J.-R Pycke 
email: jrpycke@univ-evry.fr
  
U -statistics based on the Green's function of the Laplacian on the circle and the sphere

Keywords: directional statistics, tests of uniformity, U-and V-statistics, Cramérvon Mises statistic, Anderson-Darling statistic, Watson statistic

We show that the Watson and Cramér-von Mises statistics are related to Green's function of the Laplacian on a circle. A generalization leads to a new U-statistic whose kernel is the Green function of the Laplacian on the sphere.

Introduction

In the field of directional statistics the problem of testing uniformity remains widely open, especially when the sample space is the unit sphere. The present paper deals with the case where the sample space is the unit circle or the unit sphere. For general surveys about tests for uniformity on the circle and the sphere the reader is referred to [START_REF] Fisher | Statistical analysis of circular data[END_REF] p.64-71 and [START_REF] Mardia | Directional statistics[END_REF], §6.3 and §10.4.1. Many tests for uniformity on the circle and the sphere fit into the general framework established by [START_REF] Giné | Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms[END_REF], whose most important features are expounded in [START_REF] Mardia | Directional statistics[END_REF], §10.8. In the present paper we propose a new approach based upon the following remarks. The problem of testing uniformity on the unit circle is closely related to that of testing uniformity on [0,1]. A classical way to test the hypothesis H 0 : a random sample x 1 , ..., x n (with order statistics x (1) < • • • < x (n) ) has been drawn from a population uniformly distributed on [0, 1],

A c c e p t e d m a n u s c r i p t

is based on the rejection of H 0 for large values taken by one of the celebrated statistics

W 2 n = n i=1 x (i) - i -1 2 n 2 + 1 12n
, (Cramér-von Mises) (1.1)

U 2 n = W 2 n -n(x - 1 2 ) 2 , (Watson) (1.2) A 2 n = -n - 1 n n i=1 (2i -1){log x (i) + log[1 -x (n-i+1) ]}, (Anderson-Darling) (1.3)
where x = n -1 n i=1 x i (see [START_REF] Durbin | Distribution theory for tests based on the sample distribution function[END_REF], formulas (4.17) -(4.18) p. 27 and (5.4.2) p. 36). Elementary computations enable to express these Cramér-von Mises type statistics in the alternative form of the von Mises functionals (or V-statistics)

U 2 n = 1 n n i=1 n j=1 (|x i -x j | -1/2) 2 2 - 1 24
with the kernel (1.4)

K U (x 1 , x 2 ) := (|x 1 -x 2 | -1/2) 2 2 - 1 24 (1.5) = ∞ k=1 2 sin(2kπx 1 ) sin(2kπx 2 ) + 2 cos(2kπx 1 ) cos(2kπx 2 ) 4k 2 π 2 ; W 2 n = 1 n n i=1 n j=1 x 2 i -x i + x 2 j -x j -|x i -x j | 2 + 1 3 with (1.6) K W (x 1 , x 2 ) := x 2 1 -x 1 + x 2 2 -x 2 -|x 1 -x 2 | 2 + 1 3 = ∞ k=1 2 cos(kπx 1 ) cos(kπx 2 ) k 2 π 2 ; (1.7) A 2 n = 1 n n i=1 n j=1 {-log[max(x i , x j ) -x i x j ] -1} . (1.8)
For basic definitions and results about U -and V -statistics, see [START_REF] Koroljuk | Theory of U -statistics[END_REF], Chapter 1. The explicit Kac-Siegert or Karhunen-Loève expansions (1.5) and (1.7) of the Watson and Cramér-von Mises kernels (K U and K W respectively) are given in [START_REF] Durbin | Distribution theory for tests based on the sample distribution function[END_REF], formula (5.6.7) p. 38 and [START_REF] Dym | Fourier series and integrals[END_REF] p. 60. The definition and usefulness of such an expansion of the kernel, in the study of the corresponding Cramér-von Mises, U -or Vstatistic is well-known. Some basic facts will be shortly recalled in Section 3. For details, the reader is referred to [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], Chapter 5 (for Cramér-von Mises type statistics) and [START_REF] Koroljuk | Theory of U -statistics[END_REF], § 4.3. (for U -and V -statistics). Unfortunately, such explicit expansions can rarely be derived. However, recent advances (see [START_REF] Deheuvels | Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions[END_REF], [START_REF] Henze | Watson-type goodness-of-fit tests based on the integrated empirical process[END_REF], [START_REF] Lachal | Study of some new integrated statistics: computation of Bahadur efficiency, relation with non-standard boundary value problems[END_REF] and [START_REF] Pycke | Multivariate extensions of the Anderson-Darling process[END_REF]) show a renewal of the interest in this field, in which a central problem is to find a general method for deriving explicit expansions having a statistical interest. The aim of this paper is to show how the three classical examples mentioned above can be generalized. It leads to a new family of statistics since to our knowledge, the asymptotic distribution given by (4.39) in Proposition 4.2 is not that of an already known test for uniformity on the sphere.

A c c e p t e d m a n u s c r i p t

To start with, relations (3.14) of Proposition 3.2 and (3.22) of Proposition 3.3 show that K U and K W are simply related to the zero-mean Green function of the Laplacian on the circle, say G 1 . In Section 2, we recall the definition of the Green's function of the Laplacian on a compact manifold M , and give in Proposition 2.1 a Karhunen-Loève expansion of this function, in the particular case where dim M ≤ 3 . In Propositions 3.2 and 3.3, we show that the general way to cover the circle by an interval leads to new V-statistics whose kernel, defined by (3.15) and (3.24), are as well simply related to G 1 . In Section 4 we generalize these ideas to the sphere. This interpretation enables us to introduce a new U-statistic, defined in (4.39), arising as a generalization of the Watson statistic in order to test uniformity on the sphere. Its kernel is the centered Green function of the Laplacian on the sphere, for which we obtain different explicit orthogonal decompositions in Proposition 4.1. The asymptotic distribution of a subset of principal components of the new statistic (in the line of [START_REF] Durbin | Components of Cramér-von Mises statistics[END_REF]) is given in Propositions 4.3 and 4.4. In particular, Proposition 4.3 shows that the Anderson-Darling statistic can be viewed as the radial principal component, with respect to a pole, of our new statistic. Generalizations of these ideas to a wider class of compact manifolds will be studied in a forthcoming paper.

Before stating our results, we recall some basic facts about Green's function and Karhunen-Loève expansions.

Green's function and Karhunen-Loève expansions

For details concerning the Green's function of the Laplacian, the reader is referred to [START_REF] Aubin | Nonlinear analysis on manifolds. Monge-Ampère equations[END_REF], Chapter 4, particularly § 2.3 p. 108.

Assume M is a compact and connected, C ∞ , Riemannian manifold without boundary having volume V . The density of the Riemannian measure on M (see [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], Chapter 1, § 2) is denoted by dQ. We let L 2 (M ) be the space of real measurable functions f on M for which

M f 2 (Q)dQ < ∞, equipped with the usual inner product (f |g) = M f (Q)g(Q)dQ, f, g ∈ L 2 (M ). For any C k , k ≥ 2, function f , ∆f := div(gradf ) denotes the Laplacian of f . A Green's function of the Laplacian is a function G(P, Q) defined on M × M satisfying, in the distributional sense, -∆ Q G(P, Q) = δ P (Q) -1/V
where δ P denotes the Dirac distribution at P (see formula [START_REF]t e d n u s c r i p t[END_REF] p.108 in [START_REF] Aubin | Nonlinear analysis on manifolds. Monge-Ampère equations[END_REF], keeping in mind that the author has an opposite sign convention for ∆). From [START_REF] Aubin | Nonlinear analysis on manifolds. Monge-Ampère equations[END_REF], Theorem 4.13 p.108, we know the following properties. On the one hand there always exists a Green function of the Laplacian on M . On the other hand there is only one Green's function of the Laplacian, say G M , satisfying moreover (2.9)

M G M (P, Q)dQ = 0, ∀P ∈ M.

A c c e p t e d m a n u s c r i p t

This function will be referred to in the sequel as the zero-mean Green's function of the Laplacian.

Consider the integral equation

(2.10) λ M K(P, Q)φ(Q)dQ = φ(P )
where the symmetric, measurable kernel K satisfies

M ×M K 2 (P, Q)dP dQ < ∞.
According to the general theory of such integral equations, (2.10) has a denumerable set of eigenvalues λ k , k = 1, 2, ..., which are matched by a denumerable set of eigenfunctions φ k , k = 1, 2, ..., forming an orthonormal set of functions in L 2 (M ). The Fourier series of the kernel K(P, Q) regarded as a function of Q, with respect to the orthonormal system

{φ k (Q)} is (2.11) K(P, Q) = ∞ k=1 φ k (P )φ k (Q) λ k , with M φ k (Q)φ (Q)dQ = 1 if k = , 0 if k = .
This series converge in the mean to K. If the integral operator is positive, the eigenvalues can be rearranged to satisfy 0 < λ 1 ≤ λ 2 ≤ • • • and we refer to (2.11) as to the Karhunen-Loève (or K-L) expansion of K.

Proposition 2.1. The eigenvalue problem ∆ϕ = -λϕ has a complete orthonormal system of C ∞ -eigenfunctions ϕ 0 , ϕ 1 , ϕ 2 ... in L 2 (M ) and corresponding eigenvalues

0 = λ 0 < λ 1 ≤ λ 2 ≤ ... ↑ ∞. Furthermore, if dim M ≤ 3, one has in L 2 (M × M )
the bilinear expansion of the zero-mean Green function

(2.12) G M (P 1 , P 2 ) = ∞ k=1 ϕ k (P 1 )ϕ k (P 2 ) λ k .
Proof. The first assertion is a classical result from Riemannian geometry, see e.g. [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], [START_REF] Zhu | Operator theory in function spaces[END_REF]). Furthermore we know from Weyl's asymptotic formula (see [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF], formula (50) p. 9), that

Theorem 1 p. 8. It is clear that φ 0 (Q) = 1/ √ V ; consequently the orthogonality relations imply that for each k ≥ 1, M φ k = √ V M φ k φ 0 = 0. Hence from formula (15) p. 108 in Aubin (1982), we infer λ k M G M (P, Q)φ k (Q)dQ = φ k (P ), (k ≥ 1). In view of lim k→∞ λ -1 k = 0, we know that φ → M G M (., Q)φ(Q)dQ is a compact operator on L 2 (M ) (see e.g. Proposition 1.3.10 in
λ k ∼ constant × k 2/ dim M , hence ∞ k=1 λ -2 k < ∞ ⇐⇒ dim M ∈ {1, 2, 3}.

A c c e p t e d m a n u s c r i p t

This means that in our case, φ → M G M (P, Q)φ(Q)dQ is a Hilbert-Schmidt operator (see [START_REF] Zhu | Operator theory in function spaces[END_REF], §1.4). It also implies that if dim M ≤ 3, the series on the right-hand side of (2.12) converges in L 2 (M × M ) toward a function, say L(P, Q). This function is the kernel of the integral operator φ → M L(P, Q)φ(Q)dQ on L 2 (M ). In order to prove that it coincides with G M (P, Q), it is sufficient to check it on their action on ϕ k , k ≥ 0, since the latter span L 2 (M ).

For k = 0, the result is a consequence of (2.9). And for each k ∈ N * , it is readily checked that

M L(P, Q)ϕ k (Q)dQ = ϕ k (P )/λ k ,
which completes the proof.

3 The Watson, Cramér-von Mises statistics and the circle U 2 n was introduced by [START_REF] Watson | Goodness-of-fit tests on a circle[END_REF] for use with observations P 1 , ..., P n recorded on the circumference of the circle. For the circle of radius R S 1 (R) := {Re iθ : θ ∈ R}, endowed with the measure dP = Rdθ, a point P ∈ S 1 (R) corresponding to the argument θ will be denoted by P (θ) and we write θ = arg P . The principal value of the argument of P , denoted by Arg P , is the argument satisfying -π < θ ≤ π. The north pole corresponds to θ = 0, the south pole to θ = π. We denote by d(P 1 , P 2 ) the distance on the circle between the two points P 1 (θ 1 ) and P 2 (θ 2 ). The Laplacian of P → f (θ) where f : R → R is a 2π-periodic function is given by

∆f = 1 R 2 d 2 f dθ 2 .
Proposition 3.1. The zero-mean Green's function of the Laplacian on S 1 (R) is

G 1 (P 1 , P 2 ) := [πR -d(P 1 , P 2 )] 2 4πR - πR 12 .
Moreover, one has the pointwise converging bilinear expansion

(3.13) G 1 (P 1 , P 2 ) = ∞ k=1 s k (P 1 )s k (P 2 ) + c k (P 1 )c k (P 2 ) (k 2 /R 2 ) = ∞ k=1 c k [d(P 1 , P 2 )/R] (k 2 /R 2 )
with s k (P ) = (πR) -1/2 sin(kθ) and c k (θ) = (πR) -1/2 cos(kθ).

Proof. It is clear that {s k , c k : k ≥ 1} is a complete orthonormal set of zero-mean eigenfunctions of the Laplacian. The first equality in (3.13) then follows from the equality (2.12) in Proposition 2.1. The second equality is a consequence of the identity cos (±|θ

1 -θ 2 |) = cos θ 1 cos θ 2 + sin θ 1 sin θ 2 , in view of the equality d(P 1 , P 2 )/R = min(|θ 1 -θ 2 |, 2π -|θ 1 -θ 2 |).

A c c e p t e d m a n u s c r i p t

A way to wrap a distribution on [0, 1] around the circle is to set

arg P := 2qπx + c, x ∈ [0, 1],
with c ∈ R and q ∈ N * . The next Proposition shows that for q = 1, this wrapping transforms Watson's kernel, defined on [0, 1] × [0, 1], into the Green's function of the circle, and generalizes Watson's kernel for other values of q.

Proposition 3.2. Assume x 1 , x 2 ∈ [0, 1] and c ∈ R.

If arg P i := 2πx i + c, i = 1, 2, then (3.14) K U (x 1 , x 2 ) = G 1 (P 1 , P 2 )/(2πR).
More generally, if arg P i := 2qπx i + c, i = 1, 2, with q ∈ N * , then one has

(3.15) 1 2πR G 1 [P 1 (2πq x 1 + c), P 2 (2πq x 2 + c)] = (|qx 1 -qx 1 -qx 2 + qx 2 | -1 2 ) 2 2 - 1 24 =: K q (x 1 , x 2 )
and the pointwise converging bilinear expansion

(3.16) K q (x 1 , x 2 ) = 2 k∈N * cos(2kqπx 1 ) cos(2kqπx 2 ) + sin(2kqπx 1 ) sin(2kqπx 2 ) 4k 2 π 2
Proof. For x ∈ R, we set {x} = x -x . Obviously, {x} = x for x ∈ [0, 1). For q ∈ N * and arg P i := 2qπx i + c, i = 1, 2, one has (3.17)

d(P 1 , P 2 ) = 2πR min(|{qx 1 } -{qx 2 }|, 1 -|{qx 1 } -{qx 2 }|).
Thus we have d(P 1 , P 2 ) -πR = ±2πR(|{qx 1 } -{qx 2 }| -1/2), which implies (3.14) (for q = 1) and the first equality in (3.15). The bilinear expansion (3.16) follows readily from (3.13), (3.17) and the identity

cos [2kπ min(|{qx 1 } -{qx 2 }|, 1 -|{qx 1 } -{qx 2 }|)] = cos (2kqπ[x 1 -x 2 ]) .
Since K q is continuous on [0, 1] × [0, 1], the pointwise convergence is a consequence of Mercer's theorem.

Corollary 3.1. For each q ∈ N * , the V-statistic

(3.18) V 2 q,n := 1 n 2 n i=1 n j=1 K q (x i , x j ) satisfies, under H 0 , (3.19) lim n→∞ P (nV 2 q,n > x) = j∈N * (-1) j-1 2e -2j 2 π 2 x .

A c c e p t e d m a n u s c r i p t

Proof. The eigenvalues appearing in the Karhunen-Loève expansion (3.16) are independent of q. Consequently (see [START_REF] Koroljuk | Theory of U -statistics[END_REF], formula (4.3.18) p.142), for each q, the asymptotic distribution of nV 2 q,n is that of nV 2 1,n which is the Watson statistic. The asymptotic distribution of the latter is given in Watson (1961), formula (22).

We now show that the Cramér-von Mises statistic is obtained as the radial part, with respect to the north pole, of a test of uniformity on the circle. Let s : P → s•P with Arg(s•P ) = -Arg P denote the reflection in the axis passing through the poles. Clearly,

(3.20) c k (s • P ) = c k (P ), whereas s k (s • P ) = -s k (P ).
Suppose we have a sample P 1 (θ 1 ), ..., P n (θ n ) on S 1 (R). A natural way to build a V -statistic depending only on n, is, in view of (3.20), to use the kernel

d(P i , N ) = |θ i |, i = 1, ...,
(3.21) G(P 1 , P 2 ) + G(P 1 , s • P 2 ) 2 = ∞ k=1 c k (P 1 )c k (P 2 ) (k 2 /R 2 ) ,
whose bilinear expansion has been obtained on combining (3.13) and (3.20). We now show that the kernel obtained from G 1 on S 1 (R) × S 1 (R) by this averaging process corresponds to K W on [0, 1] × [0, 1] after a suitable change of variables. For x ∈ R we use the notation

d 2Z (x) := min ∈Z |x -2 |. Proposition 3.3. If P 1 , P 2 ∈ S 1 (R), then (3.22) G(P 1 , P 2 ) + G(P 1 , s • P 2 ) 2 = πR 2 K W ( d(P 1 , N ) πR ; d(P 2 , N ) πR ).
Conversely, if x 1 , x 2 ∈ [0, 1] and arg P i := πx i , (i = 1, 2), one has

(3.23) K W (x 1 , x 2 ) = 2 πR • G 1 (P 1 , P 2 ) + G 1 (P 1 , s • P 2 ) 2
More generally, assume q ∈ N * , x 1 , x 2 ∈ (0, 1) and

arg P i := qπx i , (i = 1, 2)
Then the kernel

(3.24) L q (x 1 , x 2 ) := G 1 (P 1 , P 2 ) + G 1 (P 1 , s • P 2 ) 2 = πR 2 K W [d 2Z (qx 1 ), d 2Z (qx 2 )]
has the bilinear expansion

(3.25) L q (x 1 , x 2 ) = 2 k∈N * cos(kqπx 1 ) cos(kqπx 2 ) k 2 π 2

A c c e p t e d m a n u s c r i p t

Proof. The bilinear expansion (3.21), with arg P i := qπx i , becomes

(3.26) G(P 1 , P 2 ) + G(P 1 , s • P 2 ) 2 = ∞ k=1 cos[kqπx 1 ] cos[kqπx 2 ] (k 2 π/R) = ∞ k=1 cos[kπd 2Z (qx 1 )] cos[kπd 2Z (qx 2 )] (k 2 π/R) = πR 2 K W [d 2Z (qx 1 ), d 2Z (qx 2 )],
the last equality following from (1.7) and the fact that d 2Z (qx) ∈ [0, 1] for each x ∈ R. Hence (3.24) and (3.25) are proved. By taking q = 1 we obtain (3.22) and (3.23) in view of

d(P i , N )/(πR) = x i , (i = 1, 2).
4 Tests of uniformity on the sphere Suppose now that wish to test the hypothesis H 0 : a random sample P 1 , ..., P n has been drawn from a population uniformly distributed on the unit sphere

S 2 := {(x, y, z) ∈ R 3 , x 2 + y 2 + z 2 = 1}. On S 2 the generic point Q(x, y, z) has spherical coordinates (θ, φ) ∈ [0, π] × [0, 2π] with (4.27) x = sin θ sin φ, y = sin θ cos φ, z = cos θ.
The Riemannian measure is dQ = sin θdθdφ.

For the following basic facts, see e.g. [START_REF] Magnus | Formulas and theorems for the special functions of mathematical physics[END_REF], § 4.9. The Laplacian of f :

P → f (θ, φ) is given by ∆f = (sin θ) -1 ∂ θ (sin θ∂ θ f ) + (sin θ) -2 ∂ 2 φ f. For each ∈ N, -( +1
) is an eigenvalue of the Laplacian with multiplicity 2 +1. The Legendre polynomials and associated functions of the first kind are defined by (Magnus et al. (1966) p.174 and p. 232). An orthonormal basis of the eigenspace corresponding to -( + 1) is given by the 2 + 1 functions {f m : -≤ m ≤ } defined by We set, for 0 < θ 1 ≤ θ 2 < π,

P (x) = (2 !) -1 d n dx n (x 2 -1) n , ( ∈ N) and P m (x) = (-1) m (1 -x 2 ) m/2 d m dx m P (x), (1 ≤ m ≤ , -1 ≤ x ≤ 1),
f 0 (P ) := ( 2 + 1 4π ) 1/2 P (cos θ), ( ≥ 
Φ 0 (P 1 , P 2 ) := 2 log 2 -1 -log(1 + cos θ 1 )(1 -cos θ 2 ) 4π , (4.31) Φ m (P 1 , P 2 ) := sin(mφ 1 ) sin(mφ 2 ) 2π|m| tan |m| θ 1 2 cot |m| θ 2 2 , (m ∈ -N * ) (4.32) Φ m (P 1 , P 2 ) := cos(mφ 1 ) cos(mφ 2 ) 2πm tan m θ 1 2 cot m θ 2 2 , (m ∈ N * ). (4.33)
In the following Proposition we compute the Green's function of the Laplacian, say G 2 , for which we give several orthogonal decomposition. We will use Lemma 4.1, whose proof is postponed to the end of this section. For any P ∈ S 2 , -→ P will denote the unit vector --→ OP , where O is the center of S 2 .

Proposition 4.1. The zero-mean Green's function of the Laplacian on S 2 is

(4.34) G 2 (P 1 , P 2 ) = log 2 -1 -log(1 - -→ P 1 • -→ P 2 ) 4π
.

G 2 has in L 2 the bilinear expansions

G 2 (P 1 , P 2 ) = ∞ =1 f 0 (P 1 )f 0 (P 2 ) ( + 1) + m∈Z * ∞ =|m| f m (P 1 )f m (P 2 ) ( + 1) (4.35) = m∈Z Φ m (P 1 , P 2 )
where the Φ m have the pointwise converging bilinear expansions,

Φ 0 (P 1 , P 2 ) = ∞ =1 f 0 (P 1 )f 0 (P 2 ) ( + 1) , (4.36) Φ m (P 1 , P 2 ) = ∞ =|m| f m (P 1 )f m (P 2 ) ( + 1) , (m ∈ Z * ). (4.37)
Moreover one has, for each q ∈ N * and 0 < θ 1 ≤ θ 2 , (4.38)

m∈qZ * Φ m (P 1 , P 2 ) = - 1 4π log 1 -2 tan θ 1 2 cot θ 2 2 cos[q(φ 1 -φ 2 )] + tan 2 θ 1 2 cot 2 θ 2 2 .
Proof. 

A c c e p t e d m a n u s c r i p t

We now state some statistical applications of the orthogonal decomposition of G 2 obtained in the preceding Proposition. They are consequences of the general result about U -statistics stated for example in [START_REF] Koroljuk | Theory of U -statistics[END_REF], Theorem 4.3.1. Note that the degeneracy condition used in this theorem is satisfied in our case, since it corresponds to (2.9). Thus for each ∈ N * , one has the convergence in distribution

T m (n) := n -1/2 n i=1 f m (ξ i ) → τ m , (-≤ m ≤ ) as n → ∞,
where the (τ m ) are independent standard Gaussian variables. Hence we can state the following result.

Proposition 4.2. Under the null hypothesis of uniformity

(4.39) U S 2 (n)(P 1 , ..., P n ) := 2 (n -1) 1≤i<j≤n G 2 (P i , P j ) → ∞ =1 m=- (τ m ) 2 -1 ( + 1) as n → ∞. Each T m (n) is a principal component of U S 2 (n).
The following result permits to compute the distribution of sums of squares of these principal components regrouped in subsets whose choice follows naturally from the orthogonal decomposition (4.35). Consider the V -statistics

V 2 0 (n)(P 1 , ..., P n ) := 1 n 2 n i=1 n j=1 Φ 0 (P i , P j ), (4.40) V 2 m (n)(P 1 , ..., P n ) := 1 n 2 n i=1 n j=1
[Φ m (P i , P j ) + Φ -m (P i , P j )] , (m ∈ N * ) (4.41) Since for any ≥ 1, f 0 (P ) depends only on the distance (or latitude) of P to the north pole, nV 2 0 (n) can be viewed as the radial part (with respect to the north pole) of a test of uniformity on the sphere. The next proposition shows that more precisely, it is the Anderson-Darling statistic computed from the distances to the pole, hence the latitudes of the points. Proof. This result follows readily from (1.8), (4.28), (4.31) and (4.36).

Next Proposition deals with the non null values of m. 

A c c e p t e d m a n u s c r i p t

Proof. If θ < θ , then z := tan θ 2 cot θ 2 satisfies |z| < 1. From the theory of orthogonal polynomials (see [START_REF] Szegő | Orthogonal polynomials[END_REF], Chapter 4, formula 4.7.25), we know that

-log(1 -2z cos(φ -φ ) + z 2 ) = 2 ∞ m=1 T m cos(φ -φ ) z m /m
where T m is the Chebyshef polynomial, defined for m ∈ N by T m (cos .) = cos(m.). This leads to (4.44). In the case where θ = θ , we have φ -φ = 0 or 2π. The equality (4.44) then reduces to the classical Fourier series expansion (see [START_REF] Tolstov | Fourier series[END_REF] 

  )P m (cos θ), (1 ≤ m ≤ ), (4.29) f m (P ) := (2k + 1)( -|m|)! 2π( + |m|)! 1/2sin(|m|φ)P |m| (cos θ), (-≤ m ≤ -1). (4.30)

  Proposition 4.3. If P 1 , ..., P n are points from the sphere, one has nV 2 0 (n)(P 1 , ..., P n )

  2 -2 cos(φ -φ ) .The first equality in (4.45) follows from the definition (4.27) of spherical coordinates. The second equality is a direct consequence of the identities(1 + cos θ)(1 -cos θ )[1 + tan 2 -φ ) = 2 sin θ sin θ cos(φ -φ ).

A c c e p t e d m a n u s c r i p t

The random variable A 2 m has a characteristic function given by

Proof. For each t ∈ C, (see [START_REF] Durbin | Distribution theory for tests based on the sample distribution function[END_REF], relation (4.4.7) p.32)

We obtained the last equality by setting 2t = ( + 1) + ε, so that, as t → ( + 1)/2, cos(π (1 + 8t)/2) ∼ (-1) +1 sin(πε/(2 + 1)), 1 -2t ( + 1) = -ε ( + 1) .

Thus the density function of