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The uniqueness of extremum estimation

Volker Krätschmer ∗

Institute of Mathematics, Berlin University of Technology,

D-10623 Berlin, Germany

Abstract

Let W denote a family of probability distributions with parameter space Γ, and WG be a subfamily of W depending

on a mapping G : Θ → Γ. Extremum estimations of the parameter vector ϑ ∈ Θ are considered. Some sufficient

conditions are presented to ensure the uniqueness with probability one. As important applications, the maximum

likelihood estimation in curved exponential families and nonlinear regression models with independent disturbances

as well as the maximum likelihood estimation of the location and scale parameters of Gumbel distributions are

treated.

Keywords: Extremum estimation, Sard’s theorem, nonlinear regression, curved exponential families, Gumbel

distributions.

AMS classification 62F10, 62F11

JEL classification C13, C16

1 Introduction

Extremum estimation designates a principle often used for estimating unknown parameters: Starting from data

those parameter vectors are selected which maximize or minimize a certain function defined over the parameter

space. Some estimation methods currently applied in practical situations of estimation are subsumed under the

principle of extremum estimation, for example the maximum likelihood and least squares estimation. Employing

the extremum estimation in practice causes the problem to choose some parameter vector if the related maximation

(or minimation) problem has more than one solution. Under general conditions the question of the uniqueness

of extremum estimation seems to be still open. A known result of some special cases was presented by Pazman

(cf. [8]). He showed that in some curved exponential families the maximum likelihood method has at most one

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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solution with probability one.

The present paper is an attempt to generalize the result of Pazman to a greater variety of applications, with respect

to the extremum estimation.

Since there is no essential difference between maximation and minimization, we shall restrict ourselves to estimation

that maximizes a certain function which is dependent on the parameters. After introducing some general notations

we shall present in section 3 our main result. We shall deal with the estimation of parameter vectors of distributions

which are dominated by Lebesgue measures. The fundamental idea is to employ Sard’s theorem to ensure that

almost surely the estimation has at most one solution, adapting the line of reasoning that Pazman followed in the

above mentioned paper. It may be simplified when considering uniqueness of nonlinear least squares estimation.

So the reader is referred to Pazman’s monograph on nonlinear regression (cf. [9]) to get a first idea.

The main result of the paper relies on the assumption that for almost every observation from the sample space

the respective objective function has only non degenerated critical points. In section 4 this assumption will be

replaced by some conditions to restate the main result. The obtained criteria to ensure uniqueness of extremum

estimation almost surely will be applied to the maximum likelihood estimation in nonlinear regression models

with independent disturbances (section 5) as well as curved exponential families (section 6), and also to maximum

likelihood estimation of the location and scale parameter of a Gumbel distribution (section 7). Appendix A provides

a crucial auxiliary result, whereas appendix B deals with the proof of the main theorem. Finally appendix C reviews

Lindelöf’s theorem and useful special versions of Sard’s theorem.

2 Notations and preliminaries

For a differentiable mapping f : H → Rt defined on an open subset H of Rs, the Jacobian of f at x will be denoted

by Jx(f), its rank will be symbolized by rank(Jx(f)). As usual f will be called a Cr−mapping (r ∈ N) if it is r

times continuously differentiable. f is said to be a Cr−immersion/Cr−submersion (r ∈ N) if it is a Cr−mapping

with rank(Jx(f)) = s/rank(Jx(f)) = t for all x ∈ H. If t = n, and if f is an homeomorphism from H onto the

open subset f(H) such that f : H → f(H) and its inverse f−1 : f(H) → H are Cr−immersions, then f is called a

Cr−diffeomorphism onto f(H). The Jacobians of a Cr−diffeomorphism are nonsingular. In the case of t = 1 ∇xf

stands for the gradient of f at x, whereas ∇∇xf will be used for the Hessian of f at x if f is twice differentiable.

If ∇xf = 0, then we shall speak of x as a critical point, which will be called degenerated provided that ∇∇xf is

singular.

For m ∈ N0 and r ∈ N a subset A ⊆ Rs is called a m−dimensional Cr−submanifold of Rs if for any x ∈ A there

exists a Cr−diffeomorphism f from an open neighbourhood U of x in Rs onto the open subset f(U) of Rs such

that f(U ∩ A) = f(U) ∩ {(x1, ..., xs) ∈ Rs | xm+1 = ... = xs = 0} (cf. [1], Definition 2.1.1). Note that in view
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of Lindelöf’s theorem (cf. appendix C, Proposition C.2) a 0−dimensional Cr−submanifold of Rs is an at most

countable set. If g : U → Rt denotes a Cr−submersion from an open subset U of Rs into Rt, then we know by the

regular value theorem (cf. [4], p.14 or p.22, Theorem 3.2) that for each y ∈ Rt the fibre g−1({y}) is empty or a

(s− t)−dimensional Cr−submanifold of Rs.

The transpose of a vector x in a standard euclidean space or a matrix M will be indicated by x′ and M ′ respectively.

Furthermore the notation λt will be employed for the Lebesgue measure on Rt.

Throughout the paper we shall consider the following setting of extremum estimation: Let Y be a random vector

with measurable space (X ,B(X )), where X is an open subset of Rn, and B(X ) denotes the σ−algebra of Borel

subsets of X . We suppose that the distribution QY of Y may be parameterized by a mapping G : Θ → Rm, i.e.

it belongs to a familiy WG = {PG(ϑ) | ϑ ∈ Θ} of probability distributions, which in addition we assume to be

dominated by λn | Borel(X ). Of course the parameter ϑ should be identified, which implies

(2.1) G is injective.

Starting from a realisation y of the random vector Y, we are interested in estimating the (unknown) vector ϑ by

maximizing the mapping l(y; ·) ◦G =: lG(y; ·) defined by a given mapping l(·; ·) : X × Γ → R, where Γ stands for

an open subset of Rm enclosing G(Θ). Additionally, it will be assumed

(2.2) G(Θ) =
∞S

j=1

Gj(Θj), where Gj denotes a C2−mapping defined on an open subset Θj of Rrj ,

(2.3) l(·; ·) is a C2−mapping.

3 Statement of the main result

The main result relies on the following additional assumptions.

(3.1) Under (2.2), (2.3) the set Lj , consisting of all y ∈ X such that l(y, ·) ◦Gj has degenerated critical points, is

a λn−null set for each j ∈ N.

(3.2) Under (2.2), (2.3) every set Lij (i, j ∈ N) of all y ∈ X with ∇ϑi l(y, ·) ◦ Gi = 0,∇ϑj l(y, ·) ◦ Gj = 0 and

∇yl(·, Gi(ϑi)) = ∇yl(·, Gj(ϑj)) for some (ϑi, ϑj) ∈ Θi ×Θj , Gi(ϑi) 6= Gj(ϑj), is a λn−null set.

Later on we shall replace (3.1) by some sufficient conditions.

Theorem 3.1 Let the assumptions (2.1) - (2.3) be fulfilled. If the mappings Gj (j ∈ N) are C2− immersions,

and if the conditions (3.1), (3.2) are valid, then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.
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The proof is delegated to appendix B.

In the following we try to substitute condition (3.1). Our main tool will be provided by Lemma A.1 (cf. appendix

A). Unfortunately, it can be applied directly only in the case that the dimension n of the sample space X coincides

with the dimension m of the parameter space Γ. But if we are in the position to modify the maximization problem

in a suitable way we would be able to draw on Lemma A.1. We shall treat the cases n ≥ m and m ≥ n separately.

4 Specializations

In the case of n ≥ m we can use Lemma A.1 if we may reduce the dimension of the sample space by the following

condition:

(4.1) There exist a C2−submersion T : X → Rm and a real-valued C2−mapping l∗ on T (X ) × Γ such that

l(y; ·) = l∗(T (y); ·) holds for arbitrary y ∈ X .

Since T is a C1−submersion, T (X ) is an open subset of Rm, and moreover, λn(T−1(B)) = 0 if λm(B) = 0 (cf.

[8], Proposition A3). Then a direct application of Theorem 3.1 with Lemma A.1 leads to the following result

concerning the uniqueness of the extremum estimation of ϑ.

Theorem 4.1 Let the condition (4.1) as well as the assumptions (2.1) - (2.3) be valid, let the mappings Gj (j ∈ N)

be C2−immersions, and let condition (3.2) be fulfilled. If there exist some C1−diffeomorphism g from an open

subset U of Rm onto an open subset g(U) of Rm and a C1−mapping φ : Γ → Rm such that t − φ(γ) ∈ U and

∇γ l
∗(t; ·) = g(t− φ(γ)) hold for (t, γ) ∈ T (X )× Γ, then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.

Remark 4.2 If n = m, condition (4.1) is satisfied, choosing for T the restriction of the identity mapping on Rn

to X . Therefore we may restate in this case Theorem 4.1 without condition (4.1).

Now let m ≥ n. For reduction of the dimension of Γ we want to assume:

(4.2) Under (2.2), (2.3) there exist an open subset H of X × Rn with nonvoid Hy := {x ∈ Rn | (y, x) ∈ H}

(y ∈ X ), a C2−mapping l∗ : H → R and a sequence (F j)j of mappings F j : Aj → Rn such that the

following properties are satisfied

a) F j is a C2−immersion on an open subset of Rpj for every j ∈ N.

b) If for y ∈ X and arbitrary j ∈ N the mapping l(y, ·) ◦ Gj has a degenerated critical point, then the

mapping l∗(y, ·) ◦ F j |(F j)−1(Hy) has a degenerated critical point too.
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Under condition (4.2) the combination of Theorem 3.1 and Lemma A.1 (cf. appendix A) reads as follows.

Theorem 4.3 Let the condition (4.2) as well as the assumptions (2.1) - (2.3) be valid, let the mappings Gj (j ∈ N)

be C2−immersions, and let condition (3.2) be fulfilled. If there exist some C1−diffeomorphism g from an open

subset U of Rn onto an open subset g(U) of Rn, an open subset V of Rn with V ⊇
S

y∈X
Hy, and a C1−mapping

φ : V → Rn such that y − φ(γ) ∈ U and ∇γ l
∗(y; ·) = g(y − φ(γ)) hold for (y, γ) ∈ H, then

K := {y ∈ X | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} ∈ B(X )

with QY (K) = 0.

Proof: Due to Lindelöf’s theorem (cf. appendix C, Proposition C.2) we may find a sequence (Ul × Vl)l of open

subsets of Rn × Rn with
∞S

l=1

Ul × Vl = H. In view of Lemma A.1 (cf. appendix A) the set Blj of all y ∈ Ul with

l∗(y, ·) ◦ F j |(F j)−1(Vl) having a degenerated critical point is a λn−null set for l, j ∈ N. Then, condition (4.2)

implies condition (3.1), and the statement of Theorem 4.1 follows from Theorem 3.1.

5 Maximum likelihood estimation in nonlinear regression mod-

els

Let Y = F (α) + U be a nonlinear regression model with nonstochastic regressors, where

(6.1) Y denotes the random vector of the endogenous variables,

(6.2) F : A→ Rn stands for the regression function defined on a subset A of Rr, r ≤ n,

(6.3) U =: (U1, ..., Un)′ symbolizes the random vector of the disturbances Ui which are supposed to be indepen-

dently and normally distributed with

EU = 0, (V ar(U1), ..., V ar(Un)) =: F̃ (β), F̃ : (]0,∞[)q → Rn, β 7→ (βi1 , ..., βin)

(i1, ..., in fixed values with {i1, ..., in} = {1, ..., q}).

It is easy to see that the parameter vector (α, β) is identified if and only if

(6.4) the injectivity of the regression function F is supposed.

Moreover, we assume that

(6.5) a sequence (pj)j of positive integers pj ≤ n, a sequence (Aj)j of open subsets Aj of Rpj and a sequence

(F j)j of mappings F j : Aj → Rn exist with

F (A) =

∞[
j=1

F j(Aj).
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W denotes the family of normal distributions with independent marginal distributions. Γ := Rn × (]0,∞[)n is a

parameter space of W. We can now apply our results of extremum estimation to the maximum likelihood estimation

of (α, β).

Theorem 5.1 Let us retake assumptions (6.1)-(6.5), let l(y, ·) denote the log likelihood function w.r.t. W and the

realization y of Y. Furthermore let G : A× (]0,∞[)q → Γ be defined by G(α, β) := (F (α), F̃ (β)).

If the mappings F j are C2−immersions, then

K := {y ∈ Rn | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} is a Borel subset of Rn

with QY (K) = 0.

Proof:

Let for a positive integer j the mapping Gj : Aj × (]0,∞[)q → Γ be defined by Gj(ϑj , β) = (F j(ϑj), F̃ (β)). Then

by assumption G fulfills the conditions (2.1), (2.2).

Next let us introduce the open subset H := {(y, µ) ∈ Rn × Rn |
P

t∈Ti

(yt − µt)
2 6= 0 for all i ∈ {1, ..., q}} of

Rn × Rn, where Ti := {t ∈ {1, ..., n} | F̃t(β) = βi} for i ∈ {1, ..., q}. Furthermore let us consider the mappings

h : H → (]0,∞[)q, defined by h(y, µ) = ( 1
]T1

P
t∈T1

[yt − µt]
2, ..., 1

]Tq

P
t∈Tq

[yt − µt]
2), and the mapping l∗ : H → R,

defined by

l∗(y, µ) := l(y, µ, F̃ ◦ h(y, µ)) = −1

2

„
n(ln(2π) + 1) +

qX
i=1

]Ti[ln(
X
t∈Ti

(yt − µt)
2)− ln(]Ti)]

«
.

By routine procedures it can be shown that l∗ and (F j)j satisfy condition (4.2). Note that we have

∇βl(y;µ, ·) ◦ F̃ = 0 ⇔ β = (
1

]T1

X
t∈T1

[yt − µt]
2, ...,

1

]Tq

X
t∈Tq

[yt − µt]
2), for all (y, µ) ∈ H.

Moreover we can define on U := {x ∈ Rn |
P

t∈Ti

x2
t 6= 0 for all i ∈ {1, ..., q}} the mapping g : U → Rn by

g(x) =
qP

i=1

P
t∈Ti

]TixtP
s∈Ti

x2
s
et, where {e1, ..., en} denotes the standard basis of Rn. We get for arbitrary (y, µ) ∈ H

y − µ ∈ U, ∇µl
∗(y; ·) = g(y − µ), ∇yl

∗(·;µ) = −g(y − µ),

g is a bijective indefinitely differentiable function from U onto U with g−1 = g. Thus ∇yl
∗(·;µ) 6= ∇yl

∗(·; µ̃) for

arbitrary µ 6= µ̃, which means that condition (3.2) is fulfilled. The statement of the theorem follows from Theorem

4.3.
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6 Maximum likelihood estimation in curved exponential families

Let ν be a σ-finite measure on the σ−algebra B(Rn) of Borel subsets of Rn which is dominated by the Lebesgue

measure on Rn. Additionally, let N := {γ ∈ Rn | 0 <
R

Rn exp(γ
′y)ν(dy) < ∞} and Γ be an open subset of

Rn enclosed in N . Introducing ψ : N → [−∞,∞], γ 7→ ln(
R

Rn exp(γ
′y)ν(dy)) we consider a minimal exponential

family W := {Pγ | γ ∈ Γ} of probability distributions having densities

fγ : Rn → R, y 7→ exp(γ′y − ψ(γ)) (γ ∈ Γ)

with respect to ν. The parameter vector γ is identified since W is a minimal exponential family with parameter

space Γ ⊆ N (cf. [2],Theorem 1.13). G : Θ → Γ denotes an injective mapping which induces the subfamily

WG := {PG(ϑ) ∈W | ϑ ∈ Θ} of W. Now we may consult Theorem 4.1 concerning the uniqueness of the maximum

likelihood estimation of the parameter vector ϑ.

Theorem 6.1 Let the mapping G satify the conditions (2.1), (2.2), let Y be a random vector with distribution

QY ∈WG, and let l(y; ·) : Γ → R denote the log likelihood function with respect to W and y ∈ Rn. If the mappings

Gj (j ∈ N) are C2−immersions, then

K := {y ∈ Rn | lG(y;ϑ) = lG(y; ϑ̃) = max
ϑ∈Θ

lG(y;ϑ) for some different ϑ, ϑ̃ ∈ Θ} is a Borel subset of Rn

with QY (K) = 0.

Proof:

ψ|Γ is indefinitely differentiable (cf. [11], Satz 1.164), which implies that φ : Γ → Rn, γ 7→ ∇γψ, and l(·; ·) | X ×Γ :

X × int(Γ) → R, defined by l(y; γ) = γ′y−ψ(γ), are indefinitely differentiable. Moreover, for arbitrary y ∈ X and

different γ, γ̃ ∈ Γ we may observe ∇yl(·; γ) = γ 6= γ̃ = ∇yl(·; γ̃), and furthermore ∇γ l(y; ·) = y −∇γψ. Thus the

statement is a direct consequence of Theorem 4.1.

Remark:

Theorem 6.1 retains the result of Pazman (cf. [8], Theorem) mentioned in the introduction, which in turn also

encompasses Pazman’s criterion concerning the uniqueness of nonlinear least squares estimation in nonlinear re-

gression models with nonstochastic regressors and i.i.d. disturbances (cf. [7], Theorem 3 and [9], Corollary 4.4.6).

7 Maximum likelihood estimation of location and scale param-

eter of a Gumbel distribution

Gumbel distributions build a subfamily of the so called extreme value distributions which play an important role

in extreme value theory. The Gumbel distribution with location parameter µ ∈ R and scale parameter σ > 0 is

7
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defined by the Lebesgue density

fµ,σ : R → R, z 7→ 1

σ
exp(−z − µ

σ
− exp(−z − µ

σ
))

(cf. [5], p. 76). We want to investigate the uniqueness of the maximum likelihood estimation of (µ, σ) based on a

random sample Y := (Y1, ..., Yn) (n ≥ 2) from a Gumbel distribution.

For this purposes let us introduce the mapping

l(·; ·) : Rn × (R×]0,∞[) → R, ((y1, ..., yn); (γ1, γ2)) 7→ n ln(γ2) +

nX
i=1

ln ◦f(0,1)(γ2yi − γ1)

Since φ : R×]0,∞[→ R×]0,∞[, (µ, σ) 7→ (µ
σ
, 1

σ
) is bijective, we may check easily that for every realization (y1, .., yn)

of (Y1, ..., Y1) the maximum likelihood estimation of (µ, σ) has at most one solution if and only if the mapping

l((y1, ..., yn); ·) has at most one maximizing point. Therefore we might try to apply Theorem 3.1 to l(·; ·) and the

identity mapping G on R×]0,∞[. Obviously, both mappings together satisfy the assumptions (2.1) - (2.3), and G

is a C2−immersion.

Observing that
df(0,1)

dz
(z) = f(0,1)(z)(exp(−z)−1) holds for z ∈ R, routine calculations lead to the following partial

derivatives of first and second order for l((y1, ..., yn); ·) ◦G ((y1, ..., yn) ∈ Rn)

∂l((y1, ..., yn); ·) ◦G
∂γ1

(γ1, γ2) = n− exp(γ1)

nX
i=1

exp(−γ2yi)

∂l((y1, ..., yn); ·) ◦G
∂γ2

(γ1, γ2) =
n

γ2
−

nX
i=1

yi + exp(γ1)

nX
i=1

yi exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ2

1

(γ1, γ2) = − exp(γ1)

nX
i=1

exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ1∂γ2

(γ1, γ2) = exp(γ1)

nX
i=1

yi exp(−γ2yi)

∂2l((y1, ..., yn); ·) ◦G
∂γ2

2

(γ1, γ2) = − n

γ2
2

− exp(γ1)

nX
i=1

y2
i exp(−γ2yi)

Now let (γ̂1, γ̂2) be a critical point of the function l((y1, ..., yn; ·) ◦ G. Then exp(γ̂1) =
n

nP
i=1

exp(−γ̂2yi)
as well as

n

γ̂2
=

nP
i=1

yi − exp(γ̂1)
nP

i=1

yi exp(−γ̂2yi), and hence

det∇∇(γ̂1,γ̂2)l((y1, ..., yn); ·) ◦G =

nP
i=1

exp(−γ̂2yi)
`
nyi −

nP
j=1

yj

´2

nP
i=1

exp(−γ̂2yi)

Thus the set L of all (y1, ..., yn) ∈ Rn with l((y1, ..., yn); ·) ◦ G having a degenerated critical point coincides with

the subvector space of all (y1, ..., yn) ∈ Rn with nyi =
nP

j=1

yj for i = 1, ..., n. In particular L is a λn−null set.
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Let us now consider for (y1, ..., yn) ∈ Rn different critical points (γ̂1, γ̂2) and (γ̃1, γ̂2) of l((y1, ..., y1); ·) ◦ G

satisfying ∇(y1,...,yn)l(·; (γ̂1, γ̂2)) = ∇(y1,...,yn)l(·; (γ̃1, γ̃2)). This means that for each i ∈ {1, ..., n} the equation

γ̂2(exp(γ̂1) exp(−γ̂2yi) − 1) = γ̃2(exp(γ̃1) exp(−γ̃2yi) − 1) is valid. Hence γ̂2 6= γ̃2, say γ̂2 > γ̃2, and addi-

tionally γ̂2 exp(γ̂1) = (γ̂2 − γ̃2) exp(γ̂2yi) + γ̃2 exp(γ̃1) exp((γ̂2 − γ̃2)yi) for i = 1, ..., n, which in turn implies

(γ̂2− γ̃2) exp(γ̂2yi)+ γ̃2 exp(γ̃1) exp((γ̂2− γ̃2)yi) = (γ̂2− γ̃2) exp(γ̂2y1)+ γ̃2 exp(γ̃1) exp((γ̂2− γ̃2)y1) for i = 1, ..., n.

The mapping g : R → R, x 7→ (γ̂2 − γ̃2) exp(γ̂2x) + γ̃2 exp(γ̃1) exp((γ̂2 − γ̃2)x), is differentiable, and its derivatives

satisfy
dg

dx
(x) = (γ̂2 − γ̃2)[γ̂2 exp(γ̂2x) + γ̃2 exp(γ̃1) exp((γ̂2 − γ̃2)x)] > 0 (x ∈ R)

Therefore g is injective, and we may conclude y1 = ... = yn. Then we know that the set L̂ of all (y1, ..., yn) such

that ∇(y1,...,yn)l(·; (γ̂1, γ̂2)) = ∇(y1,...,yn)l(·; (γ̃1, γ̃2)) holds for some couple (γ̂1, γ̂2) and (γ̃1, γ̂2) of different critical

points of l((y1, ..., y1); ·)◦G is enclosed in the subvector space of all (y1, ..., yn) ∈ Rn with y1 = ... = yn. In particular

L̂ is a λn−null set.

Altogether we have shown that l(·; ·) and G fulfill the conditions (3.1), (3.2), and this yields the following result

concerning the uniqueness of the maximum likelihood estimation of (µ, σ) due to Theorem 3.1.

Theorem 7.1 Let Y := (Y1, ..., Yn) (n ≥ 2) be a random sample from the Gumbel distribution with the location

parameter µ ∈ R and scale parameter σ > 0, and let L(y1, ..., yn; ·) denote the likelihood function w.r.t. the family

of Gumbel distributions and the realization (y1, ..., yn). Furthermore let the distribution of Y be symbolized by QY .

Then

K := {(y1, ..., yn) ∈ Rn | L((y1, ..., yn); ·) has at least two maximizing points}

is a Borel subset of Rn with QY (K) = 0.

A Appendix

Lemma A.1 Let H1, H2 be open subsets of Rk, and let f : H1×H2 → R be a C2−mapping. Moreover there exist

some C1−diffeomorphism g from an open subset U of Rk onto an open subset g(U) of Rk and a C1−mapping

φ : H2 → Rk such that t− φ(γ) ∈ U and ∇γf(t; ·) = g(t− φ(γ)) hold for (t, γ) ∈ H1 ×H2.

If F denotes a C2−immersion from an open subset A of Rp into H2, then λk(BF ) = 0, where BF is defined to

consist of all t ∈ H1 such that ∇αf(t, ·) ◦ F = 0 and det∇∇αf(t, ·) ◦ F = 0 for some α ∈ H2.

Proof:

For p = k we have

∇αf(t; ·) ◦ F = 0, det∇∇αf(t; ·) ◦ F = 0 ⇔ ∇F (α)f(t; ·) = 0, det∇∇F (α)f(t; ·) = 0.
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Thus, defining, φ̃ : Ũ → Rk, t 7→ φ(t) + g−1(0), we may conclude BF ⊆ φ̃({t ∈ Ũ | det Jt(φ̃) = 0}). Note that g is

a diffeomorphism with

∇F (α)f(t; ·) = g(t− φ ◦ F (α)).

Sard’s theorem (cf. appendix C, Proposition C.1) leads to λk(BF ) = 0.

Now let p < k.

Since F is a C2−immersion, we may conclude from the rank theorem together with standard orthonormalization

that for an arbitrary α ∈ A there are C1− mappings h1
α, ..., h

k−p
α defined on an open neigbourhood Uα of α in A

satisfying

hi
α(α̃)′Jα̃(F ) = 0, hi

α(α̃)′hi
α(α̃) = 1, hi

α(α̃)′hq

ϑj (α̃) = 0 (i 6= q)

for every α̃ ∈ Uα and arbitrary i, q ∈ {1, ..., k − p}.

By Lindelöf’s theorem (cf. appendix C, Proposition C.2) we may select a sequence (α(s))s in A such that (Uα(s))s

is a cover of A. For abbreviation we set Us := Uα(s), h
i
s := hi

α(s) (i = 1, ..., k−p). Furthermore xν : Rk → R denotes

the projection on the ν−th component (ν ∈ {1, ..., k}).

We observe for (t, α) ∈ H1 ×A

∇αf(t; ·) ◦ F = Jα(F )′∇F (α)f(t; ·)

and

∇∇αf(t; ·) ◦ F =

kX
ν=1

∂f(t; ·)
∂xν

(F (α))∇∇αxν ◦ F + Jα(F )′∇∇F (α)f(t; ·)Jα(F )

=

kX
ν=1

xν ◦ g(t− φ ◦ F (α))∇∇αxν ◦ F − Jα(F )′Jt−φ◦F (α)(g)Jα(φ ◦ F ).

Let for s ∈ N the mappings gs, φs : Ws → Rk be defined by gs(α, b) :=
k−pP
i=1

bih
i
s(α) and φs(α, b) := φ◦F (α)+ g−1 ◦

gs(α, b), where Ws consists of all (α, b) ∈ Us ×Rk−p with
k−pP
i=1

bih
i
s(α) ∈ g(U). Notice that Ws is an open subset of

Rk, and that gs is a C1−mapping, which implies that φs is a C1−mapping.

Now let (t̂, α̂) ∈ H1 × A with ∇α̂f(t̂; ·) ◦ F = 0. Then there exist some s ∈ N and a vector b̂ := (b̂1, ..., b̂k−p) from

Rk−p with

g(t̂− φ ◦ F (α̂)) = ∇F (α̂)f(t̂; ·) =

k−pX
i=1

b̂ih
i
s(α̂).

In particular (α̂, b̂) ∈WS , and g(t̂− φ ◦ F (α̂)) = gs(α̂, b̂). Hence t̂ = φs(α̂, b̂).

As a consequence of Jα(F )′hi
s(α) = 0 for α ∈ Us as well as i = 1, ..., k − p we obtain

kX
ν=1

xν ◦ hi
s(α)∇∇αxν ◦ F = −Jα(F )′Jα(hi

s),
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and therefore

∇∇α̂f(t̂; ·) ◦ F = −Jα̂(F )′Jt̂−φ◦F (α̂)(g)Jα̂(φs(·; b̂)).

Following the rules for determinants of partioned matrices ( cf. [3], p.43, equation (II)), we get

| det[Jα̂(F ), h1
s(α̂), ..., hk−p

s (α̂)]′Jt̂−φ◦F (α̂)(g)J(α̂,b̂)(φ
s)| = | det Jα̂(F )′Jt̂−φ◦F (α̂)(g)Jα̂(φs(·; b̂))|

= | det∇∇α̂f(t̂; ·) ◦ F |

[Jα̂(F ), h1
s(α̂), ..., hk−p

s (α̂)]′Jt̂−φ◦F (α̂)(g) has rank k since F is an immersion. Therefore we can conclude

det∇∇α̂jf(t̂; ·) ◦ F j = 0 ⇔ det J(α̂,b̂)(φ
s) = 0

Thus BF ⊆ N :=
∞S

s=1

φs({(α, b) ∈Ws | det J(α,b)(φ
s) = 0}). Applying Sard’s theorem (cf. appendix C, Proposition

C.1), we get N as a set of Lebesgue-measure zero, which completes the proof.

B Appendix

Proof of Theorem 3.1:

Let us retake notations and assumptions from Theorem 3.1. Furthermore let us introduce for positive integer i, j

the set Mij consisting of all y ∈ X with ∇ϑi l(y, ·) ◦Gi = 0,∇ϑj l(y, ·) ◦Gj = 0 and l(y,Gi(ϑi)) = l(y,Gj(ϑj)) for

some ϑi, ϑj with Gi(ϑi) 6= Gj(ϑj). Obviously, K ⊆
S

(i,j)∈N×N
Mij . Therefore it remains to show

(1) Mij is a λn−null set for arbitrary i, j ∈ N.

(2) K is a Borel subset of X .

proof of (1):

Let us define for i, j ∈ N the open subset U :=
˘
(ϑi, ϑj , y) ∈ Θi ×Θj ×X | Gi(ϑi) 6= Gj(ϑj)

¯
of Θi ×Θj ×X , and

the set Z := h−1({0}) ∩Θi ×Θj × (Rn \ (Li ∪ Lj ∪ Lij)), where

h : U → Rri+rj+1, (ϑi, ϑj , y) 7→
`
∇ϑi l(y; ·) ◦Gi,∇ϑj l(y; ·) ◦Gj , l(y;Gi(ϑi))− l(y;Gj(ϑj))

´
.

Let (ϑ̂i, ϑ̂j , y) be an element of Z and s ∈ {1, ..., n} with ∂l(·;Gi(ϑ̂i))
∂ys

(y) 6= ∂l(·;Gj(ϑ̂j))
∂ys

(y). Using the Laplace-

expansion of determinants and the rules of partioned matrices (cf. [3], p.43, equation (I)), we obtain

det[J(ϑ̂i,ϑ̂j)(h(·, ·, y)),
∂h

∂ys
(ϑ̂i, ϑ̂j , y)]

= det(∇∇ϑ̂i l(y; ·) ◦Gi) det(∇∇ϑ̂j l(y; ·) ◦Gj)
ˆ ∂l(·;Gi(ϑ̂i))

∂ys
(y)− ∂l(·;Gj(ϑ̂j))

∂ys
(y)

˜
6= 0,
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noticing y 6∈ Li ∪Lj . Thus Z is a subset of Ũ := {(ϑi, ϑj , y) ∈ U | rank of J(ϑi,ϑj ,y)(h) = ri + rj + 1}, which is an

open subset of Rri+rj+n. Therefore h | Ũ is a C1−submersion and Z̃ := (h | Ũ)−1({0}) is empty or a (n−1)−dim.

C1−submanifold of Rri+rj+n. We have

Mij \ (Li ∪ Lj ∪ Lij) = Pr(Z) ⊆ Pr(Z̃),

where Pr denotes the canonical projection from Rri+rj+n onto Rn. By Sard’s theorem (cf. appendix C, Proposition

C.1) we get λn(Pr(Z̃)) = 0 and, due to assumptions (3.1), (3.2),

λn(Mij) = λn`
Mij \ (Li ∪ Lj ∪ Lij)

´
+ λn`

Li ∪ Lj ∪ Lij

´
= 0.

proof of (2):

For positive integers i,j we define the open subset Nij := {(ϑi, ϑj) ∈ Θi × Θj | Gi(ϑi) 6= Gj(ϑj)} of Θi ×

Θj respectively Rri+rj . Applying Lindelöf’s Theorem (cf. appendix C, Proposition C.2) and using the local

compactness of Nij we get a sequence (Uν × Vν)ν of compact sets Uν × Vν satisfying Nij =
∞S

ν=1

Uν × Vν .

Since each set Uν × Vν is sequentially compact, every y ∈ X being an accumulation point of the set

Gij
ν :=

˘
y ∈ X | l(y;Gi(ϑi)) = l(y;Gj(ϑj)) = max

ϑ∈ϑ
lG(y;ϑ) for some (ϑi, ϑj) ∈ Uν × Vν

¯
is also an element of Gij

ν , i.e. the sets Gij
ν are closed in X and therefore Borel subsets. Then K is a Borel subset

because

K =

∞[
i=1

∞[
j=1

∞[
ν=1

Gij
ν

Therefore (2) is shown, which completes the proof.

C Appendix

Proposition C.1 (Special versions of Sard’s theorem) Let f : U → Rt denote a Cr−mapping (r ∈ N) from

an open subset U of Rs into Rt. Then we can state:

.1 If s = t, then f({x ∈ U | det Jx(f) = 0}) is a λt−null set.

.2 If A ⊆ U is a m−dimensional Cr−submanifold of Rs with 0 ≤ m < t, then f(A) is a λt−null set.

These versions of Sard’s theorem may be found in [1] (Corollary 3.3.17.4 and Theorem 4.3.1) or in [4] (p. 69) or

in [10] (remark on Definition 3.3 and Theorem 3.1).
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Proposition C.2 (Lindelöf ’s theorem) Let (Ω, τ) denote a topological Hausdorff space such that τ has a count-

able base. Then every open cover of a subset A ⊆ Ω has a countable subcover.

For a proof cf. e.g. [6] (p.49).
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