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An application of reinforced urn processes to

determining maximum tolerated dose

Maura Mezzetti a, Pietro Muliere b, Paolo Bulla b,∗

aDipartimento di Studi Economico-Finanziari e Metodi Quantitativi, Università di

Roma Tor Vergata

bIstituto di Metodi Quantitativi, Università Bocconi, Milano

Abstract

Based on reinforced urn process introduced by Muliere, Secchi and Walker (2000)

we propose a Bayesian nonparametric approach to analyse a design determining

the maximum tolerated dose in Phase I clinical trials for new drug development

when intrapatient dose escalation is allowed. A predictive distribution of maximum

tolerated dose is obtained and its point estimation may consist in the corresponding

expected value.

Key words: Phase I, maximum tolerated dose, urn scheme.

1 Introduction

Reinforced urn processes (RUP) have been introduced by Muliere et al. (2000)

as random walks on a state space of Pólya urns. They are a smart tool for char-
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acterizing some well-known Bayesian nonparametric priors, but also for pre-

dictive inference. The above-cited reference provides some examples of appli-

cations of these processes to survival analysis and to multiple state processes,

while Amerio, Muliere and Secchi (2004) deals with credit default probabil-

ity estimation. In this work, we present a further application to detemining

maximum tolerated dose.

Indeed, in Phase I clinical trials, researchers test a new drug or treatment

in a small group of patients for the first time in order to evaluate its safety,

identify side-effects and determine a therapeutically useful interval of doses.

The upper end of the interval is the maximal tolerated dose (MTD) and the

lower end of the interval is the minimal effective dose (MED). Here we will

face the estimation of the maximum tolerated dose; generalization to minimal

effective dose will be shown straightforward.

Using RUPs a predictive structure between the individuals is defined and it

is possible to obtain an estimation of the distribution function and a point

estimation of MTD (or MED). Both of them are easy to compute due to

Pólya sampling scheme.

The rest of the paper is organized as follows. Section 2 presents some tradi-

tional approach to the detetmination of critical doses. In Section 3, we discuss

the proposed model for the trial. In Section 4 we characterize the prior distri-

bution through the reinforced urn process and recall some results of Muliere

et al. (2000) for the computation of posterior and predictive distribution. In

Section 5, we present applications to simulated dataset. We conclude the paper

with a brief discussion in Section 6.
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2 Traditional approaches to MTD

A well-established approach to search for MED and MTD is based on the

construction of a dose-toxicity curve. Robbins and Monro (1951) and later

Wu (1985) try to estimate, through stochastic approximation, the MTD as

the quantile of this curve.

O’Quigley et al. (1990) has developed an adaptive Bayesian design called the

continual reassessment method (CRM). Eichhorn and Zacks (1973), Eichhorn

and Zacks (1981), Robinson (1978), and Shih (1989) studied the sequential

search problem through linear regression dose-toxicity models. Muliere and

Petrone (1993) proposed a Bayesian predictive sequential method both in

parametric and non parametric version, the latter with a Dirichlet process.

Rosenberger (1996) suggests using the generalized Pólya urn model for a dose

response study, while Durham, Flournoy and Rosenberger (1997) faces the

Phase I problem by means of a random walk rule with a biased coin up-and-

down procedure; moreover it proves that CRM performs as well without the

Bayesian machinery.

Although some of these methods perform quite well in small sample dose-

response study simulations, their main drawback is just requiring an explicit

dose-toxicity curve, often nonparametric, that could be artificial and compli-

cated.

Recently Gasparini and Eisele (2000) proposes a curve-free method: modelling

the probabilities of toxicity directly as the unknown parameter of interest, a

product of beta prior distributions is considered.
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Unlike the above cited works, the method we present in this paper is, as already

said, a Bayesian nonparametric approach to the determination of maximal

tolerated dose as well as the minimum effective dose when intrapatient dose

escalation is allowed.

The parameter of interest is the distribution function of a critical dose (MTD

or MED), whilst the dose-toxicity (or dose-efficacy) curve is not explicitly

estimated.

This is the design of the trial looking for MTD. Ethical concerns suggest

a sequential search for the MTD by giving individuals from a very low to

gradually increasing dosage to be a reasonable procedure. Hence the studies

start at doses minimally toxic in animals and, at each stage, if the dose is safe,

a cohort of patients is treated at a higher dose, with escalation continuing until

a maximum tolerated dose is defined. Various schemes may be used with rapid

augmentation at lower, presumably more tolerable, doses and slower when the

doses get larger.

3 Design of the trial

Let us consider the determination of MTD. As in many pratical situations,

each subject i is given drug’s doses X = (x0, x1, . . . , xk, . . .), in ascending order

until the subject experiences the critical value of toxicity.

Let Yi(xk) denote the level of toxicity at dose xk for subject i. Indeed, as

many pratictioners agree, for each subject i, the only interesting events are

of type {Yi(x) > η} and {Yi(x) ≤ η} that is whether the toxicity goes over

an unacceptable threshold η or not. Hence, for x ∈ X, Yi(x) can be simply
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substituted by Ni(x) = I{Yi(x)>η}.

The i-th subject is characterized by a sequence of doses (xi0, xi1, . . . , xiki
). As

soon as the i-th subject experiences a critical value for toxicity, e.g. (xiki
), we

stop to give him further doses and pass to the next one. For the (i + 1)-th

subject we restart from initial dose, and continue as above until his critical

value for toxicity is reached. Each subject generates a Markovian sequence of

doses, since the decision to submit the patient to the dose xk depends on the

toxicity at the previous dose, xk−1.

Considering all the patients, the overall experiment is characterized by the

following sequence of doses:

{Xn}n≥1 = {x10, x11, . . . , x1k1
, x20, x21, . . . , x2k2

, xn0, . . . , xn1, . . . , xnkn
, . . .}

= {x0, x11, . . . , x1k1
, x0, x21, . . . , x2k2

, x0, . . . , xn1, . . . , xnkn
, . . .}(1)

and by the corresponding sequence of Ni(xk) that is zeros and ones indicating

the status of not reached yet the toxicity (0) and reached the toxicity (1).

In this way, the counting process N(x) =
∑n

i=1 Ni(x), x ∈ X, indicates the

number of transition from the status 0 to status 1 at dose x.

We assume that patients can be deemed exchangeable since they belong to

the same population and the order in which they appear in the trial is not

important. So, the data collected in this way turn out to be partially ex-

changeable in a twofold meaning. First, according to the definition proposed

by Diaconis and Freedman (1980) that is the subsequences of doses corre-

sponding to each subject – the so-called x0-blocks of {Xn} as they have the

form {x0 = xj0, . . . , xjkj
} – are exchangeable; hence, from their main result,

under the recurrence hypothesis, the sequence {Xn}n≥1 is a mixture of Markov
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chains. Second, the sequence of toxicities (or that of its indicators) exhibits

a partial exchangeability à la de Finetti as the sequences of toxicities within

each dose, i.e. {Yn(xk)}n≥1 ({Nn(xk)}n≥1), are sequences of exchangeable ran-

dom variables. We remark that the partial exchangeability scheme specifies

the type of dependence between observations measured at the same dose, but

does not specify anything on the nature of the stochastic dependence between

observations measured at different dose level.

The partially exchangeable sequence in (1) can be summarized by the sequence

{Θn}n≥1 = (Θ1, Θ2, . . . , Θn, . . .), being Θi the last coordinate of the i-th x0-

block of the process {Xik} that is the smallest dose at which the i-th subject

experiments toxicity. As each Θi is a function of the corresponding x0-block

and these are exchangeable, {Θn} is infinitely exchageable as well.

The distribution of the MTD will be estimated by the predictive distribution of

Θn+1, given Θ1, . . . , Θn, or, equivalently, the predictive distribution of Nn+1(x)

given {Nn(x)}, that is:

P [Θn+1 = xk|Θ1, Θ2, . . . , Θn] =

P [Nn+1(xk) = 1| {Nl(xj), j ≥ 0}l = 1, . . . , n; Nn+1(xj), j = 0, . . . , k − 1]

Our idea is to assume a discrete beta-Stacy process with parameters (w(xk), b(xk))k

as a prior distribution for F , the cdf of the Θi ∈ X. This idea allows us to

use results from Walker and Muliere (1997) assuring that the posterior distri-

bution for F is again a discrete time beta-Stacy process with jumps at {xk};

we will compute the posterior parameters through a characterization of the

beta-Stacy using the RUP presented in the next section.
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4 An urn scheme determining maximum tolerated dose

In this section we provide basic definitions of RUP giving theoretical founda-

tion to the above described design. These processes are not intended to play

any role in treatment allocation, but just to perform the statistical analisys of

the results of the previous design. Let us start with a description of the Pólya

urn.

Let U be an urn with initial composition C = (w0, b0): that is U contains

w0 ≥ 0 balls of color 0, let’s say white, and U contains b0 ≥ 0 balls of color

1, let’s say black. The urn U is called a Pólya urn if its composition changes,

when a ball is sampled, according to the following rule: every ball sampled

from the urn is replaced into it along with another of the same color (or more

than one, generically m). Reinforced is set to be m > 0 for every sampling.

The added balls obviously reinforce the probability that a ball of same color

as the one currently drawn out will be sampled in the future.

Pólya urn has a well-known Bayesian interpretation: the initial composition

represents the prior guess about the occurrence of an event, the extraction

reflects the outcome of the statistical experiment and the replacement of the

balls is the updating of the prior knowledge. Notice that m controls the weight

assigned to the data relatively to the initial opinion.

Repeating this sampling procedure over and over, an infinite sequence of

random variables {Zk} is generated. Zk takes value 1 if the k-th ball sam-

pled is white, 0 if it is black. By this construction, it turns out that Z1 ∼

7
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Bernoulli
(

w0

b0+w0

)

, while, for all k ≥ 1, conditionally on N1, . . . , Nk,

Zk+1 =































0, with probability bk

bk+wk

1, with probability wk

bk+wk

(2)

where bk is the number of black balls, wk the number of white ones, after the

extraction of the k-th ball. These quantities evolve according to

(wk+1, bk+1) =































(wk + m, bk) with probability wk

bk+wk

(wk, bk + m) with probability bk

bk+wk
.

In the analysis of the Pólya urn, the interest consists in the process Zk as well

as the limit behavior of pk = wk

wk+bk
, the proportion of white balls contained in

the urn.

As the sequence {Zk} is exchangeable, by Finetti’s representation theorem

(1937), conditionally on a random variable Π, the variables Zk are iid Bernoulli(Π).

Moreover:

(1) Π is a beta
(

w0

m
, b0

m

)

;

(2) pk
a.s.
→ Π, that is the proportion of white balls converges almost surely to

the random probability Π.

This classical result makes clearer our previous excursus about the relation

between Pólya urn and Bayesianism.

The Pólya urn is generalised by Muliere et al. (2000) with RUP. Let consider

a special case. Suppose to have a discrete set x0 < x1 < x2 < . . . and associate

at each of them a Pólya urn, possibly with different initial compositions. Let’s

8
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indicate with C(x) = (w(x), b(x)) the initial composition of the urn at dose x.

A process {Xn} is defined iteratively: set X0 = x0 and, for n ≥ 1, if Xn−1 = xi

take a sample from the urn associated to xi: if the ball extracted is white set

Xn = xi+1, otherwise set Xn = x0.

Less formally, beginning from the urn corresponding to x0, balls are sequen-

tially sampled from urns associated to x0, x1, x2, . . . until a black ball is ob-

tained. At this time, the urns are updated following the usual Pólya rule,

each of them with m balls, and the sequential sampling starts once again. The

sequence {Xn} is a RUP.

If limn→∞
∏n

i=1
w(xi)

w(xi)+b(xi)
= 0, the process {Xn} is said to be recurrent, i.e.

P [Xn = 0 for infinitely many n] = 1.

In this case, we can define the sequence of stopping times {τn} as τ0 = 0

and τn = inf {n > τn−1 : Xn = 0} and Θn = Xτn−1
for n = 1, 2, . . . The most

important result about this kind of RUP is stated in teh following proposition.

Proposition 1 If the RUP {Xn} is recurrent, the infinite sequence {Θn} is

exchangeable; that is, there exists a random distribution function F such that,

conditionally on F , the random variables of the sequence {Θn} are independent

and identically distributed with distribution F . Moreover, for xi+1 ∈ X, the

random mass assigned by F to the subset {x0, x1, . . . , xi+1} is equal to

1 −
i+1
∏

k=1

(1 − Wk) ,

where W1,W2,W3, . . . are independent random variables and Wi+1 has a Beta

distribution with parameters
w(xi)

m
and

b(xi)
m

for i = 0, 1, 2 . . . That is the law

of F is that of a beta-Stacy process.

9
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The beta-Stacy process has been defined by Walker and Muliere (1997) as

a nonparametric prior for distribution functions. They proved also that the

posterior distribution for F is again a discrete time beta-Stacy process with

jumps at {xk} and parameters (w(xk) + m × wk, b(xk) + m × bk)k where wj =

∑n
i=1 I[Ni(xj)=0], bj =

∑n
i=1 I[Ni(xj)=1|Ni(xj−1)=0] and Ni(x) is a counting process

referring to the i-th sequential sampling such that it is 0 until the x in which

the black ball is sampled and 1 thereafter.

Referring to MTD search and interpreting white balls as the status not reached

yet the critical value of toxicity and the black ones as reached the critical value,

different urn composition translate prior probability of experiencing a critical

value of toxicity.

When the first subject is given dose x0, the information we have about the

probability of experiencing toxicity is given simply by a priori information

about the composition of the urn; that is, this probability will be equivalent to

the probability of sampling a black ball, while the probability of ”no toxicity”

will be equal to that of sampling a white ball:

P (Θ1 = x0) = P (N1(x0) = 1) =
b(x0)

b(x0) + w(x0)
(3)

P (Θ1 > x0) = P (N1(x0) = 0) =
w(x0)

b(x0) + w(x0)
(4)

Following the previous scheme, when a subject not experiencing the critical

value of toxicity at x0 is observed, the composition of the urn for the next sub-

ject will be updated as C1(x0) = (w(x0)+m, b(x0)), whilst observed a subject

experiencing toxicity at x0, the updating will be C1(x0) = (w(x0), b(x0) + m)

(to ease the exposition we indicate as Ci the composition updated after the

observation of the i-th subject).

10



Acc
ep

te
d m

an
usc

rip
t 

If the first subject did not experience toxicity, he is given the successive dose

and so on. Since nobody has been given those doses yet:

P (Θ1 = xk) = P (N1(x0) = . . . = N1(xk−1) = 0, N1(xk) = 1) =

=
b(xk)

b(xk) + w(xk)

k−1
∏

j=0

w(xj)

b(xj) + w(xj)
. (5)

Finally, if subject 1 experiences toxicity at dose xk, it will turn out C1(xk) =

(w(xk), b(xk) + m).

After the n subjects will be observed, at a dose level xk, we get for the (n+1)-th

subject:

P (Θn+1 = xk|Θ1, . . . , Θn) =
b(xk) + m × bk

b(xk) + m × bk + w(xk) + m × wk

k−1
∏

j=0

w(xj) + m × wj

b(xj) + m × bj + w(xj) + m × wj

(6)

and

P (Θn+1 > xk|Θ1, . . . , Θn) =
k

∏

j=0

w(xj) + m × wj

b(xj) + m × bj + w(xj) + m × wj

(7)

where wj and bj are defined as before.

The equations (6) and (7) specifies the predictive distribution of MTD. Finally,

as usual, a point estimation of the MTD is given by the expected value of the

this predictive distribution

Θ̂n+1 =
∑

k

xkP (Θn+1 = xk|Θ1 = θ1, . . . , Θn = θn) (8)

where the probabilities are given in (6).

11
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4.1 Minimum effective dose

The same trial described above can be adapted to finding MED. Once again,

each subject i is given drug’s doses z = (z0, z1, . . . , zh, . . .); the escalation is

stopped when the subject experiments efficacy, that is some threshold δ is

overcome. Let Zi(zh) be the random variable measuring the efficacy at dose zh

for subject i. Repeating escalation for different subjects, a partial exchangeable

sequence {Zn} (analogous to the previous {Xn}) is obtained; this sequence can

be replaced by the sequence {Λn} = (Λ1, Λ2, . . .) that is exchangeable and with

a beta-Stacy process as de Finetti measure.

We consider another family of urns, independently from the previous one, with

initial compositions R(k) = (gk, rk): the new urn contains rk ≥ 0 balls of color

1, corresponding to the status reached the efficacy level), and gk ≥ 0 balls

of color 0, corresponding to the status not reached the efficacy level yet. The

initial compositions of the urns, different at each dose level, corresponds to the

prior probability of experiencing efficacy. The posterior distribution is again

a discrete time beta-Stacy process with jumps at {zh} and parameters can be

computed as shown in the MTD case.

5 Simulation

We simulate a scenario allowing us to verify the new procedure to estimate the

MTD. Each subject was given drug’s doses from x = 1.6 to x = 3.6, regularly

spaced with step 0.1. We generate data supposing the real distribution of the

MTD to be the discretisation on the doses values of a N(2.8, 0.2). A sample of

20 patients is considered, the predictive distribution of MTD is easy computed

12
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by (6) and then a point estimation is obtained.

According to Bayesian inference, we need to specify the prior parameters, that

in this case are values for number of white and black balls at each dose level,

(prior probability to experience toxicity), and fix the value for the reinforce-

ment in the urn scheme m 1 . Formal indications about how to elicit the prior

can be found in Walker and Muliere (1997): briefly, if the prior guess on MTD

is summarized by a distribution G(k) = P [Θ = xk] ∀k, put b(xk) = ckG(k),

w(xk) = ck

(

1 −
∑k

j=0 G(j)
)

where the ck’s play the role of precision of prior.

Higher values of m with respect to ck’s involve higher weight of the guess

in posterior distribution, while lower relative values imply higher weight of

observations.

We choose to center the prior on the discretisation of a N(3.1, 0.1), putting

ck = 1,∀k.

Figure 1 shows the predictive distribution of MTD obtained for four different

values of m (10,1,0.01 and 0.001). According to the above discussion, the first

case reproduces the empirical probability function of the MTD, while the last

mimic the prior. The others melt this two opposites, with weight depending

on m.

In order to show that the method we propose does not require huge samples to

perform well, a thousand of replications of a rather small sample of 20 patients

is generated. The result is quite good.

1 Note that, even though the idea of balls is very evocative, from a mathematical

point of view the parameters b(xk), w(xk) and m must not necessarily be integers

numbers, but just positive real.
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Fig. 1. Predictive distribution of MTD

Figures 2 displays the histograms for the estimated MTD. As we expect, lower

the reinforce respect to the number of initial balls, closer the posterior esti-

mation to the prior values, 3.1.

6 Conclusions

We have proposed a simple design for determining MTD as well MED: subjects

are given increasing drug’s doses until toxicity is shown.

A particular case of RUP provides, in a Bayesian nonparametric framework,

theoretical support to this scheme and enlights how a beta-Stacy process is a

natural choice as prior. Moreover, the urn approach makes easy the computa-

tion of the updated parameters.

As shown in Muliere et al. (2000) more general classes of nonparametric pri-
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Fig. 2. MTD estimation by expected value.

ors as Neutral to the Right or Tailfree can be characterized by RUP, hence

it should be possible to derive from these processes alternative trial design

adapted to possibly different situations.
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