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U−statistics based on the Green’s function of the Laplacian on

the circle and the sphere

J.-R. Pycke*

October 16, 2006

*Université d’Évry, département de Mathématiques, Boulevard F. Mitterrand, 91 025 Évry
cedex, France 1

Abstract

We show that the Watson and Cramér-von Mises statistics are related to Green’s function
of the Laplacian on a circle. A generalization leads to a new U-statistic whose kernel is the
Green function of the Laplacian on the sphere.

Keywords and phrases: directional statistics, tests of uniformity, U- and V-statistics, Cramér-
von Mises statistic, Anderson-Darling statistic, Watson statistic.

1 Introduction

In the field of directional statistics the problem of testing uniformity remains widely open,
especially when the sample space is the unit sphere. The present paper deals with the case
where the sample space is the unit circle or the unit sphere. For general surveys about tests
for uniformity on the circle and the sphere the reader is referred to Fisher (1993) p.64–71 and
Mardia and Jupp (2000), §6.3 and §10.4.1. Many tests for uniformity on the circle and the sphere
fit into the general framework established by Giné (1975), whose most important features are
expounded in Mardia and Jupp (2000), §10.8. In the present paper we propose a new approach
based upon the following remarks. The problem of testing uniformity on the unit circle is closely
related to that of testing uniformity on [0, 1]. A classical way to test the hypothesis

H0: a random sample x1, ..., xn (with order statistics x(1) < · · · < x(n)) has been
drawn from a population uniformly distributed on [0, 1],

1E-mail address : jrpycke@univ-evry.fr
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is based on the rejection of H0 for large values taken by one of the celebrated statistics

W 2
n =

n∑
i=1

(
x(i) −

i− 1
2

n

)2

+
1

12n
, (Cramér-von Mises)(1.1)

U2
n = W 2

n − n(x− 1
2
)2, (Watson)(1.2)

A2
n = −n− 1

n

n∑
i=1

(2i− 1){log x(i) + log[1− x(n−i+1)]}, (Anderson-Darling)(1.3)

where x = n−1
∑n

i=1 xi (see Durbin (1973), formulas (4.17) − (4.18) p. 27 and (5.4.2) p. 36).
Elementary computations enable to express these Cramér-von Mises type statistics in the alter-
native form of the von Mises functionals (or V-statistics)

U2
n =

1
n

n∑
i=1

n∑
j=1

{
(|xi − xj | − 1/2)2

2
− 1

24

}
with the kernel(1.4)

KU (x1, x2) :=
(|x1 − x2| − 1/2)2

2
− 1

24
(1.5)

=
∞∑

k=1

2 sin(2kπx1) sin(2kπx2) + 2 cos(2kπx1) cos(2kπx2)
4k2π2

;

W 2
n =

1
n

n∑
i=1

n∑
j=1

{
x2

i − xi + x2
j − xj − |xi − xj |

2
+

1
3

}
with(1.6)

KW (x1, x2) :=
x2

1 − x1 + x2
2 − x2 − |x1 − x2|

2
+

1
3

=
∞∑

k=1

2 cos(kπx1) cos(kπx2)
k2π2

;(1.7)

A2
n =

1
n

n∑
i=1

n∑
j=1

{− log[max(xi, xj)− xixj ]− 1} .(1.8)

For basic definitions and results about U− and V− statistics, see Koroljuk and Borovskich
(1994), Chapter 1. The explicit Kac-Siegert or Karhunen-Loève expansions (1.5) and (1.7) of
the Watson and Cramér-von Mises kernels (KU and KW respectively) are given in Durbin (1973),
formula (5.6.7) p. 38 and Dym and McKean (1972) p. 60. The definition and usefulness of such
an expansion of the kernel, in the study of the corresponding Cramér-von Mises, U− or V−
statistic is well-known. Some basic facts will be shortly recalled in Section 3. For details, the
reader is referred to Shorack and Wellner (1986), Chapter 5 (for Cramér-von Mises type statis-
tics) and Koroljuk and Borovskich (1994), § 4.3. (for U− and V− statistics). Unfortunately,
such explicit expansions can rarely be derived. However, recent advances (see Deheuvels and
Martynov (2003), Henze and Nikitin (2002), Lachal (2001) and Pycke (2003)) show a renewal
of the interest in this field, in which a central problem is to find a general method for deriving
explicit expansions having a statistical interest. The aim of this paper is to show how the three
classical examples mentioned above can be generalized. It leads to a new family of statistics
since to our knowledge, the asymptotic distribution given by (4.39) in Proposition 4.2 is not
that of an already known test for uniformity on the sphere.
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To start with, relations (3.14) of Proposition 3.2 and (3.22) of Proposition 3.3 show that
KU and KW are simply related to the zero-mean Green function of the Laplacian on the circle,
say G1. In Section 2, we recall the definition of the Green’s function of the Laplacian on a
compact manifold M , and give in Proposition 2.1 a Karhunen-Loève expansion of this function,
in the particular case where dim M ≤ 3 . In Propositions 3.2 and 3.3, we show that the general
way to cover the circle by an interval leads to new V-statistics whose kernel, defined by (3.15)
and (3.24), are as well simply related to G1. In Section 4 we generalize these ideas to the
sphere. This interpretation enables us to introduce a new U-statistic, defined in (4.39), arising
as a generalization of the Watson statistic in order to test uniformity on the sphere. Its kernel
is the centered Green function of the Laplacian on the sphere, for which we obtain different
explicit orthogonal decompositions in Proposition 4.1. The asymptotic distribution of a subset
of principal components of the new statistic (in the line of Durbin and Knott (1972)) is given
in Propositions 4.3 and 4.4. In particular, Proposition 4.3 shows that the Anderson-Darling
statistic can be viewed as the radial principal component, with respect to a pole, of our new
statistic. Generalizations of these ideas to a wider class of compact manifolds will be studied in
a forthcoming paper.

Before stating our results, we recall some basic facts about Green’s function and Karhunen-
Loève expansions.

2 Green’s function and Karhunen-Loève expansions

For details concerning the Green’s function of the Laplacian, the reader is referred to Aubin
(1982), Chapter 4, particularly § 2.3 p. 108.

Assume M is a compact and connected, C∞, Riemannian manifold without boundary having
volume V . The density of the Riemannian measure on M (see Chavel (1984), Chapter 1, § 2)
is denoted by dQ. We let L2(M) be the space of real measurable functions f on M for which∫
M f2(Q)dQ < ∞, equipped with the usual inner product

(f |g) =
∫

M
f(Q)g(Q)dQ, f, g ∈ L2(M).

For any Ck, k ≥ 2, function f , ∆f := div(gradf) denotes the Laplacian of f . A Green’s function
of the Laplacian is a function G(P,Q) defined on M ×M satisfying, in the distributional sense,

−∆QG(P,Q) = δP (Q)− 1/V

where δP denotes the Dirac distribution at P (see formula (14) p.108 in Aubin (1982), keeping
in mind that the author has an opposite sign convention for ∆). From Aubin (1982), Theorem
4.13 p.108, we know the following properties. On the one hand there always exists a Green
function of the Laplacian on M . On the other hand there is only one Green’s function of the
Laplacian, say GM , satisfying moreover

(2.9)
∫

M
GM (P,Q)dQ = 0, ∀P ∈ M.
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This function will be referred to in the sequel as the zero-mean Green’s function of the Laplacian.
Consider the integral equation

(2.10) λ

∫
M

K(P,Q)φ(Q)dQ = φ(P )

where the symmetric, measurable kernel K satisfies∫
M×M

K2(P,Q)dPdQ < ∞.

According to the general theory of such integral equations, (2.10) has a denumerable set of
eigenvalues λk, k = 1, 2, ..., which are matched by a denumerable set of eigenfunctions φk, k =
1, 2, ..., forming an orthonormal set of functions in L2(M). The Fourier series of the kernel
K(P,Q) regarded as a function of Q, with respect to the orthonormal system {φk(Q)} is

(2.11) K(P,Q) =
∞∑

k=1

φk(P )φk(Q)
λk

, with
∫

M
φk(Q)φ`(Q)dQ =

{
1 if k = `,
0 if k 6= `.

This series converge in the mean to K. If the integral operator is positive, the eigenvalues can
be rearranged to satisfy 0 < λ1 ≤ λ2 ≤ · · · and we refer to (2.11) as to the Karhunen-Loève (or
K-L) expansion of K.

Proposition 2.1. The eigenvalue problem

∆ϕ = −λϕ

has a complete orthonormal system of C∞-eigenfunctions ϕ0, ϕ1, ϕ2... in L2(M) and correspond-
ing eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ↑ ∞. Furthermore, if dim M ≤ 3, one has in L2(M ×M)
the bilinear expansion of the zero-mean Green function

(2.12) GM (P1, P2) =
∞∑

k=1

ϕk(P1)ϕk(P2)
λk

.

Proof. The first assertion is a classical result from Riemannian geometry, see e.g. Chavel (1984),
Theorem 1 p. 8. It is clear that φ0(Q) = 1/

√
V ; consequently the orthogonality relations imply

that for each k ≥ 1,
∫
M φk =

√
V
∫
M φkφ0 = 0. Hence from formula (15) p. 108 in Aubin (1982),

we infer
λk

∫
M

GM (P,Q)φk(Q)dQ = φk(P ), (k ≥ 1).

In view of limk→∞ λ−1
k = 0, we know that φ 7→

∫
M GM (., Q)φ(Q)dQ is a compact operator

on L2(M) (see e.g. Proposition 1.3.10 in Zhu (1990)). Furthermore we know from Weyl’s
asymptotic formula (see Chavel (1984), formula (50) p. 9), that

λk ∼ constant× k2/ dim M , hence
∞∑

k=1

λ−2
k < ∞ ⇐⇒ dim M ∈ {1, 2, 3}.
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This means that in our case, φ 7→
∫
M GM (P,Q)φ(Q)dQ is a Hilbert-Schmidt operator (see Zhu

(1990), §1.4). It also implies that if dim M ≤ 3, the series on the right-hand side of (2.12)
converges in L2(M × M) toward a function, say L(P,Q). This function is the kernel of the
integral operator φ 7→

∫
M L(P,Q)φ(Q)dQ on L2(M). In order to prove that it coincides with

GM (P,Q), it is sufficient to check it on their action on ϕk, k ≥ 0, since the latter span L2(M).
For k = 0, the result is a consequence of (2.9). And for each k ∈ N∗, it is readily checked that∫

M
L(P,Q)ϕk(Q)dQ = ϕk(P )/λk,

which completes the proof.

3 The Watson, Cramér-von Mises statistics and the circle

U2
n was introduced by Watson Watson (1961) for use with observations P1, ..., Pn recorded on

the circumference of the circle. For the circle of radius R

S1(R) := {Reiθ : θ ∈ R},

endowed with the measure dP = Rdθ, a point P ∈ S1(R) corresponding to the argument θ will
be denoted by P (θ) and we write θ = arg P . The principal value of the argument of P , denoted
by Arg P , is the argument satisfying −π < θ ≤ π. The north pole corresponds to θ = 0, the
south pole to θ = π. We denote by d(P1, P2) the distance on the circle between the two points
P1(θ1) and P2(θ2). The Laplacian of P 7→ f(θ) where f : R → R is a 2π-periodic function is
given by

∆f =
1

R2

d2f

dθ2
.

Proposition 3.1. The zero-mean Green’s function of the Laplacian on S1(R) is

G1(P1, P2) :=
[πR− d(P1, P2)]2

4πR
− πR

12
.

Moreover, one has the pointwise converging bilinear expansion

(3.13) G1(P1, P2) =
∞∑

k=1

sk(P1)sk(P2) + ck(P1)ck(P2)
(k2/R2)

=
∞∑

k=1

ck[d(P1, P2)/R]
(k2/R2)

with sk(P ) = (πR)−1/2 sin(kθ) and ck(θ) = (πR)−1/2 cos(kθ).

Proof. It is clear that {sk, ck : k ≥ 1} is a complete orthonormal set of zero-mean eigenfunctions
of the Laplacian. The first equality in (3.13) then follows from the equality (2.12) in Proposition
2.1. The second equality is a consequence of the identity cos (±|θ1 − θ2|) = cos θ1 cos θ2 +
sin θ1 sin θ2, in view of the equality d(P1, P2)/R = min(|θ1 − θ2|, 2π − |θ1 − θ2|).

5
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A way to wrap a distribution on [0, 1] around the circle is to set

arg P := 2qπx + c, x ∈ [0, 1],

with c ∈ R and q ∈ N∗. The next Proposition shows that for q = 1, this wrapping transforms
Watson’s kernel, defined on [0, 1]× [0, 1], into the Green’s function of the circle, and generalizes
Watson’s kernel for other values of q.

Proposition 3.2. Assume x1, x2 ∈ [0, 1] and c ∈ R. If arg Pi := 2πxi + c, i = 1, 2, then

(3.14) KU (x1, x2) = G1(P1, P2)/(2πR).

More generally, if arg Pi := 2qπxi + c, i = 1, 2, with q ∈ N∗, then one has

(3.15)
1

2πR
G1 [P1(2πq x1 + c), P2(2πq x2 + c)]

=
(|qx1 − bqx1c − qx2 + bqx2c| − 1

2)2

2
− 1

24
=: Kq(x1, x2)

and the pointwise converging bilinear expansion

(3.16) Kq(x1, x2) = 2
∑
k∈N∗

cos(2kqπx1) cos(2kqπx2) + sin(2kqπx1) sin(2kqπx2)
4k2π2

Proof. For x ∈ R, we set {x} = x − bxc. Obviously, {x} = x for x ∈ [0, 1). For q ∈ N∗ and
arg Pi := 2qπxi + c, i = 1, 2, one has

(3.17) d(P1, P2) = 2πR min(|{qx1} − {qx2}|, 1− |{qx1} − {qx2}|).

Thus we have d(P1, P2)− πR = ±2πR(|{qx1} − {qx2}| − 1/2), which implies (3.14) (for q = 1)
and the first equality in (3.15). The bilinear expansion (3.16) follows readily from (3.13), (3.17)
and the identity

cos [2kπ min(|{qx1} − {qx2}|, 1− |{qx1} − {qx2}|)] = cos (2kqπ[x1 − x2]) .

Since Kq is continuous on [0, 1]× [0, 1], the pointwise convergence is a consequence of Mercer’s
theorem.

Corollary 3.1. For each q ∈ N∗, the V-statistic

(3.18) V 2
q,n :=

1
n2

n∑
i=1

n∑
j=1

Kq(xi, xj)

satisfies, under H0,

(3.19) lim
n→∞

P (nV 2
q,n > x) =

∑
j∈N∗

(−1)j−12e−2j2π2x.

6
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Proof. The eigenvalues appearing in the Karhunen-Loève expansion (3.16) are independent of
q. Consequently (see Koroljuk and Borovskich (1994), formula (4.3.18) p.142), for each q, the
asymptotic distribution of nV 2

q,n is that of nV 2
1,n which is the Watson statistic. The asymptotic

distribution of the latter is given in Watson (1961), formula (22).

We now show that the Cramér-von Mises statistic is obtained as the radial part, with respect
to the north pole, of a test of uniformity on the circle. Let s : P 7→ s·P with Arg(s·P ) = −Arg P
denote the reflection in the axis passing through the poles. Clearly,

(3.20) ck(s · P ) = ck(P ), whereas sk(s · P ) = −sk(P ).

Suppose we have a sample P1(θ1), ..., Pn(θn) on S1(R). A natural way to build a V -statistic
depending only on d(Pi, N) = |θi|, i = 1, ..., n, is, in view of (3.20), to use the kernel

(3.21)
G(P1, P2) + G(P1, s · P2)

2
=

∞∑
k=1

ck(P1)ck(P2)
(k2/R2)

,

whose bilinear expansion has been obtained on combining (3.13) and (3.20). We now show that
the kernel obtained from G1 on S1(R)×S1(R) by this averaging process corresponds to KW on
[0, 1]× [0, 1] after a suitable change of variables. For x ∈ R we use the notation

d2Z(x) := min
`∈Z

|x− 2`|.

Proposition 3.3. If P1, P2 ∈ S1(R), then

(3.22)
G(P1, P2) + G(P1, s · P2)

2
=

πR

2
KW (

d(P1, N)
πR

;
d(P2, N)

πR
).

Conversely, if x1, x2 ∈ [0, 1] and arg Pi := πxi, (i = 1, 2), one has

(3.23) KW (x1, x2) =
2

πR
· G1(P1, P2) + G1(P1, s · P2)

2

More generally, assume q ∈ N∗, x1, x2 ∈ (0, 1) and

arg Pi := qπxi, (i = 1, 2)

Then the kernel

(3.24) Lq(x1, x2) :=
G1(P1, P2) + G1(P1, s · P2)

2
=

πR

2
KW [d2Z(qx1), d2Z(qx2)]

has the bilinear expansion

(3.25) Lq(x1, x2) = 2
∑
k∈N∗

cos(kqπx1) cos(kqπx2)
k2π2

7
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Proof. The bilinear expansion (3.21), with arg Pi := qπxi, becomes

(3.26)
G(P1, P2) + G(P1, s · P2)

2
=

∞∑
k=1

cos[kqπx1] cos[kqπx2]
(k2π/R)

=
∞∑

k=1

cos[kπd2Z(qx1)] cos[kπd2Z(qx2)]
(k2π/R)

=
πR

2
KW [d2Z(qx1), d2Z(qx2)],

the last equality following from (1.7) and the fact that d2Z(qx) ∈ [0, 1] for each x ∈ R.
Hence (3.24) and (3.25) are proved. By taking q = 1 we obtain (3.22) and (3.23) in view
of d(Pi, N)/(πR) = xi, (i = 1, 2).

4 Tests of uniformity on the sphere

Suppose now that wish to test the hypothesis

H0: a random sample P1, ..., Pn has been drawn from a population uniformly dis-
tributed on the unit sphere

S2 := {(x, y, z) ∈ R3, x2 + y2 + z2 = 1}.

On S2 the generic point Q(x, y, z) has spherical coordinates (θ, φ) ∈ [0, π]× [0, 2π] with

(4.27) x = sin θ sinφ, y = sin θ cos φ, z = cos θ.

The Riemannian measure is
dQ = sin θdθdφ.

For the following basic facts, see e.g. Magnus et al. (1966), § 4.9. The Laplacian of f : P 7→
f(θ, φ) is given by

∆f = (sin θ)−1∂θ(sin θ∂θf) + (sin θ)−2∂2
φf.

For each ` ∈ N, −`(`+1) is an eigenvalue of the Laplacian with multiplicity 2`+1. The Legendre
polynomials and associated functions of the first kind are defined by

P`(x) = (2``!)−1 dn

dxn
(x2 − 1)n, (` ∈ N) and

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm
P`(x), (1 ≤ m ≤ `, −1 ≤ x ≤ 1),

(Magnus et al. (1966) p.174 and p. 232). An orthonormal basis of the eigenspace corresponding
to −`(` + 1) is given by the 2` + 1 functions {fm

` : −` ≤ m ≤ `} defined by

f0
` (P ) := (

2` + 1
4π

)1/2P`(cos θ), ( ` ≥ 0),(4.28)

fm
` (P ) :=

{
(2k + 1)(`−m)!

2π(` + m)!

}1/2

cos(mφ)Pm
` (cos θ), (1 ≤ m ≤ `),(4.29)

fm
` (P ) :=

{
(2k + 1)(`− |m|)!

2π(` + |m|)!

}1/2

sin(|m|φ)P |m|
` (cos θ), (−` ≤ m ≤ −1).(4.30)

8
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We set, for 0 < θ1 ≤ θ2 < π,

Φ0(P1, P2) :=
2 log 2− 1− log(1 + cos θ1)(1− cos θ2)

4π
,(4.31)

Φm(P1, P2) :=
sin(mφ1) sin(mφ2)

2π|m|
tan|m|

θ1

2
cot|m|

θ2

2
, (m ∈ −N∗)(4.32)

Φm(P1, P2) :=
cos(mφ1) cos(mφ2)

2πm
tanm θ1

2
cotm θ2

2
, (m ∈ N∗).(4.33)

In the following Proposition we compute the Green’s function of the Laplacian, say G2, for which
we give several orthogonal decomposition. We will use Lemma 4.1, whose proof is postponed
to the end of this section. For any P ∈ S2,

−→
P will denote the unit vector

−−→
OP , where O is the

center of S2.

Proposition 4.1. The zero-mean Green’s function of the Laplacian on S2 is

(4.34) G2(P1, P2) =
log 2− 1− log(1−

−→
P1 ·

−→
P2)

4π
.

G2 has in L2 the bilinear expansions

G2(P1, P2) =
∞∑

`=1

f0
` (P1)f0

` (P2)
`(` + 1)

+
∑

m∈Z∗

∞∑
`=|m|

fm
` (P1)fm

` (P2)
`(` + 1)

(4.35)

=
∑
m∈Z

Φm(P1, P2)

where the Φm have the pointwise converging bilinear expansions,

Φ0(P1, P2) =
∞∑

`=1

f0
` (P1)f0

` (P2)
`(` + 1)

,(4.36)

Φm(P1, P2) =
∞∑

`=|m|

fm
` (P1)fm

` (P2)
`(` + 1)

, (m ∈ Z∗).(4.37)

Moreover one has, for each q ∈ N∗ and 0 < θ1 ≤ θ2,

(4.38)
∑

m∈qZ∗

Φm(P1, P2) = − 1
4π

log
{

1− 2 tan
θ1

2
cot

θ2

2
cos[q(φ1 − φ2)] + tan2 θ1

2
cot2

θ2

2

}
.

Proof. The first equality in (4.35) follows from Proposition 2.1 and the definition of the functions
appearing in the series. For (4.36), see the last formula of § 5.4.4 in Magnus et al. (1966) p.239,
with x = cos θ2 and y = cos θ1. The equality (4.37) is a consequence of Theorem 2.1 and relation
(2.7) p. 390 in Pycke (2003), with µ = m, min(s, t) = (1− cos θ1)/2, max(s, t) = (1− cos θ2)/2
and the change of index j = k −m + 1. (4.38). It implies in turn the second equality in (4.35).
Relation (4.38) is a direct consequence of Lemma 4.1, used with φ = qφ1, φ′ = qφ2. Finally
(4.38), for q = 1, when combined with (4.44) and (4.31), leads to (4.34).
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We now state some statistical applications of the orthogonal decomposition of G2 obtained
in the preceding Proposition. They are consequences of the general result about U− statistics
stated for example in Koroljuk and Borovskich (1994), Theorem 4.3.1. Note that the degeneracy
condition used in this theorem is satisfied in our case, since it corresponds to (2.9). Thus for
each ` ∈ N∗, one has the convergence in distribution

Tm
` (n) := n−1/2

n∑
i=1

fm
` (ξi) → τm

` , (−` ≤ m ≤ `) as n →∞,

where the (τm
` ) are independent standard Gaussian variables. Hence we can state the following

result.

Proposition 4.2. Under the null hypothesis of uniformity

(4.39) US2(n)(P1, ..., Pn) :=
2

(n− 1)

∑
1≤i<j≤n

G2(Pi, Pj) →
∞∑

`=1

∑̀
m=−`

(τm
` )2 − 1

`(` + 1)
as n →∞.

Each Tm
` (n) is a principal component of US2(n). The following result permits to compute

the distribution of sums of squares of these principal components regrouped in subsets whose
choice follows naturally from the orthogonal decomposition (4.35). Consider the V−statistics

V 2
0 (n)(P1, ..., Pn) :=

1
n2

n∑
i=1

n∑
j=1

Φ0(Pi, Pj),(4.40)

V 2
m(n)(P1, ..., Pn) :=

1
n2

n∑
i=1

n∑
j=1

[Φm(Pi, Pj) + Φ−m(Pi, Pj)] , (m ∈ N∗)(4.41)

Since for any ` ≥ 1, f0
` (P ) depends only on the distance (or latitude) of P to the north pole,

nV 2
0 (n) can be viewed as the radial part (with respect to the north pole) of a test of uniformity

on the sphere. The next proposition shows that more precisely, it is the Anderson-Darling
statistic computed from the distances to the pole, hence the latitudes of the points.

Proposition 4.3. If P1, ..., Pn are points from the sphere, one has

nV 2
0 (n)(P1, ..., Pn) = A2

n(
1− cos θ1

2
, ...,

1− cos θn

2
).

Proof. This result follows readily from (1.8), (4.28), (4.31) and (4.36).

Next Proposition deals with the non null values of m.

Proposition 4.4. Assume m ∈ N∗. One has

lim
n→∞

nV 2
m(n) =

∑
`≥|m|

(τm
` )2 + (τ−m

` )2

`(` + 1)
=: A2

m.
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The random variable A2
m has a characteristic function given by

(4.42) E exp{itA2
m} =

∞∏
`=m

(
1− 2it

`(` + 1)

)−1

, (t ∈ R).

Hence

(4.43) lim
n→∞

P (nV 2
m(n) ≥ x) = 1{x>0}

∞∑
`=m

(−1)`−m(2` + 1)am,`e
−`(`+1)x/2.

with {
a1,` = 1,

am,` =
∏m−1

k=1

{
`(`+1)
k(k+1) − 1

}
, m = 2, 3, ...

Proof. For each t ∈ C, (see Durbin (1973), relation (4.4.7) p.32)

φm(t) :=
∞∏

`=m

(
1− 2t

`(` + 1)

)−1

=
−2πt

∏m−1
k=1 (1− 2t

k(k+1))

cos(π
√

(1 + 8t)/2)
=

∞∑
`=m

c`

1− (2t/[`(` + 1)])

with

c` = lim
t→`(`+1)/2

{
1− 2t

`(` + 1)

}
φm(t) = (−1)`−m(2` + 1)

m−1∏
k=1

(
`(` + 1)
k(k + 1)

− 1).

We obtained the last equality by setting 2t = `(` + 1) + ε, so that, as t → `(` + 1)/2,

cos(π
√

(1 + 8t)/2) ∼ (−1)`+1 sin(πε/(2` + 1)), 1− 2t

`(` + 1)
= − ε

`(` + 1)
.

Thus the density function of A2
m is

f(x) =
∞∑

`=m

(−1)`−mc`
`(` + 1)

2
exp{−`(` + 1)t

2
}

from which (4.43) follows.

Lemma 4.1. If 0 ≤ θ ≤ θ′ ≤ π, and φ, φ′ ∈ [0, 2π], then

(4.44) − log
(

1− 2 tan
θ

2
cot

θ′

2
cos(φ− φ′) + tan2 θ

2
cot2

θ′

2

)
=

∞∑
m=1

2 cos {m(φ− φ′)}
m

tanm θ

2
cotm θ′

2

Furthermore

(4.45) log(1−
−→
P1 ·

−→
P2) = log(

[
1− cos(φ− φ′) sin θ sin θ′ − cos θ cos θ′

]
= log

(
1− 2 tan

θ

2
cot

θ′

2
cos(φ− φ′) + tan2 θ

2
cot2

θ′

2

)
+ log(1 + cos θ) + log(1− cos θ′)− log 2.
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Proof. If θ < θ′, then z := tan θ
2 cot θ′

2 satisfies |z| < 1. From the theory of orthogonal polyno-
mials (see Szegő (1967), Chapter 4, formula 4.7.25), we know that

− log(1− 2z cos(φ− φ′) + z2) = 2
∞∑

m=1

Tm

[
cos(φ− φ′)

]
zm/m

where Tm is the Chebyshef polynomial, defined for m ∈ N by Tm(cos .) = cos(m.). This leads to
(4.44). In the case where θ = θ′, we have φ− φ′ 6= 0 or 2π. The equality (4.44) then reduces to
the classical Fourier series expansion (see Tolstov (1976), Chapter 5, section 11 p.147)

∞∑
m=1

2 cos{m(φ− φ′)}
m

= −2 log
(

2 sin
φ− φ′

2

)
= − log

[
2− 2 cos(φ− φ′)

]
.

The first equality in (4.45) follows from the definition (4.27) of spherical coordinates. The second
equality is a direct consequence of the identities

(1 + cos θ)(1− cos θ′)[1 + tan2 θ

2
cot2

θ′

2
] = 2− 2 cos θ cos θ′

and

(1 + cos θ)(1− cos θ′) · 2 tan
θ

2
cot

θ′

2
cos(φ− φ′) = 2 sin θ sin θ′ cos(φ− φ′).
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