=1

ht(xt−1, xt) . (4)

Except for simple models such as linear Gaussian state-space models or when X is a
finite set, such smoothed additive functionals cannot be computed explicitly.
In this paper, we consider Sequential Monte Carlo algorithms, henceforth referred to as
particle methods, to approximate these quantities. These methods combine sequential
importance sampling and sampling importance resampling steps to produce a set of
random particles with associated importance weights to approximate the fixed interval
smoothing distributions and to estimate smoothed additive functionals defined in (3).
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Implementations of such procedures are detailed in [1, 3, 10, 12]; the convergence of
such approximations is addressed in [4, 7].

The most straightforward implementation of fixed-interval smoothing estimation is
based on the so-called genealogical tree. The complexity of this algorithm per time-
step grows only linearly with the number N of particles. However, as shown in [14],
even under favorable mixing conditions on the kernel Mθ, the variance of the estimate
grows at least quadratically with the total number of observations T . Heuristically, the
associated particle approximations becomes inaccurate when T goes to infinity since
the genealogical tree estimates become progressively impoverished from the successive
resampling steps: the number of distinct particles representing φt:t+ℓ|T for any t ≪ T
diminishes as T − t increases. Hence, whatever the number N of particles is, φt:t+ℓ|T

will eventually be approximated by a single path when T becomes large. This problem
is known in the literature as the path degeneracy issue; see [2, 17] for a discussion.

Several solutions have been proposed to solve this degeneracy problem. In this paper
we consider the forward filtering backward smoothing algorithm (FFBS) and the forward
filtering backward simulation algorithm (FFBSi) introduced in [11] and further devel-
oped in [17]. These can be seen as extrapolations to the non-linear hidden Markov model
context of the Rauch-Tung-Striebel algorithm introduced for linear gaussian state-space.
As shown in [5], when applied to additive functionals, the FFBS algorithm can be im-
plemented forward in time, but its complexity grows quadratically with the number of
particles. This algorithm has been applied in [14] to approximate the score function.
The FFBSi algorithm uses a backward simulation step, and is thus mainly adapted for
batch estimation problem: as shown in [9], it is possible to implement the FFBSi with
a complexity growing only linearly with the number of particles.

It is conjectured in [14] that the variance of the FFBS score estimator grows only
linearly with the number of observations T (instead of quadratically) under strong
mixing conditions for the kernel Mθ (which guarantee the uniform convergence of the
filtering distribution). In an unpublished paper by [5], a more general result is shown:
the FFBS estimator variance of any smoothed additive functional is upper bounded by
terms depending on T and N only through the ratio T/N . Finally, in [5], for any q > 2,
a Lq-mean error bound for smoothed additive functional is established. When applied

to strongly mixing kernels, this bound amounts to be of order T/
√
N (see [5, Eq. (3.8),

pp. 957]).
In this paper, we establish Lq-mean error and exponential deviation inequalities of

both the FFBS and FFBSi smoothed additive functionals estimators. We show that, for
any q ≥ 2, the Lq-mean error for both algorithms is upper bounded by terms depending
on T and N only through the ratio T/N under the strong mixing conditions. We also
establish an exponential deviation inequality with the same functional dependence in T
and N .

This paper is organized as follows. Section 2 introduces further definitions and
notations and details the FFBS and FFBSi algorithms. In Section 3, upper bounds for
the Lq-mean error and exponential deviation inequalities of these two algorithms are
presented. In Section 4, some Monte Carlo experiments are presented to support our
theoretical claims. The proofs are presented in Sections 5 and 6.

2 Framework

To keep the notation simple, the dependence on the parameter θ is omitted and we define
gt(x) = g(x, Yt). In its original version, the FFBS algorithm work in two passes. In the
forward pass the filtering distributions (φt)t∈{0,...,T} are approximated using weighted

samples (ωN,ℓ
t , ξN,ℓ

t )ℓ∈{1,..., N}, where T is the number of observations and N the num-
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ber of particles: all sampled particles and weights are stored. In the backward pass
of the FFBS, these importance weights are then modified (see [11, 21, 23]) while the
particle positions are kept fixed. The importance weights are updated recursively back-
ward in time to obtain an approximation of the fixed interval smoothing distributions
(φs:T |T )0≤s≤T . The particle approximation is constructed as follows.

Forward pass Let {ξN,i
0 }Ni=1 be i.i.d. random variables distributed according to the

instrumental density ρ0 (which we denote ξN,i
0 ∼ ρ0) and set the unnormalized im-

portance weights ωN,i
0

def
= dχ/dρ0(ξ

N,i
0 ) g0(ξ

N,i
0 ). The weighted sample {(ξN,i

0 , ωN,i
0 )}Ni=1

then targets the initial filter φ0 in the sense that φN
0 (h)

def
=
∑N

ℓ=1 ω
N,ℓ
0 h(ξN,ℓ

0 )/
∑N

ℓ=1 ω
N,ℓ
0

is a consistent estimator of φ0(h) for h ∈ Fb(X).

Let now {(ξN,i
s−1, ω

N,i
s−1)}Ni=1 be a weighted sample targeting φs−1, we aim at comput-

ing new particles and importance weights targeting the probability distribution φN,t
s

defined, for any bounded measurable function h on X, as

φN,t
s (h) =

φN
s−1 [Mgsh]

φN
s−1 [Mgs]

, (5)

in order to produce an updated particle sample approximating φs. Following [24], this
may be done by considering the auxiliary target distribution

φN,a
s (i, h)

def
=

ωN,i
s−1Mgsh(ξ

N,i
s−1)∑N

ℓ=1 ω
N,ℓ
s−1Mgs(ξ

N,ℓ
s−1)

, (6)

on the product space ({1, . . . , N} × X,P({1, . . . , N})⊗ B(X)). By construction, φN,t
s

is the marginal distribution of φN,a
s with respect to the particle index. The target

distribution φN,t
s is approximated by simulating pairs {(IN,i

s , ξN,i
s )}Ni=1 of indices and

particles from the instrumental distribution:

πs|s(i, h) ∝ ωN,i
s−1ϑs(ξ

N,i
s−1)Ps(ξ

N,i
s−1, h) , (7)

on the product space {1, . . . , N}×X, where {ϑs(ξ
N,i
s−1)}Ni=1 are the adjustment multiplier

weights and Ps is a Markovian proposal transition kernel. In the sequel, we assume for
simplicity that Ps(x, ·) has, for any x ∈ X, a density ps(x, ·) with respect to the reference
measure λ. For any i = 1, . . . , N we associate to the particle ξN,i

s its importance weight
defined by:

ωN,i
s

def
=

m(ξ
N,IN,i

s
s−1 , ξN,i

s )gs(ξ
N,i
s )

ϑs(ξ
N,IN,i

s

s−1 )ps(ξ
N,IN,i

s

s−1 , ξN,i
s )

. (8)

Finally, the indices {IN,i
s }Ni=1 are discarded and

{
(ξN,i

s , ωN,i
s )

}N
i=1

is taken as an approx-
imation of φs. Setting for all x ∈ X, ϑs(x) ≡ 1 and ps(x, ·) ≡ m(x, ·) leads to the
bootstrap particle filter algorithm proposed by [18].

Backward smoothing For any probability measure η on (X,B(X)), denote by Bη

the so-called backward smoothing kernel given, for all bounded measurable function h
on X and for all x ∈ X, by:

Bη(x, h)
def
=

∫
η(dx′) m(x′, x)h(x′)∫

η(dx′) m(x′, x)
, (9)

For all 0 ≤ s < T and for all bounded measurable function h on X
T−s+1, φs:T |T (h) may

be computed recursively, backward in time, according to

φs:T |T (h) =

∫
· · ·
∫

Bφs(xs+1, dxs)φs+1:T |T (dxs+1:T )h(xs:T ) , (10)
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2.1 The forward filtering backward smoothing algorithm

From the weighted samples {(ξN,i
t , ωN,i

t )}Ni=1, 1 ≤ t ≤ T drawn in the forward pass, an
approximation of the joint smoothing distribution can be obtained using

φN
s:T |T (h) =

∫
· · ·
∫

BφN
s
(xs+1, dxs)φ

N
s+1:T |T (dxs+1:T )h(xs:T ) , (11)

and starting with φN
T :T |T (h) = φN

T (h). Now, by definition, for all x ∈ X and for all
bounded measurable function h on X,

BφN
s
(x, h) =

N∑

i=1

ωN,i
s m(ξN,i

s , x)
∑N

ℓ=1 ω
N,ℓ
s m(ξN,ℓ

s , x)
h
(
ξN,i
s

)
,

and inserting this expression into (11) gives the following particle approximation of the
fixed-interval smoothing distribution φ0:T |T (h)

φN
0:T |T (h) =

N∑

i0=1

. . .

N∑

iT=1

(
T∏

u=1

ω
N,iu−1

u−1 m(ξ
N,iu−1

u−1 , ξN,iu
u )

∑N
ℓ=1 ω

N,ℓ
u−1m(ξN,ℓ

u−1, ξ
N,iu
u )

)

× ωN,iT
T

ΩN
T

h
(
ξN,i0
0 , . . . , ξN,iT

T

)
, (12)

where h is a bounded measurable function on X
T+1 and

ΩN
t

def
=

N∑

i=1

ωN,i
t . (13)

The estimator of the fixed interval smoothing distribution φN
0:T |T might seem impractical

since the cardinality of its support is NT+1. Nevertheless, the FFBS algorithm might
be used to compute the fixed interval smoothing distributions of additive functionals of
the form (4). In addition, perhaps surprisingly, as shown in [5], FFBS estimator of an
additive functional can be computed forward in time.

Let {Rt}t≥1 be the family of Markov kernels on X × B(X)⊗(t+1) defined, for any
t ≥ 1, any xt ∈ X and any measurable function h on X

t+1, by

Rt(xt, h) =

∫
Bφt−1

(xt, dxt−1) . . .Bφ0
(x1, dx0)h(x0:t) .

For any t ≥ 1, by definition of the joint smoothing distribution φ0:t|t we have, for any
measurable function h defined on X

t+1, φtRt(h) = φ0:t|t(h). For an additive functional
ST of the form (4), the function RT (·, ST ) can be computed forward in time as follows

RT (xT , ST ) =

∫
BφT−1

(xT , dxT−1) . . .Bφ0
(x1, dx0)ST (x0:T )

=

∫
BφT−1

(xT , dxT−1) . . .Bφ0
(x1, dx0)ST−1(x0:T−1)

+

∫
BφT−1

(xT , dxT−1)hT (xT−1, xT )

=

∫
BφT−1

(xT , dxT−1)RT−1(xT−1, ST−1)

+

∫
BφT−1

(xT , dxT−1)hT (xT−1, xT ) .

5



The particle approximation of this forward recursion may be computed by replacing
φT−1 in the last equation by its particle approximation φN

T−1. For any 1 ≤ i ≤ N ,

RN
T (ξN,i

T , ST ) =
N∑

j=1

ωN,j
T−1m(ξN,j

T−1, ξ
N,i
T )

∑N
ℓ=1 ω

N,ℓ
T−1m(ξN,ℓ

T−1, ξ
N,i
T )

×
[
RN

T−1(ξ
N,j
T−1, ST−1) + hT (ξ

N,j
T−1, ξ

N,i
T )

]
,

and then, the forward-backward recursion defined by (12) can be computed in forward
direction only.

Example 1: The Fisher score Going back to equation (1), the computation of the
Fisher score relies on an additive function of the form (4) where for any 1 ≤ t ≤ T ,
ht(xt−1, xt) = ∇θ logmθ(xt−1, xt)+∇θ log gθ(xt, Yt), leading to Algorithm 1. This algo-

Algorithm 1 Computation of the Fisher score

Require: Parameter θ and observations Y0:T

Ensure: Estimate of the Fisher score ∇θℓ
N (Y0:T , θ)

INITIALIZATION

Simulate (ξN,i
0 , ωN,i

0 )Ni=1 under θ
For all 1 ≤ i ≤ N , compute

RN
0 (ξN,i

0 , S0) = ∇θ log gθ(ξ
N,i
0 , Y0)

FORWARD RECURSION

for t = 1 to T do

Simulate (ξN,i
t , ωN,i

t )Ni=1 under θ
For all 1 ≤ i ≤ N , compute

RN
t (ξN,i

t , St) =

N∑

j=1

ωN,j
t−1mθ(ξ

N,j
t−1, ξ

N,i
T )

∑N
ℓ=1 ω

N,ℓ
t−1mθ(ξ

N,ℓ
t−1, ξ

N,i
t )

×
[
RN

t−1(ξ
N,j
t−1, St−1) +∇θ logmθ(ξ

N,j
t−1, ξ

N,i
t ) +∇θ log gθ(ξ

N,i
t , Yt)

]

end for

Set

∇θℓ
N (Y0:T , θ) =

N∑

i=1

ωN,i
T

ΩN
T

RN
T (ξN,i

T , ST )

rithm is exactly the one presented in [14] as an alternative to the use of the genealogical
tree method. Therefore, the results outlined in Section 3 hold for this method and
confirm the conjecture mentioned in [14].
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Example 2: The EM algorithm In the same way equation (2) can be under-
stood as an instance of the same problem where for any 1 ≤ t ≤ T , ht(xt−1, xt) =
logmθ(xt−1, xt) + log gθ(xt, Yt), leading to Algorithm 2.

Algorithm 2 Computation of the intermediate quantity of the EM algorithm

Require: Parameters θ and θ′ and observations Y0:T

Ensure: Estimate of the intermediate quantity QN(θ, θ′)
INITIALIZATION

Simulate (ξN,i
0 , ωN,i

0 )Ni=1 under θ′

For all 1 ≤ i ≤ N , compute

RN
0 (ξN,i

0 , S0) = log gθ(ξ
N,i
0 , Y0)

FORWARD RECURSION

for t = 1 to T do

Simulate (ξN,i
t , ωN,i

t )Ni=1 under θ′

For all 1 ≤ i ≤ N , compute

RN
t (ξN,i

t , St) =

N∑

j=1

ωN,j
t−1mθ′(ξN,j

t−1, ξ
N,i
T )

∑N
ℓ=1 ω

N,ℓ
t−1mθ′(ξN,ℓ

t−1, ξ
N,i
t )

×
[
RN

t−1(ξ
N,j
t−1, St−1) + logmθ(ξ

N,j
t−1, ξ

N,i
t ) + log gθ(ξ

N,i
t , Yt)

]

end for

Set

QN (θ, θ′) =
N∑

i=1

ωN,i
T

ΩN
T

RN
T (ξN,i

T , ST )

2.2 The forward filtering backward simulation algorithm

The FFBS algorithm both in the forward and backward interpretations outlined in
Subsection 2.1 gives an approximation of smoothed additive functionals with a compu-
tational cost growing quadratically with the number N of particles. In many instances
this complexity is prohibitive and the FFBS algorithm cannot be used. However, the es-
timator (12) may be understood alternatively by noting that the normalized smoothing
weights define a probability distribution on the set {1, . . . , N}T+1 of trajectories asso-
ciated with an inhomogeneous Markov chain. This interpretation leads to an algorithm
whose complexity grows only linearly with the number of particles but the backward
pass cannot be bypassed. Indeed, consider, for t ∈ {0, . . . , T −1}, the Markov transition
matrix {ΛN

t (i, j)}Ni,j=1 over the state-space {1, . . . , N} given by

ΛN
t (i, j) =

ωN,j
t m(ξN,j

t , ξN,i
t+1)∑N

ℓ=1 ω
N,ℓ
t m(ξN,ℓ

t , ξN,i
t+1)

, (i, j) ∈ {1, . . . , N}2 . (14)

For 1 ≤ t ≤ T , we define

FN
t

def
= σ

{
Y0:T , (ξ

N,i
s , ωN,i

s ); 0 ≤ s ≤ t, 1 ≤ i ≤ N
}

. (15)

The transition probabilities defined in (14) induce an inhomogeneous Markov chain
{Ju}Tu=0 evolving backward in time as follows. At time T , the random index JT is drawn
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from the set {1, . . . , N} such that JT takes the value i with a probability proportional

to ωN,i
T . For any time 0 ≤ t ≤ T − 1 the index Jt is sampled in the set {1, . . . , N}

according to ΛN
t (Jt+1, ·). The joint distribution of J0:T is therefore given by, for j0:T ∈

{1, . . . , N}T+1,

P
[
J0:T = j0:T

∣∣FN
T

]
=

ωN,jT
T

ΩN
T

ΛN
T−1(jT , jT−1) . . .Λ

N
0 (j1, j0) . (16)

Thus, and this is a key observation, the FFBS estimator (12) of the joint smoothing
distribution may be written as the conditional expectation

φN
0:T |T (h) = E

[
h
(
ξN,J0

0 , . . . , ξN,JT

T

) ∣∣∣FN
T

]
, (17)

where h is a bounded measurable function on X
T+1. We may therefore construct an

unbiased estimator of the FFBS estimator given by

φ̃N
0:T |T (h) = N−1

N∑

ℓ=1

h
(
ξ
N,Jℓ

0

0 , . . . , ξ
N,Jℓ

T

T

)
, (18)

where {Jℓ
0:T}Nℓ=1 are N paths drawn independently given FN

T according to (16) and
where h is a bounded measurable function on X

T+1. This practical estimator was intro-
duced in [17] (Algorithm 1, p. 158). The computational complexity for sampling a single
path of J0:T is linear in the number of particles; therefore, the overall computational
effort spent when estimating φ̃N

0:T |T using the FFBSi sampler grows with N2. Following

[9] this complexity can be reduced so that it grows only linearly with N using a specific
form of acceptance-rejection method.

3 Main results

In this Section, the Lq-mean error bounds and exponential deviation inequalities of the
FFBS and FFBSi algorithms are established for additive functionals under the following
assumptions.

(A1) (i) For all t ≥ 0 and all x ∈ X, gt(x) > 0.

(ii) sup
t≥0

|gt|∞ < ∞, sup
t≥1

|ϑt|∞ < ∞ and sup
t≥0

|ωt|∞ < ∞ where

ω0(x)
def
=

dχ

dρ0
(x)g0(x), ωt(x, x

′)
def
=

m(x, x′)gt(x
′)

ϑt(x)pt(x, x′)
, ∀t ≥ 1 .

(A2) (i) |m|∞ < ∞ and sup
t≥0

|pt|∞ < ∞.

(A3) (i) There exists (σ−, σ+) ∈ (0,∞)2 such that σ− < σ+ and for any (x, x′) ∈ X
2,

σ− ≤ m(x, x′) ≤ σ+.

(ii) There exists c− ∈ R
∗
+ such that

∫
χ(dx)g0(x) ≥ c− and for any t ∈ N

∗,
infx∈X

∫
M(x, dx′)gt(x

′) ≥ c−.

The last assumption, referred to as the strong mixing condition, is crucial to de-
rive time-uniform exponential deviation inequalities and a time-uniform bound of the
variance of the marginal smoothing distribution (see [6] and [9]).

For all function h from a space E to R, osc(h) is defined by:

osc(h)
def
= sup

(z,z′)∈E2

|h(z)− h(z′)| .

8



For sake of simplicity, our results are established for additive functionals of the form

ST (x0:T ) =
T∑

t=0

ht(xt) , (19)

where {ht; 0 ≤ t ≤ T } is a family of bounded measurable functions on X. Note that

ST being defined in (19), osc(ST ) ≤
∑T

t=0 osc(ht). In the sequel C denotes a constant
whose value may change upon each appearance.

Theorem 1. Assume A1–3. Then, for all q ≥ 2, there exists a constant C (depending
only on q, σ−, σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞ and for all

additive functional ST of the form (19), the Lq-mean error of the FFBS algorithms
satisfies:

∥∥∥φN
0:T |T (ST )− φ0:T |T (ST )

∥∥∥
q
≤ C max

0≤t≤T
{osc(ht)}

(√
T + 1

N
+

T + 1

N

)
.

The result provided in Theorem 1 can be extended to the FFBSi algorithm:

Corollary 1. Under the assumptions of Theorem 1, the Lq-mean error of the FFBSi
algorithm satisfies:

∥∥∥φ0:T |T (ST )− φ̃N
0:T |T (ST )

∥∥∥
q
≤ C max

0≤t≤T
{osc(ht)}

(√
T + 1

N
+

T + 1

N

)
,

where ST is defined in (19).

The proofs of these results are postponed to Section 5. We provide below a brief
outline of the main steps. Following [9], the proofs rely on a decomposition of the
smoothing error. For all 0 ≤ t ≤ T and all bounded and measurable function h on
X

T+1 define the kernel Lt,T : Xt+1 × B(X)⊗T+1 → [0, 1] by

Lt,Th(x0:t)
def
=

∫
· · ·
∫ T∏

u=t+1

M(xu−1, dxu)g(xu, yu)h(x0:T ) . (20)

The joint smoothing distribution may then be expressed, for all bounded and measurable
function h on X

T+1, by

φ0:T |T (h) =
φ0:t|t [Lt,Th]

φ0:t|t [Lt,T1]
,

and this suggests to decompose the smoothing error as follows

∆N
T [h]

def
= φN

0:T |T (h)− φ0:T |T (h) (21)

=

T∑

t=0

φN
0:t|t [Lt,Th]

φN
0:t|t [Lt,T1]

−
φN
0:t−1|t−1 [Lt−1,Th]

φN
0:t−1|t−1 [Lt−1,T1]

,

where we used the convention

φN
0:−1|−1 [L−1,Th]

φN
0:−1|−1 [L−1,T1]

=
φ0 [L0,Th]

φ0 [L0,T1]
= φ0:T |T (h) .

9



Furthermore, for all 0 ≤ t ≤ T ,

φN
0:t|t [Lt,Th] =

∫
· · ·
∫

φN
0:t|t(dx0:t)Lt,Th(x0:t)

=

∫
· · ·
∫

φN
t (dxt)BφN

t−1
(xt, dxt−1) · · ·BφN

0
(x1, dx0)Lt,Th(x0:t)

=

∫
φN
t (dxt)LN

t,Th(xt) ,

where LN
t,T and Lt,T are two kernels on X× B(X)⊗(T+1) defined for all xt ∈ X by

Lt,Th(xt)
def
=

∫
· · ·
∫

Bφt−1
(xt, dxt−1) · · ·Bφ0

(x1, dx0)Lt,Th(x0:t) (22)

LN
t,Th(xt)

def
=

∫
· · ·
∫

BφN
t−1

(xt, dxt−1) · · ·BφN
0
(x1, dx0)Lt,Th(x0:t) . (23)

For all 1 ≤ t ≤ T we can write

φN
0:t|t[Lt,Th]

φN
0:t|t[Lt,T1]

−
φN
0:t−1|t−1[Lt−1,Th]

φN
0:t−1|t−1[Lt−1,T1]

=
φN
t [LN

t,Th]

φN
t [LN

t,T1]
−

φN
t−1[LN

t−1,Th]

φN
t−1[LN

t−1,T1]

=
1

φN
t [LN

t,T1]

(
φN
t [LN

t,Th]−
φN
t−1[LN

t−1,Th]

φN
t−1[LN

t−1,T1]
φN
t [LN

t,T1]

)
,

and then,

∆N
T [h] =

T∑

t=0

N−1
∑N

ℓ=1 ω
N,ℓ
t GN

t,Th(ξ
N,ℓ
t )

N−1
∑N

ℓ=1 ω
N,ℓ
t Lt,T1(ξ

N,ℓ
t )

, (24)

with GN
t,T is a kernel on X × B(X)⊗(T+1) defined, for all xt ∈ X and all bounded and

measurable function h on X
T+1, by

GN
t,Th(xt)

def
= LN

t,Th(xt)−
φN
t−1[LN

t−1,Th]

φN
t−1[LN

t−1,T1]
LN
t,T1(xt) .

Two families of random variables (CN
t,T (f))0≤t≤T and (DN

t,T (f))0≤t≤T are now in-
troduced to transform (24) into a suitable decomposition to compute an upper bound

for the Lq-mean error. The idea is to replace N−1
∑N

ℓ=1 ω
N,ℓ
t Lt,T1(ξ

N,ℓ
t ) in (24) by

its conditional expectation given FN
t−1 to get a martingale difference (provided that

ωN,1
t GN

t,T f(ξ
N,1
t ) is centered given FN

t−1). This conditional expectation is computed
using the following intermediate result. For all measurable function h on X and all
0 ≤ t ≤ T ,

E

[
ωN,1
t h(ξN,1

t )
∣∣∣FN

t−1

]
=

φN
t−1 (Mgth)

φN
t−1(ϑt)

. (25)
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Indeed,

E

[
ωN,1
t h(ξN,1

t )
∣∣∣FN

t−1

]

= E


 m(ξ

N,IN,1
t

t−1 , ξN,1
t )gt(ξ

N,1
t )

ϑt(ξ
N,IN,1

t
t−1 )pt(ξ

N,IN,1
t

t−1 , ξN,1
t )

h(ξN,1
t )

∣∣∣∣∣∣
FN

t−1




=

(
N∑

i=1

ωN,i
t−1ϑt(ξ

N,i
t−1)

)−1 N∑

i=1

∫
ωN,i
t−1ϑt(ξ

N,i
t−1)pt(ξ

N,i
t−1, x)

M(ξN,i
t−1, dx)gt(x)

ϑt(ξ
N,i
t−1)pt(ξ

N,i
t−1, x)

h(x)

=

(
N∑

i=1

ωN,i
t−1ϑt(ξ

N,i
t−1)

)−1 N∑

i=1

∫
ωN,i
t−1M(ξN,i

t−1, dx)gt(x)h(x)

=
φN
t−1 (Mgth)

φN
t−1(ϑt)

.

This result, applied with the function h = Lt,T1, yields

E

[
ωN,1
t Lt,T1(ξ

N,1
t )

∣∣∣FN
t−1

]
=

φN
t−1 (MgtLt,T1)

φN
t−1(ϑt)

=
φN
t−1 (Lt−1,T1)

φN
t−1(ϑt)

.

For any 0 ≤ t ≤ T , define for all bounded and measurable function h on X
T+1,

DN
t,T (h)

def
= E

[
ωN,1
t

Lt,T1(ξ
N,1
t )

|Lt,T1|∞

∣∣∣∣∣F
N
t−1

]−1

N−1
N∑

ℓ=1

ωN,ℓ
t

GN
t,Th(ξ

N,ℓ
t )

|Lt,T1|∞
(26)

=
φN
t−1(ϑt)

φN
t−1

(
Lt−1,T 1

|Lt,T 1|∞

)N−1
N∑

ℓ=1

ωN,ℓ
t

GN
t,Th(ξ

N,ℓ
t )

|Lt,T1|∞
,

CN
t,T (h)

def
=


 1

N−1
∑N

i=1 ω
N,i
t

Lt,T 1(ξN,i
t )

|Lt,T 1|∞

− φN
t−1(ϑt)

φN
t−1

(
Lt−1,T 1

|Lt,T 1|∞

)




×N−1
N∑

ℓ=1

ωN,ℓ
t

GN
t,Th(ξ

N,ℓ
t )

|Lt,T1|∞
. (27)

And then (24) is rewritten :

∆N
T [h] =

T∑

t=0

DN
t,T (h) +

T∑

t=0

CN
t,T (h) . (28)

For any q ≥ 2, the derivation of the upper bound relies on the triangle inequality:

∥∥∆N
T [ST ]

∥∥
q
≤
∥∥∥∥∥

T∑

t=0

DN
t,T (ST )

∥∥∥∥∥
q

+

T∑

t=0

∥∥CN
t,T (ST )

∥∥
q
, (29)

where ST is defined in (19). The proof is completed by using Proposition 1 and Propo-
sition 2. According to (28), the smoothing error can be decomposed into a sum of two
terms which are considered separately. The first one is a martingale whose Lq-mean

error is upper-bounded by
√
(T + 1) /N as shown in Proposition 1. The second one is

a sum of products, Lq-norm of which being bounded by 1/N in Proposition 2.
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The end of this section is devoted to the exponential deviation inequality for the
error ∆N

T [ST ]. We use the decomposition of ∆N
T [ST ] obtained in (28) leading to a

similar dependence on the ratio (T + 1)/N . The martingale term DN
t,T (ST ) is dealt

with using the Azuma-Hoeffding inequality while the term CN
t,T (ST ) needs a specific

Hoeffding-type inequality for ratio of random variables.

Theorem 2. Assume A1–3. Then, there exists a constant C (depending only on σ−,
σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞, all additive functional ST of

the form (19), all N ≥ 1 and for all ε > 0:

P

{∣∣∣φ0:T |T (ST )− φN
0:T |T (ST )

∣∣∣ > ε
}
≤ 2 exp


− CNε2

max
0≤t≤T

{osc(ht)}2 (T + 1)




+ 8 exp


− CNε

max
0≤t≤T

{osc(ht)} (T + 1)


 .

The extension of this theorem to the FFBSi algorithm is given in the following
corollary.

Corollary 2. Under the assumptions of Theorem 2, there exists a constant C (depend-
ing only on σ−, σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞)such that for all T < ∞, all additive

functional ST of the form (19), all N ≥ 1 and for all ε > 0:

P

{∣∣∣φ0:T |T (ST )− φ̃N
0:T |T (ST )

∣∣∣ > ε
}
≤ 4 exp


− CNε2

max
0≤t≤T

{osc(ht)}2 (T + 1)




+ 8 exp


− CNε

max
0≤t≤T

{osc(ht)} (T + 1)


 .

4 Monte-Carlo Experiments

In this section, the performance of the FFBSi algorithm is evaluated through simulations
and compared to the so-called genealogical tree method. The main application of the
estimation of smoothed additive functionals is the parameter estimation in non-linear
and non-gaussian state-space model; see [13, 14] for an overview of such methods.

4.1 Linear gaussian model

Let us consider the following model:

{
Xt+1 = φXt + σuUt ,

Yt = Xt + σvVt ,

where X0 ∼ N
(
0,

σ2
u

1−φ2

)
, (Ut)t≥0 and (Vt)t≥0 are two sequences of independent and

identically distributed standard gaussian random variables (which are independent from
X0). The parameters (φ, σu, σv) are assumed to be known. In Figure 1 the FFBSi
algorithm is compared to the path-space method to compute the smoothed value of
the empirical mean (T + 1)−1

∑T
t=0 E [Xt|Y0:T ]. Data were generated using the linear

12



gaussian model with (φ = 0.9, σu = 0.6, σv = 1). The true value of this quantity was
computed using the Kalman smoother. We display in Figure 1 the box and whisker
plots of the estimations obtained with 100 independent Monte Carlo experiments. The
FFBSi algorithm clearly outperforms the other method for comparable computational
costs. In Table 1, the mean CPU times of each iteration corresponding to the two
methods are given as a function of the number of particles (for T = 500 and T = 1000).
Note that, as shown in Figure 7, the computational cost of the FFBSi algorithm grows
linearly with the number of particles. In Figure 2 the score is computed under the same
model with (φ = 0.9, σu = 0.6, σv = 1). Using the Fisher identity, the score (gradient
of the log-likelihood) can be expressed as the conditional expectation of the gradient of
the logarithm of the complete data likelihood given all the observations up to time T :

∂

∂φ
log p(Y0:T ) = − φ

1− φ2
+

1

σ2
u

E

[
φX2

0 +

T∑

t=1

Xt−1(Xt − φXt−1)

∣∣∣∣∣Y0:T

]

∂

∂σ2
u

log p(Y0:T ) = −T + 1

2σ2
u

+
1

2σ4
u

E

[
(1− φ2)X2

0 +

T∑

t=1

(Xt − φXt−1)
2

∣∣∣∣∣Y0:T

]

∂

∂σ2
v

log p(Y0:T ) = −T + 1

2σ2
v

+
1

2σ4
v

E

[
T∑

t=0

(Yt −Xt)
2

∣∣∣∣∣Y0:T

]
.

The box and whisker plots obtained with 100 independent Monte Carlo experiments
give the same results as in the previous case.

−0.15

−0.1

−0.05

0

Genealogical tree

N = 500

Genealogical tree

N = 5000

Genealogical tree

N = 10000

F F BSi

N = 500

True value = −0.0469 

0.35

0.4

0.45

Genealogical tree

N = 1000

Genealogical tree

N = 10000

Genealogical tree

N = 20000

F F BSi

N = 1000

True value = 0.3983

Figure 1: Computation of smoothed additive functionals in a linear gaussian model.
The variance of the estimation given by the FFBSi algorithm is the smallest one in both
cases. The first figure corresponds to the case T = 500 and the second to T = 1000.
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T = 500 FFBSi Path-space method

N 500 500 5000 10000
CPU time (s) 4.87 0.24 2.47 4.65

T = 1000 FFBSi Path-space method

N 1000 1000 10000 20000
CPU time (s) 16.5 0.9 8.5 17.2

Table 1: Average CPU time to compute the smoothed value of the empirical mean in
the LGM

−110

−100

−90

−80

Genealogical tree

N = 1000

Genealogical tree

N = 10000

Genealogical tree

N = 15000

F F BSi

N = 1000

−150

−100

−50

Genealogical tree

N = 1000

Genealogical tree

N = 10000

Genealogical tree

N = 15000

F F BSi

N = 1000

−500

0

500

1000

Genealogical tree

N = 1000

Genealogical tree

N = 10000

Genealogical tree

N = 15000

F F BSi

N = 1000

Figure 2: Computation of the score using the Fisher identity, T = 1000. These plots
correspond to the partial derivatives with respect to φ, σu and σv.

4.2 Stochastic Volatility Model

Stochastic volatility models (SVM) have been introduced to provide better ways of
modeling financial time series data than ARCH/GARCH models ([20]). Despite its
apparent simplicity, parameter inference for this model proved to be challenging (see
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[25] and references therein) and we focus on estimating the parameter θ
def
= (φ, σ, β) ∈ Θ

characterizing the following SVM:

{
Xt+1 = φXt + σUt+1 ,

Yt = βe
Xt
2 Vt ,

where X0 ∼ N
(
0, σ2

1−φ2

)
, Ut and Vt are independent standard gaussian random vari-

ables, and Θ
def
= (−1, 1)×(0,∞)×(0,∞). The unknown parameter θ∗ can be recursively

estimated according to the EM algorithm by a sequence (θ̂n)n≥0 defined by:

θ̂n+1 = argmaxθ∈ΘEθ̂n
[log pθ (X0:T , Y0:T )|Y0:T ] .

In this particular case, the sequence (θ̂n)n≥0 can be computed by using the following
updating formulas:





φ̂n+1 =

∑T
t=1 Eθ̂n

[Xt−1Xt|Y0:T ]
∑T−1

t=0 Eθ̂n
[X2

t |Y0:T ]
,

σ̂2
n+1 =

1

T

(∑T
t=1 Eθ̂n

[
X2

t

∣∣Y0:T

]
+ φ̂2

n+1

∑T
t=1 Eθ̂n

[
X2

t−1

∣∣Y0:T

]

−2φ̂n+1

∑T
t=1 Eθ̂n

[Xt−1Xt|Y0:T ]
)

,

β̂2
n+1 =

1

T + 1

∑T
t=0 Y

2
t Eθ̂n

[exp (−Xt)|Y0:T ] .

(30)

This algorithm has been applied to foreign exchange data (EUR/USD) over the last five
years. EUR/USD daily spot and returns (detrended according to [22]) are plotted in
figure 3.

0 200 400 600 800 1000 1200
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1.2

1.4

1.6

1.8

 

 

0 200 400 600 800 1000 1200
−5

0

5

 

 

Figure 3: Daily spot (left) and daily detrended returns (right). EUR/USD data for the
period 16/11/2005-16/11/2010

The path-space method and the FFBSi algorithm are used to approximate the con-
ditional expectations of (30) with different numbers of particles N . The convergence of
this EM algorithm is shown in Figures 4, 5 and 6. The number of particles has been cho-
sen to be equal to the number of observations for the FFBSi algorithm, i.e. N = 1300.
In order to make a fair comparison, the number of particles for the path-space method is
such that the CPU time is almost the same (see Table 2), i.e. N = 20000. For the same
CPU time, the FFBSi algorithm leads to better results in the sense that the variance
of the estimator is lower than the one obtained with the path-space method. This can
be seen through the smoother convergence of the EM algorithm when using the FFBSi
rather than the path-space method.
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FFBSi Path-space method

N 1300 1300 20000
CPU time (s) 27 1.6 23

Table 2: Average CPU time for one EM iteration in the SVM
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Figure 4: Estimation of φ with T = 1270 in the SVM. EM iterations from 0 to 250 and
zoom on EM iterations from 80 to 250.
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Figure 5: Estimation of σ with T = 1270 in the SVM. EM iterations from 0 to 250 and
zoom on EM iterations from 100 to 250.
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Figure 6: Estimation of β with T = 1270 in the SVM.
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Finally, Figure 7 outlines the linear complexity in the number of particles. It dis-
plays the empirical average CPU time needed to perform the FFBSi algorithm over 500
simulations for each number of particles in a stochastic volatility model with time hori-
zon T = 1. Compared to the quadratic complexity of the classic FFBS algorithm, this
will allow us to compute conditional expectations of additive functionals of the hidden
states using a large number of particles.

Figure 7: Computational cost

5 Proof of Theorem 1 and Corollary 1

We preface the proof of Proposition 1 by the following Lemma:

Lemma 1. Under assumptions A1–3, we have, for any t ≥ 0:

(i) The random variables

(
ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

)

1≤ℓ≤N

are, for all N ∈ N:

(a) conditionally independent and identically distributed given FN
t−1 ,

(b) centered conditionally to FN
t−1 ,

(c) bounded: ∣∣∣∣∣
GN

t,TST (ξ
N,ℓ
t )

|Lt,T1|∞

∣∣∣∣∣ ≤
2σ+ − σ−

σ−
max
0≤t≤T

{osc(ht)} . (31)

(ii) For all x ∈ X,
Lt,T1(x)

|Lt,T1|∞
≥ σ−

σ+
and

Lt−1,T1(x)

|Lt,T1|∞
≥ c−

σ−

σ+
.

Proof. Proof of (i) (a) and (b) are directly given by [9, Lemma 3]. Define Πs,T the

operator from Fb(X) to Fb(X
T+1) by

∀(x0, . . . , xT ) ∈ X
T+1, Πs,Th(x0:T )

def
= h(xs) .

Using this notation we may write ST =
∑T

s=0 Πs,Ths and GN
t,TST =

∑T
s=0 Gt,TΠs,Ths.

Furthermore, [9, Lemma 10] shows that

|GN
t,TΠs,Ths|∞ ≤ ρ|t−s|osc(hs)|Lt,T1|∞ , ∀(s, t) ∈ {0, . . . , T }2 ,
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where ρ = 1− σ−/σ+. Consequently,

∣∣GN
t,TST

∣∣
∞

≤
T∑

s=0

|Gt,TΠs,Ths|∞ ≤
T∑

s=0

ρ|t−s|osc(hs)|Lt,T1|∞ ,

which implies that, for all T ∈ N and all N ∈ N,

∣∣∣∣∣
GN

t,TST

|Lt,T1|∞

∣∣∣∣∣
∞

≤ 1 + ρ

1− ρ
max
0≤t≤T

{osc(ht)} ,

which shows (c).
Proof of (ii) From the definition (22), for all x ∈ X and all t ∈ {1, . . . , T },

Lt,T1(x) =

∫
m(x, xt+1)gt+1(xt+1)

T∏

u=t+2

M(xu−1, dxu)gu(xu)λ(dxt+1) ,

hence, by assumption A3,

|Lt,T1|∞ ≤ σ+

∫
gt+1(xt+1)Lt+1,T1(xt+1)λ(dxt+1)

Lt,T1(x) ≥ σ−

∫
gt+1(xt+1)Lt+1,T1(xt+1)λ(dxt+1) ,

which concludes the proof of the first statement. By construction, for any x ∈ X and
any t ∈ {1, . . . , T },

Lt−1,T1(x) =

∫
M(x, dx′)gt(x

′)Lt,T1(x
′) , (32)

and then, by assumption A3,

Lt−1,T1(x)

|Lt,T1|∞
=

∫
M(x, dx′)gt(x

′)
Lt,T1(x

′)

|Lt,T1|∞
≥ c−

σ−

σ+
.

Proposition 1. Assume A1–3. Then, for all q ≥ 2, there exists a constant C (depend-
ing only on q, σ−, σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞,

∥∥∥∥∥
T∑

t=0

DN
t,T (ST )

∥∥∥∥∥
q

≤ C max
0≤t≤T

{osc(ht)}
√

T + 1

N
, (33)

where DN
t,T (ST ) is defined in (26).

Proof. Since (DN
t,T (ST ))t≤T is a sequence of FN

t -measurable random variables such that,

for all 0 ≤ t ≤ T , E[DN
t,T (ST )|FN

t−1] = 0, (DN
t,T (ST ))t≤T is a forward martingale dif-

ference. Hence, since q ≥ 2, Burkholder’s inequality (see [19, Theorem 2.10, page 23])
states the existence of a constant C such that:

E

[∣∣∣∣∣
T∑

t=0

DN
t,T (ST )

∣∣∣∣∣

q]
≤ CE



∣∣∣∣∣

T∑

t=0

DN
t,T (ST )

2

∣∣∣∣∣

q
2


 .
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Moreover, by application of the last statement of Lemma 1,

φN
t−1(ϑt)

φN
t−1

(
Lt−1,T 1

|Lt,T 1|∞

) ≤ σ+ supt≥0 |ϑt|∞
σ−c−

,

and thus,

E



∣∣∣∣∣

T∑

t=0

DN
t,T (ST )

2

∣∣∣∣∣

q
2


 ≤

(
σ+ supt≥0 |ϑt|∞

σ−c−

)q

× E




∣∣∣∣∣∣

T∑

t=0

(
N−1

N∑

ℓ=1

ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

)2
∣∣∣∣∣∣

q
2


 ,

which implies, using the Jensen inequality,

E

[∣∣∣∣∣
T∑

t=0

DN
t,T (ST )

∣∣∣∣∣

q]
≤ C (T + 1)

q
2
−1

T∑

t=0

E

[∣∣∣∣∣N
−1

N∑

ℓ=1

ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

∣∣∣∣∣

q]
.

Since for any t ≥ 0 the random variables

(
ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

)

1≤ℓ≤N

are conditionally

independent and centered conditionally to FN
t−1, using again the Burkholder and the

Jensen inequalities we obtain

E

[∣∣∣∣∣
N∑

ℓ=1

ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

∣∣∣∣∣

q∣∣∣∣∣F
N
t−1

]
≤ CN q/2−1

N∑

ℓ=1

E

[∣∣∣∣∣ω
N,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞

∣∣∣∣∣

q∣∣∣∣∣F
N
t−1

]

≤ C max
0≤t≤T

{osc(ht)}q N q/2 ,

where the last inequality comes from the first statement of Lemma 1.

Proposition 2. Assume A1–3. Then, for all q ≥ 2, there exists a constant C (de-
pending only on q, σ−, σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞ and

0 ≤ t ≤ T : ∥∥CN
t,T (ST )

∥∥
q
≤ C

N
max
0≤t≤T

{osc(ht)} , (34)

where CN
t,T (ST ) is defined in (27).

Proof. According to (27), CN
t,T (ST ) can be written

CN
t,T (ST ) = UN

t,TV
N
t,TW

N
t,T , (35)

where

UN
t,T =

N−1
∑N

ℓ=1 ω
N,ℓ
t

GN
t,TST (ξN,ℓ

t )

|Lt,T 1|∞

N−1ΩN
t

V N
t,T = N−1

N∑

ℓ=1

(
E

[
ωN,1
t

Lt,T1(ξ
N,1
t )

|Lt,T1|∞

∣∣∣∣∣Ft−1

]
− ωN,ℓ

t

Lt,T1(ξ
N,ℓ
t )

|Lt,T1|∞

)

WN
t,T =

N−1ΩN
t

E

[
ωN,1
t

Lt,T 1(ξN,1
t )

|Lt,T 1|∞

∣∣∣Ft−1

]
N−1

∑N
ℓ=1 ω

N,ℓ
t

Lt,T 1(ξN,ℓ
t )

|Lt,T 1|∞

.
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Using the last statement of Lemma 1, we get the following bound:

E

[
ωN,1
t

Lt,T1(ξ
N,1
t )

|Lt,T1|∞

∣∣∣∣∣Ft−1

]
=

φN
t−1 (Lt−1,T1/|Lt,T1|∞)

φN
t−1(ϑt)

≥ c−σ−

|ϑt|∞ σ+

Lt,T1(ξ
N,ℓ
t )

|Lt,T1|∞
≥ σ−

σ+
,

which implies
∣∣WN

t,T

∣∣ ≤
(
σ+

σ−

)2 |ϑt|∞
c−

. (36)

Then, the Cauchy-Schwarz inequality leads to

∥∥CN
t,T (ST )

∥∥
q
≤ C

∥∥UN
t,T

∥∥
2q

∥∥V N
t,T

∥∥
2q

. (37)

The random variables
(
E

[
ωN,1
t

Lt,T 1(ξN,1
t )

|Lt,T 1|∞

∣∣∣Ft−1

]
− ωN,ℓ

t
Lt,T 1(ξN,ℓ

t )
|Lt,T 1|∞

)
ℓ∈{1,...,N}

being con-

ditionally independent, centered and bounded given FN
t−1, following the same steps as

in the proof of Proposition 1, there exists a constant C (depending only on q, σ−, σ+,
c− and sup

t≥0
|ωt|∞) such that

∥∥V N
t,T

∥∥
2q

≤ C√
N

.

In order to handle the first norm of the RHS of (37), we use Lemma 3 in the appendix

with ẐN = N−1
∑N

ℓ=1 ω
N,ℓ
t

GN
t,TST (ξN,ℓ

t )

|Lt,T 1|∞
, ŴN = N−1

∑N
ℓ=1 ω

N,ℓ
t ,WN = E

[
N−1

∑N
ℓ=1 ω

N,ℓ
t

∣∣∣FN
t−1

]
,

Xℓ,N = ωN,ℓ
t and Yℓ,N =

GN
t,TST (ξN,ℓ

t )

|Lt,T 1|∞
. By Lemma 1, E

[
ẐN

∣∣∣FN
t−1

]
= 0, |ẐN | ≤

|ωt|∞
2σ+ − σ−

σ−
max
0≤t≤T

{osc(ht)} def
= K ′ and max

1≤ℓ≤N
|Yℓ,N | ≤ 2σ+ − σ−

σ−
max
0≤t≤T

{osc(ht)} def
=

K. Using the same arguments than in the proof of Propostion 1, we have,

E

[∣∣∣ẐN

∣∣∣
2q
∣∣∣∣FN

t−1

]1/2q
≤ C√

N
max
0≤t≤T

{osc(ht)} def
= vN

E

[∣∣∣ŴN −WN

∣∣∣
4q
∣∣∣∣FN

t−1

]1/4q
≤ C√

N

def
= v′N .

This Lemma gives

WNE

[
|Ut,T |2q

∣∣∣FN
t−1

]1/2q
≤ vN +

(
1

WN
K ′ +K

)
v′N .

According to assumptions A1 and A3 and to (25),

WN = E

[
N−1

N∑

ℓ=1

ωN,ℓ
t

∣∣∣∣∣F
N
t−1

]
= E

[
ωN,1
t

∣∣∣FN
t−1

]
=

φN
t−1 (Mgt)

φN
t−1(ϑt)

≥ c−
sup
t≥0

|ϑt|∞
,

and then ∥∥UN
t,T

∥∥
2q

≤ C√
N

max
0≤t≤T

{osc(ht)} . (38)
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We preface the proof of Corollary 1 by the following Lemma. We first define the
backward filtration

(
GN
t,T

)
t∈{0,...,T+1}

by

{
GN
T+1,T = FN

T ,

GN
t,T = FN

T ∨ σ
{
Jℓ
u, 1 ≤ ℓ ≤ N, t ≤ u ≤ T

}
, ∀ 0 ≤ t ≤ T .

(39)

Lemma 2. Under assumptions A1–3, we have for all bounded measurable function h
on X, all ℓ ∈ {1, . . . , N}, and all u, t, T such that 0 ≤ t ≤ u ≤ T ,

∣∣∣E
[
h
(
ξ
N,Jℓ

t
t

)∣∣∣GN
u,T

]
− E

[
h
(
ξ
N,Jℓ

t
t

)∣∣∣GN
u+1,T

]∣∣∣ ≤ ρu−tosc(h) ,

where ρ = 1− σ−/σ+.

Proof. According to Section 2.2, for all ℓ ∈ {1, . . . , N}, {JN,ℓ
u }Tu=0 is an inhomogeneous

Markov chain evolving backward in time with backward kernel {ΛN
u }T−1

u=0 . For any
0 ≤ t ≤ u ≤ T , we have

E

[
h
(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u,T

]
− E

[
h
(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u+1,T

]

=
∑

jt:u

[
δJN,ℓ

u
(ju)−

(
Λu(J

N,ℓ
u+1, ju)1u<T +

ωN,ju
T

Ωu
1u=T

)]

× ΛN
u−1(ju, ju−1) . . .Λ

N
t (jt+1, jt)h

(
ξN,jt
t

)
.

The RHS of this equation is the difference between two expectations started with two
different initial distributions. Under A3, the backward kernel satisfies the uniform
Doeblin condition,

∀(i, j) ∈ {1, . . . , N}2 ΛN
s (i, j) ≥ σ−

σ+

ωi
s

ΩN
s

,

and the proof is completed by the exponential forgetting of the backward kernel (see
[3, 6]).

To compute an upper-bound for the Lq-mean error of the FFBSi algorithm, we may
define the difference between the FFBS and the FFBSi estimators:

δNT = φ̃N
0:T |T (ST )− φN

0:T |T (ST ) . (40)

Proof of Corollary 1. The difference between the FFBS and the FFBSi estimators, δNT ,
defined in (40), can be written

δNT =
1

N

N∑

ℓ=1

T∑

t=0

ht

(
ξ
N,JN,ℓ

t
t

)
− E

[
ht

(
ξ
N,JN,1

t
t

)∣∣∣FN
T

]

=
1

N

N∑

ℓ=1

T∑

t=0

T∑

u=t

E

[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u,T

]
− E

[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u+1,T

]

=
1

N

N∑

ℓ=1

T∑

u=0

ζN,ℓ
u ,

where ζN,ℓ
u

def
=

u∑

t=0

E

[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u,T

]
− E

[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u+1,T

]
.

For all ℓ ∈ {1, . . . , N} and all u ∈ {0, . . . , T }, the random variable ζN,ℓ
u is GN

u,T -

measurable and E
[
ζN,ℓ
u

∣∣GN
u+1,T

]
= 0 so that ζN,ℓ

u can be seen as the increment of a
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backward martingale. Hence, since q ≥ 2, using the Burkholder inequality (see [19,
Theorem 2.10, page 23]) and the Jensen inequality, there exists a constant C (depend-
ing only on q, σ−, σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that:

E

[∣∣∣∣∣
T∑

u=0

1

N

N∑

ℓ=1

ζN,ℓ
u

∣∣∣∣∣

q]
≤ CN−q

E




∣∣∣∣∣∣

T∑

u=0

(
N∑

ℓ=1

ζN,ℓ
u

)2
∣∣∣∣∣∣

q
2




≤ CN−q (T + 1)
q/2−1

T∑

u=0

E

[∣∣∣∣∣
N∑

ℓ=1

ζN,ℓ
u

∣∣∣∣∣

q]
. (41)

Then, since the random variables (ζN,ℓ
u )ℓ∈{1,...,N} are conditionally independent and

centered conditionally to GN
u+1,T , using the Burkholder inequality once again implies:

E

[∣∣∣∣∣
N∑

ℓ=1

ζN,ℓ
u

∣∣∣∣∣

q∣∣∣∣∣G
N
u+1,T

]
≤ CN q/2−1

N∑

ℓ=1

E

[∣∣ζN,ℓ
u

∣∣q
∣∣∣GN

u+1,T

]
. (42)

Furthermore, according to Lemma 2,

∣∣ζN,ℓ
u

∣∣ ≤
u∑

t=0

∣∣∣E
[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u,T

]
− E

[
ht

(
ξ
N,JN,ℓ

t
t

)∣∣∣GN
u+1,T

]∣∣∣

≤
u∑

t=0

ρu−tosc(ht) ≤
σ+

σ−
max
0≤t≤T

{osc(ht)} . (43)

Putting (41), (42) and (43) together leads to

∥∥δNT
∥∥
q
≤ C

√
T + 1

N
max
0≤t≤T

{osc(ht)} ,

and the announced result is derived from the triangle inequality:

∥∥∥φ0:T |T (ST )− φ̃N
0:T |T (ST )

∥∥∥
q
≤
∥∥∆N

T [ST ]
∥∥
q
+
∥∥δNT

∥∥
q
.

6 Proof of Theorem 2 and Corollary 2

We preface the proof of the Theorem by showing that the martingale term of the error
∆N

T [ST ] satisfies an exponential deviation inequality in the following Proposition.

Proposition 3. Assume A1–3. Then there exists a constant C (depending only on σ−,
σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞, all N ≥ 1 and for all ε > 0,

P

{∣∣∣∣∣
T∑

t=0

DN
t,T (ST )

∣∣∣∣∣ > ε

}
≤ 2 exp


− CNε2

max
0≤t≤T

{osc(ht)}2 (T + 1)


 , (44)

where DN
t,T (ST ) is defined in (26).
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Proof. According to the definition of DN
t,T (ST ) given in (26), we can write

T∑

t=0

DN
t,T (ST ) =

N(T+1)∑

k=1

ΥN
k ,

where for all 0 ≤ t ≤ T and 1 ≤ ℓ ≤ N , ΥN
Nt+ℓ is defined by

ΥN
Nt+ℓ =

φN
t−1(ϑt)

φN
t−1

(
Lt−1,T 1

|Lt,T 1|∞

)N−1ωN,ℓ
t

GN
t,TST (ξ

N,ℓ
t )

|Lt,T1|∞
,

and is bounded by (see Lemma 1)

∣∣ΥN
Nt+ℓ

∣∣ ≤ CN−1 max
0≤t≤T

{osc(ht)} .

Furthermore, we define the filtration
(
HN

k

)
1≤k≤N(T+1)

, for all 0 ≤ t ≤ T and 1 ≤ ℓ ≤ N ,

by:

HN
Nt+ℓ = FN

t−1 ∨ σ
{(

ωN,i
t , ξN,i

t

)
, 1 ≤ i ≤ ℓ

}
,

with the convention FN
−1 = σ(Y0:T ). Then, according to Lemma 1, (Υk)1≤k≤N(T+1) is

martingale increment for the filtrationH and the Azuma-Hoeffding inequality completes
the proof.

Proposition 4. Assume A1–3. Then there exists a constant C (depending only on σ−,
σ+, c−, sup

t≥1
|ϑt|∞ and sup

t≥0
|ωt|∞) such that for all T < ∞, all N ≥ 1 and for all ε > 0,

P

{∣∣∣∣∣
T∑

t=0

CN
t,T (ST )

∣∣∣∣∣ > ε

}
≤ 8 exp


− CNε

max
0≤t≤T

{osc(ht)} (T + 1)


 , (45)

where CN
t,T (ST ) is defined in (27).

Proof. In order to apply Lemma 5 in the appendix, we first need to find a exponential
deviation inequality for CN

t,T (ST ) which is done by using the decomposition CN
t,T (ST ) =

UN
t,TV

N
t,TW

N
t,T given in (35). First, the ratio UN

t,T is dealt with through Lemma 4 in the
appendix by defining





aN
def
=N−1

∑N
ℓ=1 ω

N,ℓ
t GN

t,TST (ξ
N,ℓ
t )/|Lt,T1|∞ ,

bN
def
=N−1

∑N
ℓ=1 ω

N,ℓ
t ,

b
def
=E[ω1

t |FN
t−1] = φN

t−1 [Mgt] /φ
N
t−1(ϑt) ,

β
def
= c−/|ϑt|∞ .

Assumption A3 shows that b ≥ β and Lemma 1 (i) shows that |aN/bN | ≤ 2σ+−σ−

σ−

osc(h).

Therefore, Condition (I) of Lemma 4 is satisfied. The bounds 0 < ωl
t ≤ |ωt|∞ and the

Hoeffding inequality lead to

P[|bN − b| ≥ ε] = E

[
P

[∣∣∣∣∣N
−1

N∑

ℓ=1

(
ωN,ℓ
t − E[ωN,1

t |FN
t−1]

)∣∣∣∣∣ ≥ ε

∣∣∣∣∣F
N
t−1

]]

≤ 2 exp

(
− 2Nε2

|ωt|2∞

)
,
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establishing Condition (II) in Lemma 4. Finally, Lemma 1 (i) and the Hoeffding in-
equality imply that

P [|aN | ≥ ε] = E

[
P

[∣∣∣∣∣N
−1

N∑

ℓ=1

ωN,ℓ
t GN

t,TST (ξ
N,ℓ
t )/|Lt,T1|∞

∣∣∣∣∣ ≥ ε

∣∣∣∣∣F
N
t−1

]]

≤ 2 exp


− Nε2

2|ωt|2∞
(

2σ+−σ−

σ−

)2
max
0≤t≤T

{osc(ht)}2


 .

Lemma 4 therefore yields

P
{∣∣UN

t,T

∣∣ ≥ ε
}
≤ 2 exp


−C

Nε2

max
0≤t≤T

{osc(ht)}2


 .

Then V N
t,T is dealt with by using again the Hoeffding inequality and the bounds 0 <

ωN,ℓ
t

Lt,T 1(ξN,ℓ
t )

|Lt,T 1|∞
≤ |ωt|∞:

P

[∣∣∣∣∣N
−1

N∑

ℓ=1

ωN,ℓ
t

Lt,T1(ξ
N,ℓ
t )

|Lt,T1|∞
− E

[
ξN,1
t

Lt,T1(ξ
N,1
t )

|Lt,T1|∞

∣∣∣∣∣Ft−1

]∣∣∣∣∣ ≥ ε

]

= E

[
P

[∣∣∣∣∣N
−1

N∑

ℓ=1

(
ωN,ℓ
t

Lt,T1(ω
N,ℓ
t )

|Lt,T1|∞
− E

[
ωN,1
t

Lt,T1(ξ
N,1
t )

|Lt,T1|∞
|FN

t−1

])∣∣∣∣∣ ≥ ε

∣∣∣∣∣F
N
t−1

]]

≤ 2 exp
(
−CNε2

)
.

Finally, WN
t,T has been shown in (36) to be bounded by a constant depending only on

σ−, σ+, c−, sup
t≥1

|ϑt|∞ and sup
t≥0

|ωt|∞:
∣∣WN

t,T

∣∣ ≤ C so that

P
{∣∣CN

t,T (ST )
∣∣ > ε

}
≤ P

{∣∣UN
t,TV

N
t,T

∣∣ > ε/C
}

≤ P

{
∣∣UN

t,T

∣∣ >
√
ε max
0≤t≤T

{osc(ht)} /C
}

+ P

{
∣∣V N

t,T

∣∣ >
√
ε/C max

0≤t≤T
{osc(ht)}

}

≤ 4 exp


− CNε

max
0≤t≤T

{osc(ht)}


 .

The proof is finally completed by applying Lemma 5 with

Xt = CN
t,T (ST ) , A = 4 , B =

CN

max
0≤t≤T

{osc(ht)}
, γ = 1/2 .

Proof of Theorem 2. The result is obtained by writing

P
{∣∣∆N

T [ST ]
∣∣ > ε

}
≤ P

{∣∣∣∣∣
T∑

t=0

CN
t,T (ST )

∣∣∣∣∣ > ε/2

}

+ P

{∣∣∣∣∣
T∑

t=0

DN
t,T (ST )

∣∣∣∣∣ > ε/2

}
, (46)

and using (44) and(45).
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Proof of Corollary 2. We recall the decomposition used in the proof of Corollary 1:

δNT =
1

N

N∑

ℓ=1

T∑

u=0

ζN,ℓ
u .

Since
(
ζN,ℓ
u

)
ℓ∈{1,...,N}

are GN
u,T measurable and centered conditionally to GN

u+1,T using

the same steps as in the proof of Proposition 4, we get

P
{∣∣δNT

∣∣ > ε
}
≤ 2 exp


− ε2σ−N

2σ+(T + 1) max
0≤t≤T

{osc(ht)}2


 . (47)

The proof is finally completed by writing φ0:T |T (ST )− φ̃N
0:T |T (ST ) = ∆N

T [ST ] + δNT and
by using Theorem 2.

A Technical results

Lemma 3. Let N ∈ N
⋆, q ≥ 2 and (Xℓ)ℓ∈{1,...,N} and (Yℓ)ℓ∈{1,...,N} two sequences of

random variables. Define ẐN = N−1
∑N

ℓ=1Xℓ,NYℓ,N , ŴN = N−1
∑N

ℓ=1 Xℓ,N , ZN =

E

[
ẐN

]
and WN = E

[
ŴN

]
. Assume that ZN = 0 and that there exist some constants

K, K ′ and vN and v′N (depending only on N) such that
∥∥∥ẐN

∥∥∥
2q

≤ vN ,
∥∥∥WN − ŴN

∥∥∥
4q

≤

v′N , max
1≤ℓ≤N

|Yℓ,N | ≤ K and
∣∣∣ẐN

∣∣∣ ≤ K ′ , then

WN

∥∥∥∥∥
ẐN

ŴN

∥∥∥∥∥
2q

≤ vN +

(
1

WN
K ′ +K

)
v′N .

Proof. We use [15, Lemma 1] to establish that, for any 0 ≤ α ≤ 1,

WN

∣∣∣∣∣
ẐN

ŴN

∣∣∣∣∣ ≤ |ẐN |+ |ẐN |
WN

∣∣∣WN − ŴN

∣∣∣+ max
1≤ℓ≤N

|Yℓ,N | |WN − ŴN |1+α

|WN |α .

By using this inequality with α = 0 and the Hölder inequality,

WN

∥∥∥∥∥
ẐN

ŴN

∥∥∥∥∥
2q

≤
∥∥∥ẐN

∥∥∥
2q

+
1

WN

∥∥∥ẐN

∥∥∥
4q

∥∥∥ŴN −WN

∥∥∥
4q

+

∥∥∥∥ max
1≤ℓ≤N

|Yℓ,N | |WN − ŴN |
∥∥∥∥
2q

.

Hence

WN

∥∥∥∥∥
ẐN

ŴN

∥∥∥∥∥
2q

≤ vN +
1

WN
K ′v′N +

∥∥∥∥ max
1≤ℓ≤N

|Yℓ,N | |WN − ŴN |
∥∥∥∥
2q

≤ vN +
1

WN
K ′v′N +Kv′N ,

as
∥∥∥WN − ŴN

∥∥∥
2q

≤
∥∥∥WN − ŴN

∥∥∥
4q

≤ v′N .

Lemma 4. Assume that aN , bN , and b are random variables defined on the same
probability space such that there exist positive constants β, B, C, and M satisfying
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(I) |aN/bN | ≤ M , P-a.s. and b ≥ β, P-a.s.,

(II) For all ǫ > 0 and all N ≥ 1, P [|bN − b| > ǫ] ≤ Be−CNǫ2 ,

(III) For all ǫ > 0 and all N ≥ 1, P [|aN | > ǫ] ≤ Be−CN(ǫ/M)2 .

Then,

P

(∣∣∣∣
aN
bN

∣∣∣∣ > ǫ

)
≤ B exp

(
−CN

(
ǫβ

2M

)2
)

.

Proof. See [9, Lemma 4].

Lemma 5. For T ≥ 0, let (Xt)0≤t≤T be (T + 1) random variables. Assume that there
exist two constants A ≥ 1 and B > 0 such that for all 0 ≤ t ≤ T and all ε > 0

P{|Xt| > ε} ≤ Ae−Bε .

Then, for all 0 < γ < 1 and all ε > 0, we have

P

{∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣ > ε

}
≤ A

1− γ
e−γBε/(T+1) .

Proof. By the Bienayme-Tchebychev inequality, we have

P

{∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣ > ε

}
= P

{
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣

]
> eγBε/(T+1)

}

≤ e−γBε/(T+1)
E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣

]]
. (48)

It remains to bound the expectation in the RHS of (48) by A
1−γ . First, by a convexity

inequality,

E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣

]]
=

∞∑

q=0

Bqγq

q!(T + 1)q
E

[∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣

q]

≤ 1 +

∞∑

q=1

Bqγq

q!(T + 1)

T∑

t=0

E [|Xt|q] .

Moreover, for q ≥ 1, E [|Xt|q] can be bounded by

E [|Xt|q] =
∫ ∞

0

P{|Xt| > ε1/q}dε ≤ A

∫ ∞

0

e−Bε1/qdε =
Aq!

Bq
,

Finally,

E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣

]]
≤ A

∞∑

q=0

γq =
A

1− γ
.
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