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On complete convergence for arrays of rowwise dependent random variables

Anna Kuczmaszewska

Department of Applied Mathematics, Lublin University of Technology,
Nadbystrzycka 38 D 20-618 Lublin, Poland

Abstract

This paper establishes two results for complete convergence in the law of large numbers for
arrays under %-mixing and ~%-mixing association in rows. They extend several known results.

AMS classi�cation: 60F15
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1. Introduction

Let fXn; n � 1g be a sequence of random variables de�ned on probability space (
 ;F ; P ). A
sequence fXn; n � 1g is said to converge completely to a constant C if

1X
n=1

P
�jXn � Cj > "

�
<1; 8" > 0:

Hsu and Robbins (1947), who introduce this concept, proved that the sequence of arithmetic means
of independent identically distributed random variables converges completely to the expected value
of the summands, provided the variance is �nite. The converse theorem was proved by Erd�os.

The extensions of Hsu-Robbins-Erd�os's result, due to Katz (1963), Baum and Katz (1965),
Chow (1973), form a complete convergence theorem with a Marcinkiewicz-Zygmunt type normal-
ization (see Gut (1983)).

Theorem 1.1. Let fXn; n � 1g be a sequence of independent identically distributed random
variables and let �r � 1, � > 1

2 . The following statements are equivalent:

(i) EjX1jr <1; and, if r � 1; EX1 = 0;

(ii)

1X
n=1

n�r�2P [j
nX
i=1

Xij > n�"] <1; 8" > 0;

(iii)

1X
n=1

n�r�2P [max
k�n

j
kX
i=1

Xij > n�"] <1; 8" > 0:

If �r > 1, � > 1
2 the above are also equivalent to

(iv)

1X
n=1

n�r�2P [sup
k�n

k��
kX
i=1

Xij > "] <1; 8" > 0:

Many authors generalized and extended this result without assumption of identical distribution
in several directions. They studied the cases of independent, stochastically dominated random
variables, triangular arrays of rowwise independent, stochastically dominated in the Cesaro sense
random variables and sequences of independent random variables taking value in a Banach space
( Pruitt (1966), Rohatgi (1971), Hu, Moricz and Taylor (1989), Gut (1992), Wang, Bhaskara Rao
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and Yang (1993), Kuczmaszewska and Szynal (1988, 1991, 1994), Sung (1997) Bozorgnia, Patterson
and Taylor (1993), Hu, Rosalsky, Szynal and Volodin (1999), Hu, Szynal and Volodin (1998), Hu
and Volodin (2000), Ahmed, Antonini and Volodin (2002), Kuczmaszewska (2004), Sung, Volodin
and Hu (2005), T�om�acs (2005)).

In this paper we consider a complete convergence in the strong law of large numbers for arrays
of dependent random variables. We study the complete convergence for %- mixing and ~%-mixing
sequences of random variables. The obtained results extend some previous known. Some results
for complete convergence for %-mixing and ~%-mixing random variables one can �nd in Zhengyan
and Chuanrong (1996) (Shao, Kong and Zang, Section 8.4), Shao (1995), Shixin (2004).

De�nition 1.1. A sequence of random variables fXn; n � 1g is said to be a %-mixing
sequence if the maximal correlation coe�cient

%(n) = sup
k�1;X2L2(Fk

1
);Y 2L2(F1

k+n
)

��cov(X;Y )
��

p
VarX � VarY �! 0; (1:1)

as n �!1, where Fm
n is the �-�eld generated by random variables Xn; Xn+1; : : : ; Xm.

De�nition 1.2. A sequence of random variable fXn; n � 1g is said to be a ~%-mixing sequence
if there exists k 2 N such that

~%(k) = sup
S;T

�
sup

X2L2(FS);Y 2L2(FT )

cov(X;Y )p
VarX � VarY

�
< 1; (1:2)

where S, T are the �nite subsets of positive integers such that dist (S; T ) � k and FW is the �-�eld
generated by the random variable fXi; i 2W � Ng.

The ~%-mixing conception is similar to the %-mixing, but they are quite di�erent from each
other.

In our further consideration we need the following de�nition and lemmas.

De�nition 1.3. A real valued function l(x), positive and measurable on [A;1) for some
A > 0, is said to be slowly varying if

lim
x!1

l(x � �)
l(x)

= 1; for each � > 0:

Lemma 1.1. (Shao, (1995)). Let fXn; n � 1g be a %-mixing sequence of random variables
such that EXn = 0, n � 1. Then for any q � 2, there exists a constant K = K(q; %(�)) depending
only on q and %(�) such that

E
�
max
k�n

jSkj
�q � K

�
nq=2 exp

�
K

[lnn]X
i=0

%(2i)
	
max
k�n

(EX2
k)

q=2

+n exp
�
K

[lnn]X
i=0

%2=q(2i)
	
max
k�n

EjXkjq
�
: (1:3)

Lemma 1.2. (Yang Shanchao, (1998) and Peligrad and Gut, (1999)). Let f�n; n � 1g be a
~%-mixing sequence with ~%(1) < 1. Let Xn 2 �(�i; i � 1), EXn = 0, EjXnjp < 1, n � 1, p > 1.
Then there exists a positive constant C such that

E
���
nX
i=1

Xi

���q � C

nX
i=1

EjXijq; 8n � 1; 1 < q � 2; (1:4)
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E
���
nX
i=1

Xi

���q � C
h nX
i=1

EjXijq +
� nX
i=1

EX2
i

� q

2
i
; 8n � 1; q > 2: (1:5)

We also assume that in our consideration constant C isn't the same constant in each case.

2. The main results

In this paper we consider arrays of random variables.
Let %n(i) denotes the maximal correlation coe�cient de�ned in (1.1) for the n-th row of an

array fXni; i � 1; n � 1g i.e for the sequence Xn1; Xn2; Xn3; : : : , n � 1.
Similarly, we will use the notation ~%n(k) for denoting the coe�cient de�ned in (1.2) for the

sequence Xn1; Xn2; Xn3; : : : , n � 1.
Moreover, let f'n; n � 1g be a sequence of nonnegative, even, continuous and nondecreasing

on (0;1) functions 'n : R! R
+ with lim

x!1
'n(x) =1 and such that

'n(x)=x% and 'n(x)=x
2 &; as x!1: (2:1)

Theorem 2.1. Let fXni; i � 1; n � 1g be an array of random variables, which are %-mixing
sequences in each row, and such that E'n(jXnij) <1, i � 1, n � 1, where 'n is de�ned in (2.1).
Assume that for the constant K de�ned in (1.3), 0 < t < 2, q � 2 , some sequence fcn; n � 1g
of positive real numbers and some strictly increasing sequence fbn; n � 1g of positive integers the
following conditions are ful�lled

(i)

1X
n=1

cn

bnX
i=1

P [jXnij � b
1
t
n ] <1;

(ii)

1X
n=1

cn exp
�
K

[log bn]X
i=1

%n(2
i)
	
b
q

2
n
maxi�bn

�
E'n(Xni)I[jXnij < b

1
t
n ]
� q
2

�
'n(b

1
t
n )
� q
2

<1;

(iii)

1X
n=1

cn exp
�
K

[log bn]X
i=1

%
2
q

n (2
i)
	
b
1� q

t
n max

i�bn
EjXnijqI[jXnij < b

1
t
n ] <1:

Then for Snk =

kX
i=1

Xni and any " > 0

1X
n=1

cnP
�
max
i�bn

��Sni �
iX

j=1

EXnjI[jXnj j < b
1
t
n ]
�� � b

1
t
n"
�
<1: (2:2)

Proof. Let X 0
ni = XniI[jXnij < b

1
t
n ], Yni = X 0

ni � EX 0
ni and S0nk =

Pk
i=1 Yni.

Using Lemma 1.1 we obtain

P
�
max
i�bn

��Sni �
iX

j=1

EXnjI[jXnj j < b
1
t
n ]
�� � b

1
t
n"
�

�
bnX
i=1

P
�jXnij � b

1
t
n

�
+ P [max

i�bn
jS0nij � b

1
t
n"
�
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�
bnX
i=1

P
�jXnij � b

1
t
n

�
+ 2qKb

�
q

t
n fb

q

2
n exp

�
K

[log bn]X
i=0

%n(2
i)
�
max
i�bn

�
EjXnij2I[jXnij < b

1
t
n ]
� q
2

+bn exp
�
K

[log bn]X
i=0

%
2
q

n (2
i)
�
max
i�bn

EjXnijqI[jXnij < b
1
t
n ]g: (2:3)

Therefore, by (2.3) and the assumptions (i) and (iii), it is enough to show that

1X
n=1

cnb
�
q

t
n fb

q

2
n exp

�
K

[log bn]X
i=0

%n(2
i)
�
max
i�bn

�
EjXnij2I[jXnij < b

1
t
n ]
� q
2 g <1:

Indeed we see

1X
n=1

cnb
�
q

t
n fb

q

2
n exp

�
K

[log bn]X
i=0

%n(2
i)
�
max
i�bn

�
EjXnij2I[jXnij < b

1
t
n ]
� q
2 g

�
1X
n=1

cnb
q

2
n exp

�
K

[log bn]X
i=0

%n(2
i)
�maxi�bn�EjXnij2I[jXnij < b

1
t
n ]
� q
2

(b
2
t
n )

q

2

�
1X
n=1

cnb
q

2
n exp

�
K

[log bn]X
i=0

%n(2
i)
�maxi�bn�E'n(jXnij)I[jXnij < b

1
t
n ]
� q
2

('n(b
1
t
n ))

q

2

<1:

This completes the proof.

From Theorem 2.1 we get the following result.

Corollary 2.1. Let �p > 1 and in the case (a) r = 2 if 1 � p < 2 or in the case (b) r > 2

if r > p � 2 and � >
r
2
�1

r�p . Let fXni; i � 1; n � 1g be an array of identically distributed random

variables, which are %-mixing sequences in each row, and such that EX11 = 0 and EjX11jp < 1.
Assume that

1X
i=1

%
2
r

1 (2
i) <1: (2:4)

Then
1X
n=1

n�p�2P
�
max
i�n

jSnij � "n�
�
<1; (2:5)

for any " > 0.

Proof. Let q := r, 1
t := �, cn := n�p�2, bn = n and 'n(x) := x2. Then, by the assumption

EjX11jp <1, we obtain

(i)

1X
n=1

cn

nX
i=1

P [jXnij � n
1
t ] =

1X
n=1

n�p�1P
�jX11j � n�

�

=

1X
n=1

n�p�1
1X
j=n

P
�
j� � jX11j < (j + 1)�

�
=

1X
n=1

P
�
n� � jX11j < (n+ 1)�

� nX
i=1

i�p�1

� C

1X
n=1

n�pP
�
n� � jX11j < (n+ 1)�

�
= CEjX11jp <1:

4
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Moreover, we note that in the case (a) (r = 2; 1 � p < 2) the conditions (ii) and (iii) from
Theorem 2.1 are identical. So, by (2.4) we get

1X
n=1

n�p�2 exp
�
K

[logn]X
i=1

%n(2
i)
	
n1�2�max

i�n

�
EjXnij2I[jXnij < n�]

�

= C

1X
n=1

n�(p�2)�1EjX11jp+(2�p)I[jX11j < n�] <1:

In the case (b) (r > p � 2, � >
r
2
�1

r�p ), by (2.4) and the assumption EjX11jp <1, we have

(ii)

1X
n=1

cn exp
�
K

[logn]X
i=1

%n(2
i)
	
n
q

2

maxi�n
�
E'n(Xni)I[jXnij < n

1
t ]
� q
2

�
'n(n

1
t )
� q
2

= C

1X
n=1

n�p�2+ r
2
��r(EjX11j2) r2 <1

and

(iii)

1X
n=1

cn exp
�
K

[logn]X
i=1

%
2
q

n (2
i)
	
n1�

q

t max
i�n

EjXnijqI[jXnij < n
1
t ]

= C

1X
n=1

n�(p�r)�1EjX11jp+(r�p)I[jX11j < n�] <1:

To complete this proof, it enough to show that

n��
iX

n=j

EX11I[jX11j < n�] �! 0; n �!1

for each 1 � i � n.
This fact immediately follows from the assumptions EX11 = 0 and EjX11jp <1:

Indeed we see

��n��
iX

j=1

EX11I[jX11j < n�]
�� � n��

iX
j=1

EjX11jI[jX11j � n�]

� n��
iX

j=1

EjX11jp
(n�)p�1

� n��n��p+�iEjX11j = C
i

n�p
�! 0; n �!1:

This proves that (2.5) holds.

This corollary generalizes Shao's result (1995) obtained for %-mixing sequences of identically
distributed random variables. As a consequence of the above result we can get the following
Marcinkiewicz- Zygmunt law of large numbers.

Corollary 2.2. Let 1 � p < 2, �p > 1 and fXni; i � 1; n � 1g be an array of identically
distributed random variables, which are %-mixing sequences in each row, and such that EX11 = 0
and EjX11jp <1. Assume that

1X
i=1

%1(2
i) <1:

5



Acc
ep

te
d m

an
usc

rip
t 

Then

n��
nX
i=1

Xni �! 0; a.s., n �!1:

The next corollary we get for identically distributed random variables putting in Theorem 2.1
cn = n�p�2l(n), where l(n) is a slowly varying function.

Corollary 2.3. Let �p > 1 and in th case (a) r = 2 if 1 � p < 2 or in the case (b) r > 2 if r >

p � 2 and � >
r
2
�1

r�p . Let fXni; i � 1; n � 1g be an array of identically distributed random variables,

which are %-mixing sequences in each row, and such that EX11 = 0 and EjX11jpl(jX11j 1� ) < 1.
Assume that (2.4) holds

Then
1X
n=1

n�p�2l(n)P
�
max
i�n

jSnij � "n�
�
<1; (2:6)

for any " > 0.

Proof. Putting q := r, 1
t := �, cn := n�p�2l(n), bn := n and 'n(x) := x2, by the assumption

EjX11jpl(jX11j 1� ) <1, we obtain

(i)

1X
n=1

n�p�2l(n)

nX
i=1

P
�jXnij � n�

� �
1X
k=1

(2k)�pl(2k)

1X
j=k

P
�
(2j)� � jX11j < (2j+1)�

�

� CEjX11jpl(jX11j 1� ) <1
In the case (a) (r = 2; 1 � p < 2) we have

1X
n=1

n�p�2l(n) exp
�
K

[logn]X
i=1

%n(2
i)
	
n1�2�max

i�n

�
EjXnij2I[jXnij < n�]

�

� C

1X
k=1

(2k)�(p�2)l(2k)EjX11j2I[jX11j < (2k)�]

� C

1X
k=1

(2k)�(p�2)l(2k)

kX
i=1

Z (2i)�

(2i�1)�
x2dF (x)

� C

1X
m=1

(2m)�(p�2)

Z (2m)�

(2m�1)�
l(jxj 1� )x2dF (x) � CEjX11jpl(jX11j 1� ) <1;

which proves that (ii) and (iii) hold.

In case (b) (r > p � 2) we have

(ii)

1X
n=1

n�p�2l(n) exp
�
K

[logn]X
i=1

%n(2
i)
	
n
r
2

maxi�n
�
E'n(Xni)I[jXnij < n�]

� r
2

�
'n(n�)

� r
2

= C

1X
n=1

n�p�2+ r
2
��rl(n)(EjX11j2) r2 � C

1X
k=1

(2k)�(p�r)�1+ r
2 l(2k) <1

and

(iii)

1X
n=1

n�p�2l(n) exp
�
K

[logn]X
i=1

%
2
q

n (2
i)
	
n1��rmax

i�n
EjXnijrI[jXnij < n�]

= C

1X
k=1

(2k)�(p�r)l(2k)

kX
i=1

Z (2i)�

(2i�1)�
jxjrdF (x)

6
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� C

1X
m=1

(2m)�(p�r)
Z (2m)�

(2m�1)�
l(jxj 1� )xrdF (x) � CEjX11jpl(jX11j 1� ) <1:

Moreover, we see that EX11 = 0 and EjX11jpl(jX11j 1� ) <1 imply

��n��
iX

j=1

EX11I
�jX11j < n�

��� �! 0; as n �!1 for each 1 � i � n.

This completes the proof.

The case �p = 1 was considered by Shao for identically distributed random variables and
by Kong and Zhang for non-identically distributed random variables (see Zhang and Chuanrong
(1996)).

Let now ' : R+ �! R
+ be a nonegative continuous and increasing function, satisfying (2.1)

and let '�1 be an inverse of '. The consideration similar to presented in proofs of Theorem 2.1
and Corollary 2.3 and the fact that

P
�
max
i�n

'(jSnij) � "n
� � P

�
max
i�n

(jSnij) � '�1("n)
�

allow us to formulate the following result.

Theorem 2.2. Let �p > 1 and fXni; i � 1; n � 1g be an array of identically distributed
random variables, which are %-mixing sequences in each row, and such that EX11 = 0 and
E
�
'(jX11j))�pl('(jX11j) <1. Assume that (2.4) with r = 2 holds.
Then

1X
n=1

n�p�2l(n)P
�
max
i�n

'(jSnij) � "n
�
<1;

for any " > 0.

Shao proved the analogous result for �p = 1 (Zhengyan and Chuanrong (1996) Section 8.4).

In the next part of this section we consider arrays of random variables, which are ~%-mixing
sequences.

Theorem 2.3. Let fXni; i � 1; n � 1g be an array of random variables, which are ~% -mixing
sequences in each row with ~%n(1) < 1, n � 1. Assume that for some sequence fcn; n � 1g of positive
real numbers, some strictly increasing sequence fbn; n � 1g of positive integers and 0 < t < 2 the
following conditions are ful�lled

(I)

1X
n=1

cn

bnX
i=1

P [jXnij � b
1
t
n ] <1;

(II)

1X
n=1

cnb
�
q

t
n

bnX
i=1

EjXnijqI[jXnij < b
1
t
n ] <1;

(III)

1X
n=1

cnb
�
q

t
n

� bnX
i=1

EjXnij2I[jXnij < b
1
t
n ]
� q
2 <1;

Then for Sn =

bnX
i=1

Xni and any " > 0

1X
n=1

cnP
���Sn �

bnX
i=1

EXniI[jXni

�� < b
1
t
n ]j � b

1
t
n"
�
<1: (2:7)

7
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Proof. Let X 0
ni = XniI[jXnij < b

1
t
n ], Yni = X 0

ni � EX 0
ni and S0n =

Pbn
i=1 Yni.

Using Lemma 1.2 we obtain

P
�jS0nj � b

1
t
n"
� � C"�qb

�
q

t
n

� bnX
i=1

EjY 0nijq +
� bnX
i=1

EjY 0nij2
� q
2
	

� C"�qb
�
q

t
n

� bnX
i=1

EjX 0
nijq +

� bnX
i=1

EjX 0
nij2

� q
2
	
: (2:8)

Moreover, we see that

P
���Sn �

bnX
i=1

XniI[jXnij < b
1
t
n ]
�� � b

1
t
n"
� � P

���S0n�� � b
1
t
n"
�
+

bnX
i=1

P
�jXnij � b

1
t
n

�
: (2:9)

Therefore, by (2.8), (2.9), (I), (II) and (III) we see that (2.7) holds.

Corollary 2.4. Let fXni; i � 1; n � 1g be an array of random variables, which are ~% -mixing
sequences in each row with ~%n(1) < 1, n � 1. Moreover, let E'n(jXnij) < 1, i � 1, n � 1,
where 'n is de�ned in (2.1). Assume, that for some sequence fcn; n � 1g of positive real numbers,
some strictly increasing sequence fbn; n � 1g of positive integers and 0 < t < 2 (I) holds and the
following conditions are ful�lled

(II 0)

1X
n=1

cnb
� 4
t

n

bnX
i=1

EjXnij4I[jXnij < b
1
t
n ] <1;

(III 0)

1X
n=1

cn'
�2
n (b

1
t
n )

bnX
i=2

i�1X
j=1

E'n(jXnij)E'(jXnj j) <1:

Then for any " > 0 (2.9) holds.

Proof. Putting q = 4 in Theorem 2.3 we see, that condition (II) is ful�lled and

1X
n=1

cnb
� 4
t

n

� bnX
i=1

EjX 0
nij2

�2

� C
� 1X
n=1

cnb
� 4
t

n

bnX
i=1

�
EjX 0

nij2
�2

+

1X
n=1

cnb
� 4
t

n

bnX
i=2

i�1X
j=1

EjX 0
nij2EjX 0

nj j2
	

� C
� 1X
n=1

cnb
� 4
t

n

bnX
i=1

EjX 0
nij4 +

1X
n=1

cn'
�2
n (b

1
t
n )

bnX
i=2

i�1X
j=1

E'n(jXnij)E'n(jXnj j)
	
<1;

by (II') and (III').
Therefore (2.9) holds.

Corollary 2.5. Let �p > 1, q > 2 and in the case (a) 1 � p < 2 or in the case (b) 2 � p < q
and � > q�2

2(q�p) . Let fXni; i � 1; n � 1g be an array of identically distributed random variables,

which are ~%-mixing sequences in each row with ~%1(1) < 1 and such that EX11 = 0 and EjX11jp <1:
Then for any " > 0 we have

1X
n=1

n�p�2P
��� nX
i=1

Xni

�� � "n�
�
<1: (2:10)
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Proof. Put cn = n�p�2, 1
t := � and bn = n in Theorem 2.3. Then we have

(I)

1X
n=1

cn

nX
i=1

P [jXnij � n
1
t ] =

1X
n=1

n�p�1P
�jX11j � n�

�

=

1X
n=1

n�p�1
1X
j=n

P
�
j� � jX11j < (j + 1)�

�
=

1X
n=1

P
�
n� � jX11j < (n+ 1)�

� nX
i=1

i�p�1

< C

1X
n=1

n�pP
�
n� � jX11j < (n+ 1)�

�
= CEjX11jp <1 and

(II)

1X
n=1

cn
�
bn
�� q

t

bnX
i=1

EjXnijqI[jXnij < b
1
t
n ]

�
1X
n=1

n�(p�q)�1EjX11jp+(q�p)I[jX11j < n�] <1:

To show that condition (III) is ful�lled we must consider the cases (a) and (b) separately.
In the case (a) we have

(III)

1X
n=1

cnb
�
q

t
n

� bnX
i=1

EjX 0
nij2

� q
2

�
1X
n=1

n�p�2n��qn
q

2n(2�p)��
q

2

�
EjX11jp

� q
2= C

1X
n=1

n(�p�1)(1� q

2
)�1 <1

and in the case (b)

(III)

1X
n=1

cnb
�
q

t
n

� bnX
i=1

EjX 0
nij2

� q
2

�
1X
n=1

n�p�2n��qn
q

2

�
EjX11j2

� q
2= C

1X
n=1

n�(p�q)�2+ q

2 <1:

Thus we have established that all assumptions from Theorem 2.3 are ful�lled. Moreover, we
see ��n��

nX
i=1

EXniI[jXnij < n�]
�� � n��

nX
i=1

��EXni

��I[jXnij � n�]

= n��+1EjX11jp
(n�)p�1

= n1��pEjX11jp �! 0; as n �!1;

because �p > 1. Therefore (2.10) holds.

Corollary 2.5 is more general than result obtained by G. Shixin (2004). The condition (2.10)
is stronger than this presented by Shixin.

Corollary 2.6. Let fXni; i � 1; n � 1g be an array of identically distributed random variables,
which are ~%-mixing sequences in each row with ~%1(1) < 1 and such that EX11 = 0 and EjX11j2 <1.
Then for any " > 0 we have

1X
n=1

n�1P
��� nX
i=1

Xni

�� � "n�
�
<1: (2:11)

Proof. Putting cn = n�1, t = 1, bn = n, p = 2 and 'n(x) = x2 in Corollary 2.4 we get

9
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(I)

1X
n=1

n�1
nX
i=1

P [jXnij � n] =

1X
n=1

1X
j=n

P
�
j � jX11j < j + 1

�

=

1X
n=1

P
�
n � jX11j < n+ 1

� nX
i=1

i < CEjX11j2 <1;

(II 0)

1X
n=1

n�1n�4
nX
i=1

EjX11j4I[jX11j < n] �
1X
n=1

n�2EjX11j2 = C

1X
n=1

n�2 <1

and

(III 0)

1X
n=1

n�1n�4
nX
i=2

i�1X
j=1

�
EjX11j2

�2
= C

1X
n=1

n�3 <1:

Moreover ��n�1
nX
i=1

EX11I[jX11j < n]
��

� n�1
nX
i=1

EjX11jI[jX11j � n] =
EjX11j2

n
�! 0; as n �!1:

Corollary 2.7. Let fXni; i � 1; n � 1g be an array of random variables, which are ~% -mixing
sequences in each row with ~%n(1) < 1, n � 1 and such that EXni = 0, i � 1, n � 1. Assume that
for some sequence f�n; n � 1g with 0 < �n � 1 we have EjXnij1+�n < 1, 1 � i � bn, n � 1,
where � = supn �n and fbn; n � 1g is a strictly increasing sequence of positive integers. If for some
sequence fcn; n � 1g of positive real numbers and 0 < t < 2 the following condition is ful�lled

1X
n=1

cn
�
b
1
t
n

��1��n
bnX
i=1

EjXnij1+�n <1; (2:12)

then
1X
n=1

cnP
�j

bnX
i=1

Xnij � b
1
t
n"
�
<1; 8" > 0: (2:13)

Proof. Note, that if fcn; n � 1g is such that the series
P1

n=1 cn converges then (2.13) holds.
Therefore it is enough to consider only such sequences fcn; n � 1g which satisfy the condition
1X
n=1

cn =1. Then (2.12) implies

(b
1
t
n

��1��n
bnX
i=1

EjXnij1+�n < 1:

By Corollary 2.4 we see that in order to show (2.13), it is enough to prove that if (2.12) holds and
'n(x) = jxj1+�n the assumption (I), (II') and (III') are ful�lled.

Indeed we have

(I)

1X
n=1

cn

bnX
i=1

P [jXnij � b
1
t
n ] �

1X
n=1

cn
�
b
1
t
n

��1��n
bnX
i=1

EjXnij1+�n <1;

(II 0)

1X
n=1

cn
�
bn
�� 4

t

bnX
i=1

EjXnij4I[jXnij < b
1
t
n ] �

1X
n=1

cn
�
b
1
t
n

��1��n
bnX
i=1

EjXnij1+�n <1;

10
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(III 0)

1X
n=1

cn'
�2
n (b

1
t
n )

bnX
i=2

i�1X
j=1

E'n(jXnij)E'(jXnj j)

�
1X
n=1

cn(b
1
t
n )
�2(1+�n)

bnX
i=2

i�1X
j=1

EjXnij1+�nEjXnj j1+�n

�
1X
n=1

cn(b
1
t
n )
�2(1+�n

� bnX
i=1

EjXnij1+�n
�2

<1:

Moreover, we see

��b� 1
t

n

bnX
i=1

EXniI[jXnij < b
1
t
n ]
��

� b
� 1
t

n

bnX
i=1

EjXnijI[jXnij � b
1
t
n ]

=
�
b
1
t
n

��(1+�n)
bnX
i=1

EjXnij1+�n �! 0; as n �!1:

The corollary is proved.
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