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Abstract

This article establish the connection between quadratic discrimination and model selection criterion in the

ARMA framework. We show that analyzing model selection in ARMA time series models as a quadratic discrim-

ination problem provides a unifying approach for deriving model selection criteria.
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1 Introduction

Most of model selection criteria for linear time series can be written as min
k

{
log

∣∣∣Σ̂k

∣∣∣ + (k + 1)× C(T, k + 1)
}

,

where k is the number of estimated parameters for the mean function of the process, Σ̂k is the maximum likelihood

estimation of the covariance matrix of the series x = (x1, . . . , xT )′, T is the sample size and C(T, k + 1) is a function

depending on T and k + 1. These criteria can be classified into two groups. The first one includes the consistent

criteria that, under the assumption that the data come from a finite order autoregressive moving average process,

have a probability of obtaining the true order of the model that goes to one when the sample size increases. The

Bayesian information criterion, BIC, by Schwarz (1978), where C(T, k + 1) = log(T ), and the Hannan and Quinn

(1979) criterion, HQC, where C(T, k + 1) = 2m log log(T ) with m > 1, are consistent criteria. The second group

includes the efficient criteria, that select asymptotically the order which produces the least mean square prediction

error. The final prediction error criterion, FPE, by Akaike (1969), where C(T, k+1) = T
k+1 log( T+k+1

T−(k+1) ), the Akaike’s

information criterion, AIC, by Akaike (1973), where C(T, k+1) = 2 and the corrected Akaike’s information criterion,

AICc, by Hurvich and Tsai (1989), where C(T, k + 1) = 1
k+1

2T (k+1)
T−(k+1)−1 , are efficient criteria. These criteria have

been derived from different points of view. The BIC approach uses the posterior probabilities of the models. The

HQC has been derived to be a consistent criterion such that C(T, k + 1)/T converges to 0 as fast as possible. The

FPE selects the model that minimizes the one step ahead square prediction error. The AIC is an estimator of the

expected Kullback-Leibler distance between the true and the fitted model. The AICc is a bias correction form of the

AIC that appears to work better in small samples.

In this article we consider model selection as a discrimination problem and show that the AIC, AICc and BIC

criteria can be derived as approximations to a quadratic discriminant rule, showing the connection between discrim-

ination and model selection in linear Gaussian time series. The main contribution of this article is to view the model

selection problem as a kind of discrimination analysis and present an unified approach of criteria proposed in the

literature from different points of view. The technical details in both maximum likelihood and Bayesian points of

view are included for completeness.

The rest of this paper is organized as follows. Section 2 briefly review the quadratic discriminant rule in ARMA

time series. Sections 3 and 4 shows the connection between discrimination and model selection criterion from a

maximum likelihood and Bayesian approaches, respectively.

2 The quadratic discriminant rule for ARMA time series models

The discrimination problem in time series appears as follows. Suppose it is known that a given time series, x =

(x1, ..., xT )′, has been generated by one of the models Mj , j = 1, ..., jmax. From the Bayesian point of view we
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also know the prior probabilities p (Mj). The objective is to select the data generating model given the time series

data. We assume that the models Mj are causal and invertible Gaussian processes given by xt = µjt + njt, where

µjt are deterministic mean functions and njt are zero mean ARMA models of the form φj (B)njt = θj (B) ajt,

where φj (B) and θj (B) are polynomials in the lag operator B such that Bxt = xt−1, with no common roots.

The series ajt are white noise innovations with variance σ2
j . The simplest discriminant problem is to assume that

the deterministic functions µjt are different, but the covariance matrices of x under each ARMA model njt, Σj ,

are all equal to Σ, which corresponds to the situation in which all the models have the same ARMA structure.

Calling µj = (µj1, ..., µjT )′, this is equivalent to consider the hypothesis Mj : x ∈ NT (µj , Σ), and we have that,

p (x | Mj) = (2π)−
T
2 |Σ|− 1

2 exp
(− 1

2 (x− µj)
′Σ−1 (x− µj)

)
, j = 1, . . . , jmax.

Maximizing the likelihood of the data implies minimizing the Mahalanobis distance between the data and the

vector of marginal means. The same conclusion is obtained from the Bayesian point of view assuming equal prior

probabilities p (Mj) = 1/jmax and maximizing the posterior probability of choosing the true model. A more inter-

esting case appears when the ARMA models are different, that is, Mj : x ∈ NT (µj ,Σj), for j = 1, ..., jmax. Then,

the standard quadratic classification rule selects the model i if,

i = arg max
1≤j≤jmax

(2π)−
T
2 |Σj |−

1
2 exp

(
−1

2
(x− µj)

′Σ−1
j (x− µj)

)
(1)

and the Bayesian rule selects the model i if,

i = arg max
1≤j≤jmax

p(Mj) (2π)−
T
2 |Σj |−

1
2 exp

(
−1

2
(x− µj)

′ Σ−1
j (x− µj)

)
. (2)

In the next two sections the rules (1) and (2) are approximated in several ways and the AIC, AICc and BIC

criteria are obtained when the data, x = (x1, ..., xT )′, have been generated by the class of ARMA Gaussian processes

given by xt − φ1xt−1 − . . . − φpxt−p = at − θ1at−1 − . . . − θqat−q, t = . . . ,−1, 0, 1, . . ., where at is a sequence

of independent Gaussian distributed random variables with zero mean and variance σ2
p,q and we assume that p ∈

{0, ..., pmax} and q ∈ {0, ..., qmax}, where pmax and qmax are some fixed upper bounds. We call the ARMA(p, q)

model Mp,q, where βp,q = (φ1p, . . . , φpp, 0, . . . , 0, θ1q, . . . , θqq, 0, . . . , 0)′ is a (pmax + qmax) × 1 vector of parameters

for the Mp,q model and we define αp,q =
(
β′p,q, σ

2
p,q

)′. We denote the parameters of the model that have generated

the data as α0 =
(
β′0, σ

2
0

)′. In this case, let β̂p,q and σ̂2
p,q be the maximum likelihood estimates of the vector of

parameters βp,q and the innovations variance, respectively. The covariance matrix of x assuming the model Mp,q can

be written as ΣT (αp,q) = σ2
p,qQT (βp,q), where QT (βp,q) is a T × T matrix depending on the parameters βp,q. Let

QT (βp,q) = L (βp,q)L′ (βp,q) be the Cholesky decomposition of QT (βp,q). We denote, a (βp,q) = L (βp,q)
−1

x and

Sx (βp,q) = a (βp,q)
′
a (βp,q). We consider the following assumption:
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Assumption 1: The models Mp,q are causal, invertible and stationary and with polynomials 1−φ1B−. . .−φpB
p

and 1− θ1B − . . .− θqB
q with no common roots.

3 A maximum likelihood approach

From (1), the discriminant rule assigns the data x = (x1, . . . , xT )′, to the model Mp,q with parameters αp,q that

maximizes p (x | Mp,q) = p (x | αp,q). In practice, the parameters are unknown and it is well known that if we

substitute the unknown parameters, αp,q, by its maximum likelihood estimates, α̂p,q, maximizing the likelihood will

always choose the model with the largest number of parameters. To avoid this problem, we need to obtain a suitable

approximation of the quadratic rule. A first attempt to do that is to approximate log p (x | αp,q) by,

Eα0 [log p(y|α̂p,q)] =
∫

log p(y|α̂p,q)p(y|α0)dy, (3)

and select the model that maximizes (3), that is, the model that maximizes the expectation with respect to future

observations generated by the true model, which has parameters α0. Note that this rule selects the model which

minimizes the Kullback-Leibler divergence to the true one. As,

Eα0

[
log

p(y|α0)
p(y|α̂p,q)

]
=

∫
log

p(y|α0)
p(y|α̂p,q)

p(y|α0)dy ≥ 0

and the integral is always positive, minimizing it implies making p(y|α̂p,q) as close as possible to p(y|α0), in the

Kullback-Leibler divergence. This rule computes the log-likelihood of each model using the estimates α̂p,q based on

the sample and then compute the expectation with respect to future observations. The model chosen is the one which

leads to a larger expected value of this maximized log-likelihood. Note that this approach takes into account the

uncertainty about new observations but not the uncertainty in the parameter estimates. The following Lemma shows

that this simple approach fails to provide a suitable rule for selecting an ARMA model among the set of candidates.

Lemma 1 Under assumption 1,

1. if the parameters are evaluated at β̂p,q and T
T−(p+q) σ̂

2
p,q:

Eα0 [log p(y|α̂p,q)] = −T

2
(log 2π + 1)− 1

2
log

∣∣∣ΣT

(
β̂p,q

)∣∣∣− (p + q + 1) + Op(1), (4)

2. if the parameters are evaluated at β̂p,q and σ̂2
p,q:

Eα0 [log p(y|α̂p,q)] = −T

2
(log 2π + 1)− 1

2
log

∣∣∣ΣT

(
β̂p,q

)∣∣∣− T (p + q + 1)
T − (p + q + 1)− 1

+ Op(1). (5)
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Proof. From (1), we have that,

Eα0 [log p (y | α̂p,q)] = −T

2
log 2π − 1

2
log

∣∣∣ΣT

(
β̂p,q

)∣∣∣− 1
2
Eα0


Sy

(
β̂p,q

)

σ̂2
p,q


 ,

where Sy

(
β̂p,q

)
= y′Q−1

T

(
β̂p,q

)
y. Assuming that Mp,q is the model that actually generates x = (x1, . . . , xT )′,

Brockwell and Davis (1991) showed that,

Eα0


Sy

(
β̂p,q

)

σ̂2
p,q


 =

T (T + p + q)
(T − p− q − 2)

+ Op(1), (6)

that gives (5). On the other hand, as log
∣∣∣ΣT

(
β̂p,q

)∣∣∣ = T log σ̂2
p,q +log

∣∣∣QT

(
β̂p,q

)∣∣∣ and T log(1− (p+q)
T ) = − (p + q)+

o(1), we have that,

T log 2π + T log
T

T − (p + q)
σ̂2

p,q + log
∣∣∣QT

(
β̂p,q

)∣∣∣ = T log 2π − T log
(

1− (p + q)
T

)
+

+T log σ̂2
p,q + log

∣∣∣QT

(
β̂p,q

)∣∣∣ = T log 2π + T log σ̂2
p,q + (p + q) + log

∣∣∣QT

(
β̂p,q

)∣∣∣ + op(1).

From (6),

Eα0


 Sy

(
β̂p,q

)

T
T−(p+q) σ̂

2
p,q


 = (T + p + q) +

2 (T + p + q)
(T − p− q − 2)

+ Op(1) = T + p + q + 2 + Op(1),

which proves (4).

This Lemma shows that (4) and (5) include terms that are Op(1) which are of the same order as the penalty terms.

Following Brockwell and Davis (1991), the Op(1) remainder term reduces to a component o(1) and a component with

has expectation zero. Thus we see that we cannot avoid taking into account the uncertainty about the parameter esti-

mates. We can solve this problem by taking also the expectation with respect to the distribution of the estimate, α̂p,q.

Then, we select the model which leads to a larger value of Ebαp,q
[Ey [log p(y|α̂p,q)]] =

∫ ∫
log p(y|α̂p,q)p(y|α0)dydα̂p,q,

where α̂p,q and y are assumed to be independent. Thus, the rule selects the model that maximizes the expected

value with respect to the two sources of uncertainty: the distribution of future observations and the distribution of

the estimate. Note that this is equivalent to the criterion proposed by Akaike (1969,1973) from different arguments,

and therefore, after taking expectations in the expression (4), we get the criterion:

AIC (p, q) = log
∣∣∣ΣT

(
β̂p,q

)∣∣∣ + 2 (p + q + 1) (7)

while (5) leads to the criterion:
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AICc (p, q) = log
∣∣∣ΣT

(
β̂p,q

)∣∣∣ +
2T (p + q + 1)

T − (p + q + 1)− 1
(8)

which are the expression of both criteria, as given in Hurvich, Shumway and Tsai (1990).

4 A Bayesian approach

We analyze the rule in (2) taking into account that this approach requires prior probabilities of the models, p(Mp,q)

and the parameters, p(αp,q|Mp,q). The Bayesian point of view of maximizing the posterior probability has been

extensively considered, see Schwarz (1978), Chow (1981), Haughton (1988) or Raftery, Madigan and Volinsky (1996).

Note that when computing this posterior probability we automatically take into account the two sources of uncertainty

discussed in the previous section.

Lemma 2 Under assumption 1,

log p(x|Mp,q) =
1
2

(p + q + 1− T ) log (2π)−1
2
(p+q+1) log (T )−1

2
log

∣∣∣ΣT

(
β̂p,q

)∣∣∣−1
2
T+log p(α̂p,q|Mp,q)+Op(1). (9)

Proof. Let, h (αp,q) = −T
2 log (2π)− 1

2 log |ΣT (αp,q)| − 1
2x′ΣT (αp,q)

−1
x + log p(αp,q|Mp,q). Then, applying the

Laplace’s method, see Tierney and Kadane (1986), we obtain,

p(x|Mp,q) ' (2π)
p+q+1−T

2 |H (α̂p,q)|
1
2 |ΣT (α̂p,q)|−

1
2 exp

(
−1

2
x′ΣT (α̂p,q)

−1
x

)
p(α̂p,q|Mp,q),

where H (α̂p,q) is minus the inverse Hessian of h evaluated at α̂p,q. The inverse of the observed information matrix

is asymptotically equal to T times a constant matrix (see, for instance, Raftery, Madigan and Volinsky (1996)), so

that, log |H (α̂p,q)| = −(p + q + 1) log T + Op(1), and,

log p(x|Mp,q) =
1
2

(p + q + 1− T ) log (2π)− 1
2
(p + q + 1) log T − 1

2
(log |ΣT (α̂p,q)|+ T ) + log p(α̂p,q|Mp,q) + Op(1),

which proves the stated result.

Taking the same prior probabilities for all the parameters and ignoring constant terms, (9) leads to the criterion,

BIC (p, q) = log
∣∣∣ΣT

(
β̂p,q

)∣∣∣ + log(T ) (p + q + 1) . (10)

The criteria (7), (8) and (10) can be written as,

min
(p,q)

{
log

∣∣∣ΣT

(
β̂p,q

)∣∣∣ + (p + q + 1)× C(T, p + q + 1)
}

, (11)
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where the term
∣∣∣ΣT

(
β̂p,q

)∣∣∣ is easily obtained from the maximized loglikelihood, log p (x|α̂p,q), due that, log |Σ(α̂p,q)| =
−2 log p (x|α̂p,q)− T (log (2π) + 1).
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