Non Abelian Bent Functions - Archive ouverte HAL
Article Dans Une Revue Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences Année : 2012

Non Abelian Bent Functions

Laurent Poinsot
  • Fonction : Auteur
  • PersonId : 858112

Résumé

Perfect nonlinear functions from a finite group $G$ to another one $H$ are those functions $f: G \rightarrow H$ such that for all nonzero $\alpha \in G$, the derivative $d_{\alpha}f: x \mapsto f(\alpha x) f(x)^{-1}$ is balanced. In the case where both $G$ and $H$ are Abelian groups, $f: G \rightarrow H$ is perfect nonlinear if and only if $f$ is bent {\it i.e.} for all nonprincipal character $\chi$ of $H$, the (discrete) Fourier transform of $\chi \circ f$ has a constant magnitude equals to $|G|$. In this paper, using the theory of linear representations, we exhibit similar bentness-like characterizations in the cases where $G$ and/or $H$ are (finite) non Abelian groups. Thus we extend the concept of bent functions to the framework of non Abelian groups.
Fichier principal
Vignette du fichier
Poinsot.pdf (190.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00548008 , version 1 (18-12-2010)

Identifiants

Citer

Laurent Poinsot. Non Abelian Bent Functions. Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences , 2012, 4 (1), pp.1-23. ⟨10.1007/s12095-011-0058-y⟩. ⟨hal-00548008⟩
145 Consultations
163 Téléchargements

Altmetric

Partager

More