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This paper establishes two results for complete convergence in the law of large numbers for arrays under %-mixing and %-mixing association in rows. They extend several known results.

Introduction

Let fX n ; n ! 1g be a sequence of random variables dened on probability space (; p; P ). A sequence fX n ; n ! 1g is said to converge completely to a constant C if I n=1 P ¢ jX n Cj > " £ < I; V" > 0: [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF], who introduce this concept, proved that the sequence of arithmetic means of independent identically distributed random variables converges completely to the expected value of the summands, provided the variance is nite. The converse theorem was proved by Erd os.

The extensions of Hsu-Robbins-Erd os's result, due to [START_REF] Katz | The probability in the tail of a distribution[END_REF], [START_REF] Baum | Convergence rates in the law of large numbers[END_REF], [START_REF] Chow | Delayed sums and Borel summability of independent, identically distributed random variables[END_REF], form a complete convergence theorem with a Marcinkiewicz-Zygmunt type normalization (see [START_REF] Gut | Complete convergence and convergence rates for randomly indexed partial sums with an application to some rst passage times[END_REF]).

Theorem 1.1. Let fX n ; n ! 1g be a sequence of independent identically distributed random variables and let r ! 1, > 1 2 . The following statements are equivalent:

(i) EjX 1 j r < I; and, if r ! 1; EX 1 = 0;

(ii) I n=1 n r 2 P [j n i=1 X i j > n "] < I; V" > 0;

(iii) I n=1 n r 2 P [max k n j k i=1 X i j > n "] < I; V" > 0:

If r > 1, > 1 2 the above are also equivalent to (iv)

I n=1 n r 2 P [sup k!n k k i=1 X i j > "] < I; V" > 0:
Many authors generalized and extended this result without assumption of identical distribution in several directions. They studied the cases of independent, stochastically dominated random variables, triangular arrays of rowwise independent, stochastically dominated in the Cesaro sense random variables and sequences of independent random variables taking value in a Banach space [START_REF] Pruitt | Summability of independent random variables[END_REF], [START_REF] Rohatgi | Convergence of weighted sums of independent random variables[END_REF], [START_REF] Hu | Strong law of large numbers for arrays of random variables[END_REF], [START_REF] Gut | Complete convergence for arrays[END_REF], Wang, Bhaskara Rao and Yang (1993), [START_REF] Kuczmaszewska | On the Hsu-Robbins law of large numbers for subsequences[END_REF][START_REF] Kuczmaszewska | On complete convergence for partial sums of independent identically distributed random variables[END_REF][START_REF] Kuczmaszewska | On complete convergence in a Banach space[END_REF], [START_REF] Sung | Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables[END_REF][START_REF] Bozorgnia | On strong laws of large numbers for arrays of rowwise independent random elements[END_REF][START_REF] Hu | On complete convergence for arrays of rowwise independent random elements in Banach spaces[END_REF], [START_REF] Hu | A note on complete convergence for arrays[END_REF], [START_REF] Hu | Addendum to "A note on complete convergence for arrays[END_REF], [START_REF] Ahmed | On complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes[END_REF], [START_REF] Kuczmaszewska | On some condition for complete convergence for array[END_REF], [START_REF] Sung | On complete convergence for arrays[END_REF], T om acs ( 2005)).

In this paper we consider a complete convergence in the strong law of large numbers for arrays of dependent random variables. We study the complete convergence for %-mixing and %-mixing sequences of random variables. The obtained results extend some previous known. Some results for complete convergence for %-mixing and %-mixing random variables one can nd in Zhengyan and Chuanrong (1996) (Shao,Kong and Zang,Section 8.4), [START_REF] Shao | Maximal inequalities for partial sums of %-mixing sequences[END_REF], [START_REF] Shixin | Almost sure convergence for %-mixing random variable sequence[END_REF].

Denition 1.1. A sequence of random variables fX n ; n ! 1g is said to be a %-mixing sequence if the maximal correlation coecient

%(n) = sup k!1;XPL 2 (F k 1 );Y PL 2 (F I k+n ) cov(X; Y )
p Var X ¡ Var Y 3 0;

(1:1)

as n 3 I, where F m n is the -eld generated by random variables X n ; X n+1 ; : : : ; X m .

Denition 1.2. A sequence of random variable fX n ; n ! 1g is said to be a %-mixing sequence if there exists k P N such that

%(k) = sup S;T sup XPL 2 (p S );Y PL 2 (p T ) cov(X; Y ) p Var X ¡ Var Y < 1; (1:2)
where S, T are the nite subsets of positive integers such that dist (S; T ) ! k and p W is the -eld generated by the random variable fX i ; i P W & Ng.

The %-mixing conception is similar to the %-mixing, but they are quite dierent from each other.

In our further consideration we need the following denition and lemmas.

Denition 1.3. A real valued function l(x), positive and measurable on [A; I) for some A > 0, is said to be slowly varying if lim x3I l(x ¡ ) l(x) = 1; for each > 0:

Lemma 1.1. [START_REF] Shao | Maximal inequalities for partial sums of %-mixing sequences[END_REF]). Let fX n ; n ! 1g be a %-mixing sequence of random variables such that EX n = 0, n ! 1. Then for any q ! 2, there exists a constant K = K(q; %(¡)) depending only on q and %(¡) such that E ¢ max k n jS k j £ q K n q=2 exp

¨K [ln n] i=0 %(2 i ) © max k n (EX 2 k ) q=2 +n exp ¨K [ln n] i=0 % 2=q (2 i ) © max k n EjX k j q ¡ :
(1:3) Lemma 1.2. [START_REF] Shanchao | Some moment inequalities for partial sums of random variables and their applications[END_REF] and [START_REF] Peligrad | Almost-sure results for a class of dependent random variables[END_REF]). Let f n ; n ! 1g be a %-mixing sequence with %(1) < 1. Let X n P ( i ; i ! 1), EX n = 0, EjX n j p < I, n ! 1, p > 1.

Then there exists a positive constant C such that E n i=1 X i q C n i=1 EjX i j q ; Vn ! 1; 1 < q 2;

(1:4) h n i=1 EjX i j q + n i=1 EX 2 i q 2 i ; Vn ! 1; q > 2:

(1:5)

We also assume that in our consideration constant C isn't the same constant in each case.

The main results

In this paper we consider arrays of random variables. Let % n (i) denotes the maximal correlation coecient dened in (1.1) for the n-th row of an array fX ni ; i ! 1; n ! 1g i.e for the sequence X n1 ; X n2 ; X n3 ; : : : , n ! 1.

Similarly, we will use the notation %n (k) for denoting the coecient dened in (1.2) for the sequence X n1 ; X n2 ; X n3 ; : : : , n ! 1. Moreover, let f' n ; n ! 1g be a sequence of nonnegative, even, continuous and nondecreasing on (0; I) functions ' n : R 3 R + with lim x3I ' n (x) = I and such that ' n (x)=x 7 and ' n (x)=x 2 8; as x 3 I:

(2:1) Theorem 2.1. Let fX ni ; i ! 1; n ! 1g be an array of random variables, which are %-mixing sequences in each row, and such that E' n (jX ni j) < I, i ! 1, n ! 1, where ' n is dened in (2.1). Assume that for the constant K dened in (1.3), 0 < t < 2, q ! 2 , some sequence fc n ; n ! 1g of positive real numbers and some strictly increasing sequence fb n ; n ! 1g of positive integers the following conditions are fullled (i)

I n=1 c n b n i=1 P [jX ni j ! b 1 t n ] < I; (ii) I n=1 c n exp ¨K [log b n ] i=1 % n (2 i ) © b q 2 n max i b n ¢ E' n (X ni )I[jX ni j < b 1 t n ] £ q 2 ¢ ' n (b 1 t n ) £ q 2 < I; (iii) I n=1 c n exp ¨K [log b n ] i=1 % 2 q n (2 i ) © b 1 q t n max i b n EjX ni j q I[jX ni j < b 1 t n ] < I:
Then for S nk = k i=1 X ni and any " > 0

I n=1 c n P ¢ max i b n S ni i j=1 EX nj I[jX nj j < b 1 t n ] ! b 1 t n " £ < I: (2:2) Proof. Let X H ni = X ni I[jX ni j < b 1 t n ], Y ni = X H ni EX H ni and S H nk = k i=1 Y ni . Using Lemma 1.1 we obtain P ¢ max i b n S ni i j=1 EX nj I[jX nj j < b 1 t n ] ! b 1 t n " £ b n i=1 P ¢ jX ni j ! b 1 t n £ + P [max i b n jS H ni j ! b 1 t n " £ A c c e p t e d m a n u s c r i p t b n i=1 P ¢ jX ni j ! b 1 t n £ + 2 q Kb q t n fb q 2 n exp K [log b n ] i=0 % n (2 i ) ¡ max i b n EjX ni j 2 I[jX ni j < b 1 t n ] ¡ q 2 +b n exp K [log b n ] i=0 % 2 q n (2 i ) ¡ max i b n EjX ni j q I[jX ni j < b 1 t n ]g: (2:3)
Therefore, by (2.3) and the assumptions (i) and (iii), it is enough to show that

I n=1 c n b q t n fb q 2 n exp K [log b n ] i=0 % n (2 i ) ¡ max i b n EjX ni j 2 I[jX ni j < b 1 t n ]
¡ q 2 g < I:

Indeed we see

I n=1 c n b q t n fb q 2 n exp K [log b n ] i=0 % n (2 i ) ¡ max i b n EjX ni j 2 I[jX ni j < b 1 t n ] ¡ q 2 g I n=1 c n b q 2 n exp K [log b n ] i=0 % n (2 i ) ¡ max i b n EjX ni j 2 I[jX ni j < b 1 t n ] ¡ q 2 (b 2 t n ) q 2 I n=1 c n b q 2 n exp K [log b n ] i=0 % n (2 i ) ¡ max i b n E' n (jX ni j)I[jX ni j < b 1 t n ] ¡ q 2 (' n (b 1 t n )) q 2
< I:

This completes the proof. From Theorem 2.1 we get the following result. (2:4) Then I n=1 n p 2 P ¢ max i n jS ni j ! "n £ < I;

(2:5) for any " > 0.

Proof. Let q := r, 1 t := , c n := n p 2 , b n = n and ' n (x) := x 2 . Then, by the assumption Moreover, we note that in the case (a) (r = 2; 1 p < 2) the conditions (ii) and (iii) from Theorem 2.1 are identical. So, by (2.4) we get

I n=1 n p 2 exp ¨K [log n] i=1 % n (2 i ) © n 1 2 max i n ¢ EjX ni j 2 I[jX ni j < n ] £ = C I n=1
n (p 2) 1 EjX 11 j p+(2 p) I[jX 11 j < n ] < I:

In the case (b) (r > p ! 2, > r 2 1 r p ), by (2.4) and the assumption EjX 11 j p < I, we have

(ii) I n=1 c n exp ¨K [log n] i=1 % n (2 i ) © n q 2 max i n ¢ E' n (X ni )I[jX ni j < n 1 t ] £ q 2 ¢ ' n (n 1 t ) £ q 2 = C I n=1
n p 2+ r 2 r (EjX 11 j 2 ) r 2 < I and (iii)

I n=1 c n exp ¨K [log n] i=1 % 2 q n (2 i )
© n 1 q t max i n EjX ni j q I[jX ni j < n The next corollary we get for identically distributed random variables putting in Theorem 2.1 c n = n p 2 l(n), where l(n) is a slowly varying function.

Corollary 2.3. Let p > 1 and in th case (a) r = 2 if 1 p < 2 or in the case (b) r > 2 if r > p ! 2 and > r 2 1 r p . Let fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row, and such that EX 11 = 0 and EjX 11 j p l(jX 11 j 1 ) < I.

Assume that (2.4) holds Then I n=1 n p 2 l(n)P ¢ max i n jS ni j ! "n £ < I;

(2:6)

for any " > 0.

Proof. Putting q := r, 1 t := , c n := n p 2 l(n), b n := n and ' n (x) := x 2 , by the assumption EjX 11 j p l(jX 11 j 1 ) < I, we obtain (i)

I n=1 n p 2 l(n) n i=1 P ¢ jX ni j ! n £ I k=1 (2 k ) p l(2 k ) I j=k P ¢ (2 j ) jX 11 j < (2 j+1 ) £
CEjX 11 j p l(jX 11 j 1 ) < I

In the case (a) (r = 2; 1 p < 2) we have

I n=1 n p 2 l(n) exp ¨K [log n] i=1 % n (2 i ) © n 1 2 max i n ¢ EjX ni j 2 I[jX ni j < n ] £ C I k=1 (2 k ) (p 2) l(2 k )EjX 11 j 2 I[jX 11 j < (2 k ) ] C I k=1 (2 k ) (p 2) l(2 k ) k i=1 (2 i ) (2 i 1 )
x 2 dF (x)

C I m=1 (2 m ) (p 2)
(2 m )

(2 m 1 ) l(jxj 1 )x 2 dF (x) CEjX 11 j p l(jX 11 j 1 ) < I;

which proves that (ii) and (iii) hold.

In case (b) (r > p ! 2) we have (ii) This completes the proof.

I n=1 n p 2 l(n) exp ¨K [log n] i=1 % n (2 i ) © n r 2 max i n ¢ E' n (X ni )I[jX ni j < n ] £ r 2 ¢ ' n (n ) £ r 2 = C I n=1 n p 2+ r 2 r l(n)(EjX 11 j 2 ) r 2 C I k=1 (2 k ) (p r) 1+ r 2 l(2 k ) < I and (iii) I n=1 n p 2 l(n) exp ¨K [log n] i=1 % 2 q n (2 i ) © n 1 r max i n EjX ni j r I[jX ni j < n ] = C I k=1 (2 k ) (p r) l(2 k ) k i=1 (2 i ) (2 i 1 ) jxj r dF (x)
The case p = 1 was considered by Shao for identically distributed random variables and by Kong and Zhang for non-identically distributed random variables (see Zhang and Chuanrong (1996)).

Let now ' : R + 3 R + be a nonegative continuous and increasing function, satisfying (2.1) and let ' 1 be an inverse of '. The consideration similar to presented in proofs of Theorem 2.1 and Corollary 2.3 and the fact that

P ¢ max i n '(jS ni j) ! "n £ P ¢ max i n (jS ni j) ! ' 1 ("n) £
allow us to formulate the following result.

Theorem 2.2. Let p > 1 and fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row, and such that EX 11 = 0 and E '(jX 11 j)) p l('(jX 11 j) < I. Assume that (2.4) with r = 2 holds. Then I n=1 n p 2 l(n)P ¢ max i n '(jS ni j) ! "n £ < I;

for any " > 0. Shao proved the analogous result for p = 1 (Zhengyan and Chuanrong (1996) Section 8.4).

In the next part of this section we consider arrays of random variables, which are %-mixing sequences.

Theorem 2.3. Let fX ni ; i ! 1; n ! 1g be an array of random variables, which are % -mixing sequences in each row with %n (1) < 1, n ! 1. Assume that for some sequence fc n ; n ! 1g of positive real numbers, some strictly increasing sequence fb n ; n ! 1g of positive integers and 0 < t < 2 the following conditions are fullled (I)

I n=1 c n b n i=1 P [jX ni j ! b 1 t n ] < I; (II) I n=1 c n b q t n b n i=1 EjX ni j q I[jX ni j < b 1 t n ] < I; (III) I n=1 c n b q t n b n i=1 EjX ni j 2 I[jX ni j < b 1 t n ] ¡ q 2 < I; Then for S n = b n i=1
X ni and any " > 0

I n=1 c n P ¢ S n b n i=1 EX ni I[jX ni < b 1 t n ]j ! b 1 t n "
£ < I:

(2:7)

A c c e p t e d m a n u s c r i p t

Proof

. Let X H ni = X ni I[jX ni j < b 1 t n ], Y ni = X H ni EX H ni and S H n = b n i=1 Y ni . Using Lemma 1.2 we obtain P ¢ jS H n j ! b 1 t n " £ C" q b q t n ¨bn i=1 EjY H ni j q + b n i=1 EjY H ni j 2 ¡ q 2 © C" q b q t n ¨bn i=1 EjX H ni j q + b n i=1
EjX H ni j 2 ¡ q 2 © :

(2:8) Moreover, we see that

P ¢ S n b n i=1 X ni I[jX ni j < b 1 t n ] ! b 1 t n " £ P ¢ S H n ! b 1 t n " £ + b n i=1 P ¢ jX ni j ! b 1 t n £ :
(2:9) Therefore, by (2.8), (2.9), (I), (II) and (III) we see that (2.7) holds.

Corollary 2.4. Let fX ni ; i ! 1; n ! 1g be an array of random variables, which are % -mixing sequences in each row with %n (1) < 1, n ! 1. Moreover, let E' n (jX ni j) < I, i ! 1, n ! 1, where ' n is dened in (2.1). Assume, that for some sequence fc n ; n ! 1g of positive real numbers, some strictly increasing sequence fb n ; n ! 1g of positive integers and 0 < t < 2 (I) holds and the following conditions are fullled

(II H ) I n=1 c n b 4 t n b n i=1 EjX ni j 4 I[jX ni j < b 1 t n ] < I; (III H ) I n=1 c n ' 2 n (b 1 t n ) b n i=2 i 1 j=1
E' n (jX ni j)E'(jX nj j) < I:

Then for any " > 0 (2.9) holds. Proof. Putting q = 4 in Theorem 2.3 we see, that condition (II) is fullled and Therefore (2.9) holds. Corollary 2.5. Let p > 1, q > 2 and in the case (a) 1 p < 2 or in the case (b) 2 p < q and > q 2 2(q p) . Let fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row with %1 (1) < 1 and such that EX 11 = 0 and EjX 11 j p < I: EjX H ni j 2 ¡ q 2 I n=1 n p 2 n q n q 2 n (2 p)¡ q 2 EjX 11 j p ¡ q 2 = C I n=1 n (p 1)(1 q 2 ) 1 < I and in the case (b)

(III) I n=1 c n b q t n b n i=1
EjX H ni j 2 ¡ q 2 I n=1 n p 2 n q n q 2 EjX 11 j 2 ¡ q 2 = C I n=1 n (p q) 2+ q 2 < I:

Thus we have established that all assumptions from Theorem 2.3 are fullled. Moreover, we see = n +1 EjX 11 j p (n ) p 1 = n 1 p EjX 11 j p 3 0; as n 3 I; because p > 1. Therefore (2.10) holds. Corollary 2.5 is more general than result obtained by G. [START_REF] Shixin | Almost sure convergence for %-mixing random variable sequence[END_REF]. The condition (2.10) is stronger than this presented by Shixin.

Corollary 2.6. Let fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row with %1 (1) < 1 and such that EX 11 = 0 and EjX 11 j 2 < I.

Then for any " > 0 we have Corollary 2.7. Let fX ni ; i ! 1; n ! 1g be an array of random variables, which are % -mixing sequences in each row with %n (1) < 1, n ! 1 and such that EX ni = 0, i ! 1, n ! 1. Assume that for some sequence f n ; n ! 1g with 0 < n 1 we have EjX ni j 1+ n < I, 1 i b n , n ! 1, where = sup n n and fb n ; n ! 1g is a strictly increasing sequence of positive integers. If for some sequence fc n ; n ! 1g of positive real numbers and 0 < t < 2 the following condition is fullled £ < I; V" > 0:

(2:13)

Proof. Note, that if fc n ; n ! 1g is such that the series I n=1 c n converges then (2.13) holds.

Therefore it is enough to consider only such sequences fc n ; n ! 1g which satisfy the condition EjX ni j 1+ n < 1:

By Corollary 2.4 we see that in order to show (2.13), it is enough to prove that if (2.12) holds and 

  Corollary 2.1. Let p > 1 and in the case (a) r = 2 if 1 p < 2 or in the case (b) r > 2 if r > p ! 2 and > r 2 1 r p . Let fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row, and such that EX 11 = 0 and EjX 11 j p < I.

  11 j < (n + 1) £ = CEjX 11 j p < I:

  j < n £ 3 0; as n 3 I for each 1 i n.

  (jX ni j)E' n (jX nj j) © < I; by (II') and (III').

  11 j p+(q p) I[jX 11 j < n ] < I:To show that condition (III) is fullled we must consider the cases (a) and (b) separately. In the case (a

  c n = n 1 , t = 1, b n = n, p = 2 and ' n (x) = x 2 in Corollary 2.4 we get

  ' n (x) = jxj 1+ n the assumption (I), (II') and (III') are fullled.

  This fact immediately follows from the assumptions EX 11 = 0 and EjX 11 j p < I: This corollary generalizesShao's result (1995) obtained for %-mixing sequences of identically distributed random variables. As a consequence of the above result we can get the following Marcinkiewicz-Zygmunt law of large numbers.Corollary 2.2. Let 1 p < 2, p > 1 and fX ni ; i ! 1; n ! 1g be an array of identically distributed random variables, which are %-mixing sequences in each row, and such that EX 11 = 0 and EjX 11 j p < I. Assume that

							1 t ]
	= C	I	n (p r) 1 EjX 11 j p+(r p) I[jX 11 j < n ] < I:
		n=1				
	To complete this proof, it enough to show that
					n	i	EX 11 I[jX 11 j < n ] 3 0; n 3 I
							n=j
	for each 1 i n.			
	Indeed we see				
			n		i	EX 11 I[jX 11 j < n ]	n	i	EjX 11 jI[jX 11 j ! n ]
				j=1		j=1
		n	i j=1	EjX 11 j p (n ) p 1 n n p+ iEjX 11 j = C i n p 3 0; n 3 I:
	This proves that (2.5) holds.
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E' n (jX ni j)E'(jX nj j)

EjX ni j 1+ n ¡ 2 < I:

EjX ni j 1+ n 3 0; as n 3 I:

The corollary is proved.