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On the connection between model selection criteria and quadratic discrimination in ARMA time series models
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This article establish the connection between quadratic discrimination and model selection criterion in the ARMA framework. We show that analyzing model selection in ARMA time series models as a quadratic discrimination problem provides a unifying approach for deriving model selection criteria.

A c c e p t e d m a n u s c r i p t 1 Introduction

Most of model selection criteria for linear time series can be written as min

k log Σ k + (k + 1) × C(T, k + 1) ,
where k is the number of estimated parameters for the mean function of the process, Σ k is the maximum likelihood estimation of the covariance matrix of the series x = (x 1 , . . . , x T ) , T is the sample size and C(T, k + 1) is a function depending on T and k + 1. These criteria can be classified into two groups. The first one includes the consistent criteria that, under the assumption that the data come from a finite order autoregressive moving average process, have a probability of obtaining the true order of the model that goes to one when the sample size increases. The

Bayesian information criterion, BIC, by [START_REF] Schwarz | Estimating the dimension of a model[END_REF], where C(T, k + 1) = log(T ), and the [START_REF] Hannan | The determination of the order of an autoregression[END_REF] criterion, HQC, where C(T, k + 1) = 2m log log(T ) with m > 1, are consistent criteria. The second group includes the efficient criteria, that select asymptotically the order which produces the least mean square prediction error. The final prediction error criterion, FPE, by [START_REF] Akaike | Fitting autoregressive models for prediction[END_REF], where

C(T, k+1) = T k+1 log( T +k+1 T -(k+1)
), the Akaike's information criterion, AIC, by [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], where C(T, k + 1) = 2 and the corrected Akaike's information criterion, AICc, by [START_REF] Hurvich | Regression and time series model selection in small samples[END_REF], where

C(T, k + 1) = 1 k+1 2T (k+1)
T -(k+1)-1 , are efficient criteria. These criteria have been derived from different points of view. The BIC approach uses the posterior probabilities of the models. The HQC has been derived to be a consistent criterion such that C(T, k + 1)/T converges to 0 as fast as possible. The FPE selects the model that minimizes the one step ahead square prediction error. The AIC is an estimator of the expected Kullback-Leibler distance between the true and the fitted model. The AICc is a bias correction form of the AIC that appears to work better in small samples.

In this article we consider model selection as a discrimination problem and show that the AIC, AICc and BIC criteria can be derived as approximations to a quadratic discriminant rule, showing the connection between discrimination and model selection in linear Gaussian time series. The main contribution of this article is to view the model selection problem as a kind of discrimination analysis and present an unified approach of criteria proposed in the literature from different points of view. The technical details in both maximum likelihood and Bayesian points of view are included for completeness.

The rest of this paper is organized as follows. Section 2 briefly review the quadratic discriminant rule in ARMA time series. Sections 3 and 4 shows the connection between discrimination and model selection criterion from a maximum likelihood and Bayesian approaches, respectively.

The quadratic discriminant rule for ARMA time series models

The discrimination problem in time series appears as follows. Suppose it is known that a given time series, x = (x 1 , ..., x T ) , has been generated by one of the models M j , j = 1, ..., j max . From the Bayesian point of view we A c c e p t e d m a n u s c r i p t also know the prior probabilities p (M j ). The objective is to select the data generating model given the time series data. We assume that the models M j are causal and invertible Gaussian processes given by x t = µ jt + n jt , where µ jt are deterministic mean functions and n jt are zero mean ARMA models of the form φ j (B)

n jt = θ j (B) a jt ,
where φ j (B) and θ j (B) are polynomials in the lag operator B such that Bx t = x t-1 , with no common roots.

The series a jt are white noise innovations with variance σ 2 j . The simplest discriminant problem is to assume that the deterministic functions µ jt are different, but the covariance matrices of x under each ARMA model n jt , Σ j , are all equal to Σ, which corresponds to the situation in which all the models have the same ARMA structure.

Calling µ j = (µ j1 , ..., µ jT ) , this is equivalent to consider the hypothesis M j : x ∈ N T (µ j , Σ), and we have that,

p (x | M j ) = (2π) -T 2 |Σ| -1 2 exp -1 2 (x -µ j ) Σ -1 (x -µ j ) , j = 1, . . . , j max .
Maximizing the likelihood of the data implies minimizing the Mahalanobis distance between the data and the vector of marginal means. The same conclusion is obtained from the Bayesian point of view assuming equal prior probabilities p (M j ) = 1/j max and maximizing the posterior probability of choosing the true model. A more interesting case appears when the ARMA models are different, that is, M j : x ∈ N T (µ j , Σ j ), for j = 1, ..., j max . Then, the standard quadratic classification rule selects the model i if,

i = arg max 1≤j≤jmax (2π) -T 2 |Σ j | -1 2 exp - 1 2 (x -µ j ) Σ -1 j (x -µ j ) (1) 
and the Bayesian rule selects the model i if,

i = arg max 1≤j≤j max p(M j ) (2π) -T 2 |Σ j | -1 2 exp - 1 2 (x -µ j ) Σ -1 j (x -µ j ) .
(2)

In the next two sections the rules (1) and ( 2) are approximated in several ways and the AIC, AICc and BIC criteria are obtained when the data, x = (x 1 , ..., x T ) , have been generated by the class of ARMA Gaussian processes given by x t -φ 1 x t-1 -. . . -φ p x t-p = a t -θ 1 a t-1 -. . . -θ q a t-q , t = . . . , -1, 0, 1, . . ., where a t is a sequence of independent Gaussian distributed random variables with zero mean and variance σ 2 p,q and we assume that p ∈ {0, ..., p max } and q ∈ {0, ..., q max }, where p max and q max are some fixed upper bounds. We call the ARMA(p, q) model M p,q , where β p,q = (φ 1p , . . . , φ pp , 0, . . . , 0, θ 1q , . . . , θ qq , 0, . . . , 0) is a (p max + q max ) × 1 vector of parameters for the M p,q model and we define α p,q = β p,q , σ 2 p,q . We denote the parameters of the model that have generated the data as α 0 = β 0 , σ 2 0 . In this case, let β p,q and σ 2 p,q be the maximum likelihood estimates of the vector of parameters β p,q and the innovations variance, respectively. The covariance matrix of x assuming the model M p,q can be written as Σ T (α p,q ) = σ 2 p,q Q T (β p,q ), where Q T (β p,q ) is a T × T matrix depending on the parameters β p,q . Let Q T (β p,q ) = L (β p,q ) L (β p,q ) be the Cholesky decomposition of Q T (β p,q ). We denote, a (β p,q ) = L (β p,q )

-1 x and S x (β p,q ) = a (β p,q ) a (β p,q ). We consider the following assumption:
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Assumption 1: The models M p,q are causal, invertible and stationary and with polynomials 1-φ 1 B -. . .-φ p B p and 1 -θ 1 B -. . . -θ q B q with no common roots.

A maximum likelihood approach

From (1), the discriminant rule assigns the data x = (x 1 , . . . , x T ) , to the model M p,q with parameters α p,q that maximizes p (x | M p,q ) = p (x | α p,q ). In practice, the parameters are unknown and it is well known that if we substitute the unknown parameters, α p,q , by its maximum likelihood estimates, α p,q , maximizing the likelihood will always choose the model with the largest number of parameters. To avoid this problem, we need to obtain a suitable approximation of the quadratic rule. A first attempt to do that is to approximate log p (x | α p,q ) by,

E α 0 [log p(y| α p,q )] = log p(y| α p,q )p(y|α 0 )dy, (3) 
and select the model that maximizes (3), that is, the model that maximizes the expectation with respect to future observations generated by the true model, which has parameters α 0 . Note that this rule selects the model which minimizes the Kullback-Leibler divergence to the true one. As,

E α 0 log p(y|α 0 ) p(y| α p,q ) = log p(y|α 0 ) p(y| α p,q ) p(y|α 0 )dy ≥ 0
and the integral is always positive, minimizing it implies making p(y| α p,q ) as close as possible to p(y|α 0 ), in the Kullback-Leibler divergence. This rule computes the log-likelihood of each model using the estimates α p,q based on the sample and then compute the expectation with respect to future observations. The model chosen is the one which leads to a larger expected value of this maximized log-likelihood. Note that this approach takes into account the uncertainty about new observations but not the uncertainty in the parameter estimates. The following Lemma shows that this simple approach fails to provide a suitable rule for selecting an ARMA model among the set of candidates.

Lemma 1 Under assumption 1, 1. if the parameters are evaluated at β p,q and

T T -(p+q) σ 2 p,q : E α 0 [log p(y| α p,q )] = - T 2 (log 2π + 1) - 1 2 log Σ T β p,q -(p + q + 1) + O p (1), ( 4 
)
2. if the parameters are evaluated at β p,q and σ 2 p,q :

E α0 [log p(y| α p,q )] = - T 2 (log 2π + 1) - 1 2 log Σ T β p,q - T (p + q + 1) T -(p + q + 1) -1 + O p (1). (5) 
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Proof. From (1), we have that,

E α 0 [log p (y | α p,q )] = - T 2 log 2π - 1 2 log Σ T β p,q - 1 2 E α 0   S y β p,q σ 2 p,q   ,
where S y β p,q = y Q -1 T β p,q y. Assuming that M p,q is the model that actually generates x = (x 1 , . . . , x T ) , [START_REF] Brockwell | Time Series: Theory and Methods[END_REF] showed that,

E α0   S y β p,q σ 2 p,q   = T (T + p + q) (T -p -q -2) + O p (1), (6) 
that gives (5). On the other hand, as log Σ T β p,q = T log σ 2 p,q +log Q T β p,q and T log(1 1), we have that,

-(p+q) T ) = -(p + q) + o(
T log 2π + T log T T -(p + q) σ 2 p,q + log Q T β p,q = T log 2π -T log 1 - (p + q) T + +T log σ 2 p,q + log Q T β p,q = T log 2π + T log σ 2 p,q + (p + q) + log Q T β p,q + o p (1).
From ( 6),

E α0   S y β p,q T T -(p+q) σ 2 p,q   = (T + p + q) + 2 (T + p + q) (T -p -q -2) + O p (1) = T + p + q + 2 + O p (1),
which proves (4).

This Lemma shows that (4) and ( 5) include terms that are O p (1) which are of the same order as the penalty terms.

Following [START_REF] Brockwell | Time Series: Theory and Methods[END_REF], the O p (1) remainder term reduces to a component o(1) and a component with has expectation zero. Thus we see that we cannot avoid taking into account the uncertainty about the parameter estimates. We can solve this problem by taking also the expectation with respect to the distribution of the estimate, α p,q .

Then, we select the model which leads to a larger value of E b α p,q [E y [log p(y| α p,q )]] = log p(y| α p,q )p(y|α 0 )dyd α p,q , where α p,q and y are assumed to be independent. Thus, the rule selects the model that maximizes the expected value with respect to the two sources of uncertainty: the distribution of future observations and the distribution of the estimate. Note that this is equivalent to the criterion proposed by [START_REF] Akaike | Fitting autoregressive models for prediction[END_REF][START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] from different arguments, and therefore, after taking expectations in the expression (4), we get the criterion:

AIC (p, q) = log Σ T β p,q + 2 (p + q + 1) (7) while ( 5) leads to the criterion:
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AICc (p, q) = log Σ T β p,q + 2T (p + q + 1) T -(p + q + 1) -1 (8) which are the expression of both criteria, as given in [START_REF] Hurvich | Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples[END_REF].

A Bayesian approach

We analyze the rule in (2) taking into account that this approach requires prior probabilities of the models, p(M p,q )

and the parameters, p(α p,q |M p,q ). The Bayesian point of view of maximizing the posterior probability has been extensively considered, see [START_REF] Schwarz | Estimating the dimension of a model[END_REF], [START_REF] Chow | A comparison of the information and posterior probability criteria for model selection[END_REF], [START_REF] Haughton | On the choice of a model to fit data from an exponential family[END_REF] or [START_REF] Raftery | Accounting for model uncertainty in survival analysis improves predictive[END_REF].

Note that when computing this posterior probability we automatically take into account the two sources of uncertainty discussed in the previous section.

Lemma 2 Under assumption 1,

log p(x|M p,q ) = 1 2 (p + q + 1 -T ) log (2π)- 1 2 (p+q+1) log (T )- 1 2 log Σ T β p,q - 1 2 T +log p( α p,q |M p,q )+O p (1). (9) Proof. Let, h (α p,q ) = -T 2 log (2π) -1 2 log |Σ T (α p,q )| -1 2 x Σ T (α p,q ) -1 x + log p(α p,q |M p,q
). Then, applying the Laplace's method, see [START_REF] Tierney | Accurate approximations for posterior moments and marginal densities[END_REF], we obtain, p(x|M p,q ) (2π)

p+q+1-T 2 |H ( α p,q )| 1 2 |Σ T ( α p,q )| -1 2 exp - 1 2
x Σ T ( α p,q ) -1 x p( α p,q |M p,q ), where H ( α p,q ) is minus the inverse Hessian of h evaluated at α p,q . The inverse of the observed information matrix is asymptotically equal to T times a constant matrix (see, for instance, [START_REF] Raftery | Accounting for model uncertainty in survival analysis improves predictive[END_REF]), so that, log |H ( α p,q )| = -(p + q + 1) log T + O p (1), and, log p(x|M p,q ) = 1 2 (p + q + 1 -T ) log (2π) -1 2 (p + q + 1) log T -1 2 (log |Σ T ( α p,q )| + T ) + log p( α p,q |M p,q ) + O p (1), which proves the stated result.

Taking the same prior probabilities for all the parameters and ignoring constant terms, (9) leads to the criterion, BIC (p, q) = log Σ T β p,q + log(T ) (p + q + 1) .

(10)

The criteria (7), ( 8) and ( 10) can be written as, min (p,q) log Σ T β p,q + (p + q + 1) × C(T, p + q + 1) , (11)

A c c e p t e d m a n u s c r i p t

where the term Σ T β p,q is easily obtained from the maximized loglikelihood, log p (x| α p,q ), due that, log |Σ ( α p,q )| = -2 log p (x| α p,q ) -T (log (2π) + 1).
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