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Bidirectional Composition on Lie Groups for
Gradient-based Image Alignment

Rémi Mégret, Jean-Baptiste Authessérend Yannick Berthoumieu

Abstract—In this paper, a new formulation based on Bidi- noise, one has to consider the appropriateness of the ciomgpet
rectional Composition on Lie Groups BCL) for parametric  jmage alignement algorithms.
gradient-based image alignment is presented. Contrary to the Image alignment based on template matching is a natural
conventional approaches, th@CL method takes advantage of the hto i istrati b timating th t
gradients of both template and current image without combining approach 1o image r_egls ration, by estimaling the p_aralsle e_
them a priori. Based on this bidirectional formulation, two that best warp one image onto the other. The estimation is
methods are proposed and their relationship with state-of-the- conventionally provided by the minimization of the disgdc
art gradient based approaches is fully discussed. The first one, frame difference between the template and the current image
..e. the BCL method, relies on the compositional framework gjnce the Lucas and Kanade Forwards Additive algorithm

to provide the minimization of the compensated error with [1], most approaches have been formulated using such a
respect to an augmented parameter vector. The second one,eth ! PP g

Projected BCL (PBCL), corresponds to a close approximation of Unidirectional compensation approach. The two most natu-
the BCL approach. A comparative study is carried out dealing ral approaches (Forwards and Inverse) have been discussed
with computational complexity, convergence rate and frequence thoroughly by Baker and Matthews [2]. The authors proposed
of convergence. Numerical experiments using a conventional gyhaystive experimental and numerical investigationsoaf f
benchmark show the performance improvement especially for . . . .
asymmetric levels of noise, which is also discussed from amain Classgg. Forwards Additive, Fo_r\_/vards Compositional,
theoretical point of view. Inverse Additive, and Inverse Compositional. The appreach
were extended to take into account asymmetric levels ofadpat
resolution in [3].

In [4] and [5], Benhimane et al. proposed a novel optimiza-
tion strategy, the Efficient Second-order Minimizatidit{M).
I. INTRODUCTION They introduced the Lie Group parameterization of motiodh an
.. the use of the gradients of both image and template yielding

O{Pw elimination of the second-order terms of the error. The

applications. Over the last decades, numerous works PEOS . .
) . . M algorithm achieves better convergence and robustness
posed various approaches to solve registration adapted {o

conventional application fields, i.e. object tracking, gma properties for only a slight overhead compared to the more
o : standard Gauss-Newton approach [2].

mosa_ucklng, video compression or augmenteq rea_hty u.smgStructuraIIy, the methods considered above assume a fully
day light video. For applications such as radar imaginghtig . . . . ) .
asymmetric or symmetric solution to the alignment issiee, i.

vision enhancement_m rpad and.alr traffl_c, thermal magm&ing either template or current image gradients [2] [3], or
and medical electronics, image alignment is still a chafien using both in a symmetric manner [4] [5]. However, in some

:zivueSiler?:IIr;g tl\cl)oirsizglét:trioS?;SNg; Ibrgigﬁzewc?flctkr‘\eri]ra\tle i\ézrr al applications, noise may have an intermediate level of
. 9 . . yp asymmetry, corrupting differently template and currenage,
signal-degradation (e.g. photon, electronics, specldecaan- . e :
2 . . S . which leads to the suboptimality of a fully asymmetric or
tization). For instance, a night vision system provides an . : . .
. . . - . symmetric assumption. In this context, our proposal cés&is
alternative means of improving visibility under low or ngHt

L : . finding an alternative way to solve the alignment issue which
conditions. Because the light reflected by a target is verkwe alkows the algorithm to adapt to asymmetric levels of noise.

the image captured by a Low-Light-Level camera has a graa

Index Terms—Bidirectional image alignment, image registra-
tion, gradient methods, Lie groups.

deal of noise attached on it, i.e. shot noise. In such a lolRS G do this, a generic derivation of image alignment based on

- . o .~ Template matching is provided.
framework, computer vision tasks including image filtering Our contribution presented in this paper builds on the

super-resolution imaging, segmentation, or recogniteguire bjdirectional composition framework which has been briefly

alignment of images which are characterized by d'ﬁeremtroduced in [6]. In this contribution, we:

quality, i.. filtered image versus very noisy current image ropose an original formulation based on Bidirectional
for instance. In order to provide tractable approaches tckkwo ° ?Zorrrz osition ongLie Groups and a rela®d algorithm
with various contexts of symmetric or asymmetric levels of P roup . 9 '

« provide an alternate interpretation of tB&L approach

Manuscript received July 27, 2009. The authors are with tignab ysmg a novel PI‘OJe.Cted BCLPBCL) algorithm, which
and Image Processing Group, IMS laboratory, University ofrd@aux, is shown to be equivalent to tHeCL, and have second-

remi.megret@ims-bordeaux.fr,  jean-baptiste.authessems@ordeaux.fr, . .
yannick.berthoumieu@ims-bordeaux.fr) with the ESM algorithm [5].

EDICS: TEC-ISR « show that the proposed generic approaches yields more
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robust algorithms than the generic state of the art al- These group action properties are sometimes refered in
gorithms on a larger variety of relative noise levelghe litterature as group of transformations. Parametritiono
which is supported by both a theoretical discussion amdodels such as affine or homography motion satisfy those
experimental evaluations, and draw recommendations properties [5]. Non rigid models satisfying the group agtio
the situations in which to use each approach. properties have been discussed in [8].
This paper is structurated in four parts. In section I,
the background in parametric image alignment is present
In section Ill, the image alignment problem is formalize
within the bidirectional composition framework, from whia [N previous algorithms, the optimization is based on the
comprehensive set of Lie Group approaches is introduceel. T#adients of imagé only. The inverse compositionnal (IC) al-
novel Bidirectional Compositional Lie algorithm is dissesl 9orithm proposed in [9] instead considers warping the teiepl
in section 1V, where its theoretical relationship and gaithw ' onto the imagel, which corresponds to the minimization
respect to existing methods is studied. The performancesQ‘Sfthe following error at step:

?j.‘ Alternative approaches

the approaches are then presented in section V. 2
"(Our) = Y [I(W(nf,x,)) = T(W(Surx:)|,  (8)
[I. BACKGROUND xi€R
A. Conventional image alignment approach where the estimatg} is updated after each iteration according

. . . to the following rule:
Image alignment between an imafand an image template

T is conventionally expressed [1] as mipimizing an error M}L“ — ulto(Sup)t. 9)
E(p;) between the two images after warpifigorward onto
T This approach uses the gradients of the templataly. Since
_ ] ) they can be precomputed, this yields faster computation of
TS argmln E(p;), with (1) each iteration.
9 The Efficient Second-order Minimizatioic§M) algorithm
E(p) = Z [I(W(pp, %)) = T(xi)|",  (2) [4] [5] is expressed as a forwards compositional approach
xi€R based on (2) and (4), but uses additive combination of the
where: gradients of botl andT" within the optimization. The authors
« The motion model is represented by a warp functio#emonstrated faster convergence rates and better robsstne
W (i, x) of parameten. € P, operating atx. and proved theoretically the better convergence propertie
e R=(z1,...,zy) is a discrete sampling of the region owhen both images are identical up to a compensation of true
interest in the template coordinate frame. unknown parameterg;:
The error functionE' is then minimized using a gradient vxe R I(W(fi;,x)) = T(x). (10)

based optimization technique [2]. Each iteratiois based on

an incremental parameterization from an initial estimafe This method will be discussed in more detail in section llI-E
This may be an additive increment, such as in the originaIThe use of the gradients of bothand T’ was generalized
Forwards Additive (FA) approach [1]: in [10] into a weighted combination of the gradients. It was
shown that this could improve the robustness in some situa-

Bro= KT EOm, 3) tions, but the automatic computation of the optimal weights
or a compositional increment, as in the Forwards Composiill requires manual tuning.
tional (FC) approach [7]: The bidirectional formulation of the error is introduced in
n [11], as Bidirectionnal Gradient Method (BDGM). It corre-
KBy = pjoop. (4)

sponds to the minimization of an errdt computed after
As it was pointed out in [8], it is more natural to use @ompensating botth and7". The authors propose a theoretical
compositional incremental parameterization for spatiahs- convergence analysis in both the far range phase (linear
formation because of its geometric meaning, which will bee thconvergence) and near optimum phase (quadratic convergenc
approach used in the sequel. assuming the equality of the two images up to motion com-
In order to be able to describe the framework in a simpfgensation (10). They showed the superiority of the BDGM
and consistent way, we require that the considered motialyorithm over the unidirectional Forwards additive altion,
model has group action properties. The parameter s@aceby providing bounds on the decrease of the error at each
forms a group, which acts on image coordinateshrough iteration. However their approach uses an additive increate
‘W. This action has the following properties, which are relateparameterization and an update rule that was shown [6] to be
respectively to composition), inversion (1) and parameters unreliable in the non translational case, for example wiah b
of the identity transformatio: translations and rotations are combined.
In this paper the bidirectional formulation will be used and
Wipoopx) = Win W(on x)), ) extended to a compositional update on Lie Groups, which
y=W(p %) & x=W(u,y), (6)  will allow us to derive new approaches dealing naturallyhwit
W(0,x) = x. (7) asymmetricaly distributed noise.
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C. Lie groups parameterization of motion In the case of gradient based optimization, this error is

A common way to parameterize motion does not take infginimized in an iterative scheme. At iteratian the problem
account any group properties and embeds the parameter spaciierefore reparameterized around the initial pararseter
P into a vector spac®™ of finite dimensions [2], [1], [7]. (#7.#7) € P by using an incremental update vector € 3

However wherP is not a vector_sqbspace the constraints that E™(6v) = E(py (7, 6v), pp (e, v)) (16)
the parameterg: have to remain inP have to be enforced

explicitly, leading to the use of constrained optimizatiowhere p;(u7,0) = pp and pp(pup,0) = pp. The
techniques [8]. choice of the local reparameterization functigng 7, -) and

A compositional Lie grougP is a differentiable manifold 7 (u7,-) has a strong influence on the convergence properties
structured by the compositional operatiar). (This is the case of the alignment procedure, as it will enforce restrictionthe
of rigid models such as non degenerate affine motion for teploration of the bidirectionnal parameter space. Thisiazh
euclidian planex € R? and homography for the projectivewill be discussed in subsection IlI-B. The derivation of the
planex € P? [12]. Using Lie group properties, instead of ecorresponding gradient based optimization procedure et th
vector space embedding, ensures that the solution belongéeration level will be presented in subsection III-C.
P allowing the use of a simpler unconstrained optimization In applications such as tracking, the region of interest
procedure. defined specifically on the template image. In order to take

A Lie algebrad can be associated to a finite dimensionahto account clutter in the alignment procedure, one should
Lie GroupP whose underlying finite dimensional vector spacavoid the drift of the region of interest by constrainipg to
is the tangent space B at the neutral elemerit The main stay close to the initial parametes).. Once an estimatév
idea behind Lie Group is that locally an incremeipt € P is obtained at iteration, the bidirectional parameters for next
around 0 can be bijectively reparameterized by an increméieration are therefore obtained using an update rule:
v € using fhe exponental map: (L, ™) < updatelyuy (2], 09). o (17,09)). (17)

On(0v) = exp(av), (11) The choice of an update rule and related convergence issues
with the following properties, for any, 3 € R: will be discussed in subsection IlI-D
1 Within this framework, the considered iterative algorithm
exp(—dv) = exp(dv) (12) : : ; )
can be summarized in a generic way as follows:

exp(adv) o exp(fiov) = exp((a + B)ov). (13) 1. Define the referencé.

The termComposition on Lie Groupsbbreviated as Com- 2. Define the current imagé
positional Lie (CL) in the sequel, has been chosen to empha3. At iterationn = 0, initialize the bidirectional parameters
size that the group actioW is related to the composition of (w'f, ).
transformations, in contrast to additive parameteriratithat 4. Estimate an optimurmiv of the locally reparameterized
have been used for dense motion fields [8] and for which error E™(6v).
relation (5) does not hold. Although vector space embeddindg. Apply the update rule (17) to obta(m?“,u’TL“).
or non group action versions of the proposed algorithmsccoul 6. If not convergedh < n + 1 and go to step 4.
also be derived, they will not be presented as they would not
bring new insights in the scope of this study. The methodplogs | gcal reparameterization

of Brooks and Arbel [13] may be used to extend our results E local terizati il be di 4 E
to such approaches. our main local reparameterization will be discussed: For-

The transformations which will be used in the experimeni’gamlS Inverse, Symmetric and Bidirectional. The various

will be based on Lie group homography parameterization ggramztelr\f iha;chat[e ur;sed in this fo;mulau((j)n ar((aj |ItlusﬂirTme
presented in [5] or [12]. ure ote that when using a Forwards up ate rule (see

subsection 11I-D),u% is always reinitialized tquJ-.

I1l. BIDIRECTIONAL ALIGNMENT ON LIE GROUPS « Forwards Compositional Lie (FCL). The image is
A. Problem formalization warped onto the template depending on the increment

ov €
Aligning two images can be formalized in a bidirectional
way as estimating parametefg, i) such that the com- py=pioexp(dv) and pp=pg.  (18)
pensated images are most similar according to an image

dissimilarity criteri E el-wisel. obiective funcii o Inverse Compositional Lie ([CL). The template is
issimilarity criterion. For p.|xe -wisel» objective function, warped onto the image depending on the increndent
the error can be defined as:

2 . =u? and = o exp(—ov). 19
Elprpr) = > leilprnpg)|”,  with (14) oo =Hi wr = p 0 exp(=0v). - (19)
i€l..N o Symmetric Compositional Lie (SCL). I andT" are com-
eilpr,pp) = I(W(pp,x)) —T(W(prp,x;)). (15) pensated towards each other symmetrically, with respect

The error is computed at each pixel belonging to a region to a single parameter vectéw:

of interestR = (x31,...xy) to form an error vectore =

" 1 n 1
py = phoexp(=0v) and u, = pf o exp(—=4v). (20)
(671)7::1..N- 2 2
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Type of image compensation Optimization space C. Optimization technique
Unidirectional Forwards (F) Any optimization algorif[hm could be used in step 4. We vyill
compensation Single parameter develop the framework.wnh a Gauss-Newton (GN) estimation,
Inverse (I) 5 based on the conclusions of the detailed comparative study

o Symmetric (S) thgt Baker and Matthevys have done in the context of imgge
Bidirectional —I: _ alignment [2]. GN provides fast convergence rate and high
compensation Bidirectional (B) ].P airof parameters  ¢onvergence frequency for a reasonnable computational cos

(évy.ovr) when compared to other second-order optimization teclesiqu
This approach asssumes that the warp funcWnis differen-
Fig. 1. Taxonomy of th&"CL, ICL, SCL, BCL approaches showing two tiable w.r.t bothyv andx and that the composition and inverse
complementary ways of categorizing the discussed methods. maps are also differentiable w.r.t their arguments.
The GN optimization of the generic error function (16) is

S N ) ) based on the linearization of the vectorial ereor
« Bidirectional Compositional Lie (BCL). The imagel

and the templatel” are both warped, using two inde- e(5v) = e(0) + J(0)6v + o(||5v]|), (22)

pendent sets of parameterg; and dvr. The increment

vector is therefore bidirectional and can be decomposgghere .7(0) corresponds to the Jacobian matrix of the error

as ov = (dvy,0vr) € P where each componentyectore around the initialization. For the sake of notational

parameterizes the compensation of only one of the imaggipiification, the point of evaluation will be omitted whén

1y = o exp(6vr) and gy = gl o exp(—dvr). (21) corresponds tov = 0 if there is no ambiguity.

Oe(v)
ov sy

We showed in [6] how to integrate existing approaches J(ov) = (23)
within such a framework, but focused on vector space pa-
rameter embedding such as additive & p™ + 6u) and
compositional 1 = u"odu) local reparameterization. We will 17
consider in the sequel the corresponding extensions to a %lré
Group parameterization. TH&L andICL approaches extend
the Forwards Compositional [7] and Inverse Compositional. + . ¢ -

approaches [9]. Th6CL and BCL approaches correct and °° —(J(0))" e(0) = =(J7(0)J(0)) " (J*(0)e(0)), (24)

extend the symmetric and the bidirectional approachesderm 4 r .
lated in an additive manner in [11]. TH&CL is also related where (J(0))" stands for the pseudo-inverse. In practice,

to the ESM algorithm [5], which we will discuss in detail. ]E.he pseudo-inverse can be precomputed wiieh) remains
This will allow us to unify the formulation on a single kind lxgo_i accross iterationd(L. approach). Else, .It may be more
o I . . efficient to use the second form shown, which was proposed
of parameterization, and facilitate the comparative agialgf . h inal work of Lucas and Kanade algorithm [1] [2]
the newBCL algorithm with other approaches. n t € seminal w . 9 '
This equation is over-constrained for a full rank matsif0),

The local reparameterizations can be classified based W# more rows than columns. This is most of the time the
the nature of the increment vectdy. This increment can be case for rigid image alignment if the numbar of pixels is
considered to be homogeneous to a single parameter vectorddéder than the number of parameters.
the FCL, ICL andSCL approaches or to a pair of parameter For the degenerate cases stemming from a too large number
vectors(dvy, dvr) for the BCL approach. of parameters to estimate, for instance when estimating a

Alternatively, a second classification instead considef¢nse displacement field, special care has to be taken into
which image is affected by the motion compensation withccount by introducing additional regularization termavoid
local parametersv. The Forwards and Inverse approachedegeneracy. These extensions of the error formulation leed t
consider unidirectional compensation (one image is fixeg@ptimization procedure will not be detailed in the sequat] a
while the other is moving). The Symmetric and Bidirectionale refer the reader to [14] where a classification of the jessi
approaches consider bidirectional compensation (the emdggularization approaches is proposed.
and the template are both moving). The Jacobian matri¥ is specific for each approach. In the

Those two complementary classifications are summed upG@se of Lie group parameterization (18), (19), (20) and,(21)
Figure 1. We note that th&CL approach uses a unidirectionagll of them can be expressed using the Jacobian matsigés
local reparameterization, but considers the compensatfonand.J$* of the imagel andT" with respect to the incremental
both images. We will show in section IlI-E how this approackompositional Lie algebra parametév:
relates to thé<SM algorithm [4] [5].

This matrix can be expressed as the concatenali@) =
1(0),...Jx"(0)]* of the gradientsJ;(0) of the pixelwise
orse;. This yields the generic solution:

The BCL approach uses a bidirectional local reparame- JCL(Gv) = OL(W (p7 © exp(6v), Xi)) (25)
terization (6v;, dvr). This property makes it very particular ’ dov Sv
compared to the other approaches, and which explains itd nov IS (6v) = OT (W (% 0 exp(6v),x;)) (26)
properties. This will be discussed in section IV. T N oov Sy
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T S — ,.--Common compensated
| frame for computing the
error E(u;,py)

. %
Hr |
—_—
. warp(Tipp)  warp(lipy) |

n *

.LYT“, |- 4 -}

| %
“ 4 T=warp(T; uy") P=warp(L; uf")
T Compensated images with initial ]

parameters at iteration n

Fig. 2. General principle of the bidirectional frameworkvigg an overview of all the considerated coordinate framegiéh R is shown orll’(W (w7}, x))
and I(W(u',x)) (corresponds to the initiab(u?, ul)), as well as orll'(W (up,x)) and I(W (u;,x)) (corresponds t@(u;, pwr) at convergence).
These regions are warped ontand 7. For the Forwards approachy, and w7, are equal. For the Inverse approagly, and 7 are equal. In the general
case shown here, the common coordinate frame corresponds topersation from botli and 7" using respectivelys; and pop.

Using the previous notations, we have: A first solution is to use the identity update, which keeps
the estimated parameters unmodified in the Bidirectional pa
FCL __ CL
J = Jr ) @7 rameter space:
JICt = JEH(0) (28) .y
1 update , = , . 36
BCL CL CL This approach corresponds to a standard iterative optiioiza
JECL = [IEE0) | JEH0)] (30)

in the bidirectional parameter space, which is constraiteed
In practice, the Jacobian matrices are computed only¥or=  a specific subspace in the case of #heéL, ICL and SCL

0 using the chain rule: approaches. The convergences properties of the optimizati
algorithm applied at each iteration are then kept. In ouecas

JEEO0) = VI'(xi) IW(exp(9v), x;) (31) this corresponds to the Gauss-Newton optimizationzobn
7 9ov 0 Lie Group.
JSE0) = VI(x;) OW (exp(dv),x;) (32) When computational time is a concern, updating both
a dév 0 parametersy; and pg requires to warp both images and
where: compute their gradient at each new iteration, yielding aesfo
algorithm. To address this issue, a Forward update rulesid:us
"y) = I(W(pp,y) (33)
T(y) = T(W(ubky)) (34) update” (pp, pr) = (my 0 pg' o pip.pg).  (37)

represent the warped image and template using initial est?® par%metersuT are then reinitialized to their original
matesy” and 2. This approach yields a computational gam\,/alues py. at each iteration. This approach presents two
since these warped images have already been compute@d¥antages.

order to obtaine. Note that the group action property (5) is First, Jr can be precomputed for all iterations, thus improv-

required to get benefit from this speedup. ing the speed of the algorithm [2].
Second, reinitializings%- to p- allows us to keep the region

of interestR close to the true location of the object of interest
in the template, and to avoid taking into account clutter in

When I and 7" are equal up to the compensation usingnagel when the optimization comes close to the optimum.
the true parametergji;, i) then an infinity of parameter This is illustrated in Figure 3, where the valley formed ardu
pairs corresponding to their orbitrbit(fi,, i) W.rt. right the manifold of correct parameteesbit(fi;, i) has a low
composition with the same parametéy should also be error E(p;, pp) in the bidirectional spacé? only for uq
considered as correct parameters: close enough tqi.

. o From the point of view of convergence, the value of the
orbit(pr, i) = {(pr o Aps pro Ap) | A € Pl (39) objective function may change during the update rule, as
The update rule introduced in equation (17) should theeefatlustrated in Figure 3 by a jump along the orbit of the
select its result within the orbit of its input parameters. estimated parameters at the end of each iteration. In peacti

D. Parameter update rule
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the stopping criterion is therefore defined as the decreasehis relationship provides new perspectives on BV

betweenE (u}, u%) and E(u ™, 2ty i.e. after the update. algorithm. Indeed, when the assumption (10) does not hold,
This does not guarantee that the stopping criterion is nibte equation (39) of thESM algorithm is only approximative.

applied too early due to of a difference between the estithat€he previous analysis reveals that the optimization &iCd.

E(py, ) at stepn and its updated vaIuE(u?“,u;“). error using thdeSM scheme FCL-ESM) corresponds exactly

A natural choice to make those two values identical, up to the the optimization of aSCL error using a Gauss-Newton

drift of the region of interest, would be to use an invariargcheme §CL-GN) with Forwards update rule.

objective function [14] [15], which takes into account vale

forms compensation. This approach yields additional Jacob V. BIDIRECTIONAL COMPOSITIONAL LIE ALGORITHM

terms in.J which compensate for the bias associated to scaleThe Bidirectional approach stands apart from all other

change when passing from one coordinate frame to anothgsproaches, since it considers a bidirectionnal localreepa

This better theoretical invariance therefore comes at t® ceterization(dv;, v), which hold the complete expression

of additional online computation, and will be left out of thepower of the bidirectional formulation that was introdudad

scope of the present paper. We refer the reader to [15] for #is paper.

in depth discussion of volume compensation issues. We will now focus on theBCL approach, based on the
For our application to parametric image alignment, theectorial erroreB“"(5v;, §v7) with

evoqued bias does not appear to be a major concern. Indeed,

the application of such a Forwards update rule combined with e (O, 0vr) = (W (py 0 exp(6vr), xi))

the objective function (41) with the Forwards update ruleswa —T(W (pp o exp(—=dvr),x;)). (41)

applied succcesfully in the Inverse Compositional algmnit  \yith Gauss-Newton optimization, the estimation uses a

[2] for which Baker and Matthews proposed an equivalencgcopian.JBCL — [J; Jr] obtained by concatenating the
proof with Forwards compositional approaches. Benhimaggntributions of both and T

and Malis [5] showed that thESM algorithm converges as a [ vy

second-order minimization of the Forwards objective figrct vy

under assumption (10). As explained in next subsection this . _ _
therefore also applies to th&CL algorithm with Forwards ~ The associated update rule is the following:

update rule. it = pl o exp(dvr) o exp(dvy). (43)

} = [Jr Jr] " eB(0,0). (42)

E. Equivalence between thESM algorithm and theSCL A. Invariance properties

approach A SCL approach corresponds toBL approach, where at
We now discuss the relationship between $ltd. approach each iteration th@p-dimensional local incremen{pv;, dvy)
that was introduced in section Il and tlSM algorithm [4], is constrained to explore the-dimensional vector subspace
which will provide a theoretical framework useful to bettecorresponding todv; = dvp (as illustrated in Figure 3).
understand the advantages of the ndyelL algorithm which A FCL approach explores thé&vy,0) subspace, adCL
we will present in the next section. approach theg0, dvr) subspace. Th&CL approach is not
The ESM algorithm is based on the second-order approxiestricted to a specific subspace, and is therefore able to
mation of the vectorial error at the true paramet®vs, such consider the solutions provided by ti&L, the ICL or the
that ||e(dv*)|| is null if (10) is satisfied: SCL subspaces. Since tfiRSM/SCL algorithm was shown [5]
1 to have the best theoretical convergence properties, we wil
e(0v™) = e(0) + 5 (J(0) + J(dv7))ov" +O([l6v*[*). (38) now discuss the interpretation of the additional dimension

. o ) . that are orthogonal to theCL subspace, and that th&CL is
One ESM iteration is obtained by setting = J"“%(0) + ,pe 1o explore.

JECE(6v*) in (24). This approximation is generic, but re- ) ot s consider the following change of variable:
quires the Jacobiaf(dv*) at the true parameters to be known.
Benhimane and Malis show in [5] that, when the assumption ~ 6ve =dvy+dvr and dvg =dvy —dvy  (44)

(10) holds, using a parameterization on Lie Groups yields: here 5ve and Svo stand for the symmetric and anti-

JEL(5v)ov* = JEE(0)6v*. (39) symmetric parts respect!vely. . .
The previous change in variable (44) can be interpreted by
They therefore define an alternative Jacobigsy,;, which noting that to the first order tév; anddvy:
is to be used by substituting®“t (sv*) = JEL(5v*) with
JEE(0) in the FCL versione™ " of (24):
() (24) eBC(Gvr, ovr) ~ ePH(0,0) + JEL(0)dv; + JEE(0) v

_ 1 CL CL
Jesm = 5 (Jr7(0) + J77(0)). (40) ~ %eBCL(O,O) + %J,CL(O)év@ + %JgL(O)(iv@
Jesy appears to be exactly the same matrix A5 (0) 1 per 1 cp e
defined in equation (29). Furthermore, the Forwards update + 2° (0,0 + 2JI (0)ve 2JT (0)dve
rule p7 ! = p? o exp(Jv) associated to th8CL approach is ~ L(eBCL(5y. 5 BCL 5y _§ 45
the same as the one used in &M algorithm. - 2(e (0ve,dve) + e™(0ve, —0Vo)). (45)
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Fig. 3. lllustration of the error functio® (147, pe) and the trajectories of the iterations of tR€L, ICL, SCL and BCL approaches during the alignment
of the two images of figure 2, where the true deformation 2spixels horizontal translatiop; = 2. Only the horizontal translation coefficientg; 1, pr 1)
are shown, which corresponds to a slice of the bidirecti@palce??. For the errorE, darker shade of gray means higher error value. Translatias w
estimated using GN optimization with Forwards update aftehegration. Each iteration is plotted as an arrow that linkgs}, p/7.) (numbered® bullets)

to (pur (e, 6%), pp(pl, 6%)) (A bullets), and a dashed segment that links to the next iterz{ﬁt?“,p,;“) using the Forwards update rule. The
initialisation is(u%l, wr 1) = (0,0). The dashed linép; 1, 1) = (11,2 + py) represents the manifold of correct estimates.

The first term corresponds to the stand&fdl. error, where  Due to the properties of block matrix pseudo-inverse when

évi = 6vp = 30vg, i.e. the images are compensated/s Jo] is full-rank:
symmetrically towards each other. The second term is specifi
to the BCL approach. It corresponds to the error when ove = (Pé—J@)+eBCL(O7O)’ (50)

compensating the two images within the orbit of the initial

parameters(u7, py) defined in section IlI-D, where the where P represents the projection within thé-dimensional

. . _1 .
relative transformation:; o p;" remains constant. ~ error vector space onto the orthogonal subspace to the oolum
The linearization of the error with respect ®vg, dve) is  span ofJ,:

obtained from (45):

1 t -1 t
eBCL vy, 0vr) =~ eBH(0,0) 4+ Jgdve + Jodve,  (46) Py =1dy — Js(Je'Jo) ™ Je' (51)
with The difference between tHeBCL and theSCL approaches
Jo = }(JICL(O) + JSL(0)) and cgnsistg in u_singDeLJ@ instead of.Jg, i.e. projecting out t_he_
2 (47) dimensions in the error space that correspond to a bidirec-
Jo = %(JICL(O) — JEE(0)). tional compensation that changes the reference frame wtitho

changing the relative transformation betweeand 7.
The minimization of E(évy,dvr) in terms of the new vari-  Furthermore, by noting that we have on the one hand
ables(6vg, dve) therefore corresponds to: JECL = Jo + Jo, JICL = Jgy — Jg and J5CL = Jg,
and on the other hanf2 J5 = 0, we get:

[232] = [Jo Jo]"e"H0,0), (48)

_ _ PEJFE = Pt = PSS = P Js. (B2)
At this stage, sinc&vg and dvg can be assumed to be
small increment, using the Campbell-Baker-Hausdorff fdem |, qeed the differences between th€'L. I1CL and SCL

[12] on (43) yields to: approaches depend on a differently weighted contribution o
pitt & phoexp(dve). (49) Jo, Which is removed by the projectioRZ. This property
allows us to define without any lack of genericity the Jacobia

It follows that dv is a parameter which is modeled in theyssociated to th® BCL approach with respect to a precom-
estimation but which value does not modify the final resulbted.7ICL | without computing/s explicitely:

This principle is similar to the use of parameters modeling

illumination change [16] [17], in order to make the estirpati JPBCL _ P@iJICL. (53)
of motion parameters invariant to such perturbations. The
invariance that th&CL algorithm enforces at each iteration is
instead a local invariance around = 0 with respect to the
Jo subspace, that corresponds to a change of the refere
coordinate frame. This property is at the core of thBCL
algorithm.

In the noise free case, assuming (10) holds and a Lie Group
Earameterization is used, projecting the fundamental tezqua
Fthe ESM algorithm (38) yields, thanks to (52),

Pie(dv*) = P2e(0) + J"B v + O(l[ov*[*).  (54)

B. The Projected3CL algorithm (PBCL) The difference with the originaESM is that it is expressed
The Projected3CL algorithm PBCL) uses the approxima- in the orthogonal subspace of the column-spaw©f which
tion rule (49) in order to avoid solving equation (24) witketh enforces the local invariance of the objective fonctionhwit

full bidirectional Jacobian matrixBC". respect to a change in the reference coordinates frame.
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C. Theoretical analysis of the effect of noise V. EXPERIMENTAL COMPARISON OF THE APPROACHES

Let us consider two noisy images with independant noises:!In the following the performances of the new algorithms
PBCL and BCL are compared to the conventionBCL,

I=1I+e T=1I+er (55) ICL and ESM approaches. This study takes into account

the computational complexity, the rate of convergence and

which impacts both the zeroth-order and the first-order sernthe frequency of convergence. Both simulated warps and real
video data have been used.

e(0) = eur(0)ter—er (56)  All studied methods are based on the Gauss Newton scheme
1 (24) with Forwards update rule (37). TH&M fits into this
Jo = Jans+ =(Je; + Jer 57 . .
@ onf + 2( +Jer) 7) framework as arsCL approach according to subsection IlI-E.
1
Jo = Jonf+ =T — Jep), 58
© ond 2( ) >8) A. Computational complexity
where: The generic algorithmic scheme is the following:
o Pre-computation
e (W (' o exp(0v)), x;
Jeyi = r(Wips 86vp< ). xi) (59) 1 WarpT to computeT®.
Ber (W (™ o exp(6v)), X 2 Compute the gradients @i° : VTV,
Jeri = ( (M%V DOv)), i) (60) 3 Evaluate the complete jacobian Bf: J&7(0).
4 Only for theICL, precompute the pseudo-inverse of
In the noisy case, thBCL error (38) becomes a first-order the jacobian.
approximation, with a noisy Jacobian: . For each iteration
i} 1 . o 5 Warp I with W (u7,x) to computel™.
e(0v") = e(0) + (Jans + 5(Je; + Jer))0v™ + O([|5v7]7). 6 Compute the erroe(0).
(61) 7 Compute the gradierif /" of the warped image.
If we denote byn? andn? the variances of the noise i, 6v* 8 Evaluate the complete jacobian bf J%(0).
and .J.,év*. The variance of the noise in tH&SM Jacobian 9 ComputeJ(0).
Ja6v* is thereforel (n?4-n2), which is half the noise variance 10 SolveJ(0)dv = e(0).
of JFCLgv* or JICLsv* for symmetric levels of noise. 11 Update the warp parameters with (37).
Projecting (61), the projecte®®BCL error (54) also be-  where:
comes a first-order approximation in the noisy case: J = JEL(0) for the FCL algorithm,

N N B , J = JSE(0) for the ICL algorithm,
Pze(ov) = Pge(0) + PoJedv™ + O([[ov77).  (62)  j= 1(JEL(0) + JSE(0)) for the ESM algorithm,
. _ J = [JE(0) | JEE(0)] for the BCL algorithm,
We now show thaf’2 projects out a part of the noise from  j _ P2 J,, for the PBCL algorithm.

the Jacobian/g,. Using equation (39), we get: Note that forFCL, steps 2, 3 and 4 are skipped. AL,
. . steps 7, 8 and 9 are skipped.
Jon 0" = (Jins(0) = Jrns(0))dv (63) In the following, we notep the number of parameters
= (J1nf(0) = Jrnp (0vF))ov* = O(||6v*]?).  (64) {6vi}e={1.»} andN the number of image pixels. The asymp-
totic complexity of the different algorithms can be found in
Moreover, by definitionPZ J = 0, which yields: table | forp << N. Step 10 was coded using the pseudo-
N . N . inverse calculation proposed in [2]. The computationalt cos
Py (Jep = Jer)ov™ = 2P5 (Jo — Jonys)ov (65) can be found in table Il for our current Matlab implementatio
= 2P Jo, v = O(||6v*]?). (66) on a Intel(R) Core(TM)2 duo CPU 3.0 GHz with 4 GB of
RAM. A 100x100 patch is used to estimate a homography
Let us assume the template is less corrupted than the imagggrameterized as in [5].
Using (66), we can modify the expressionft Js as follows:  As shown in [2],ICL is the more computationally efficient
n . N . algorithm because it does not need the image Jacokfi#0)
PgJeov™ = Ps (Jons + Jep = Jer + 2Jer )0V 67) 1o be computed (steps 6, 7, 8). Thus it is possible to pre-
= P2 (Jans + 2Jep )0V + O(||6v*)?). (68) compute the pseudo-inversé = (J$L(0))* and obtaindv
by a matrix productv = Ae(0) (step 9).

In case there is asymmetry in the noise levels, equation (68)The FCL and ESM algorithms are in practice equivalent in
hints that the influence of the noise on the Jacobian mdltsix terms of computational cost (when many iterations are done)
can be reduced within thB< subspace. Indeed, from the fullbecause the extra heavy computations off8&1 can be done
error (Je, + Jer), only the less noisy parf,, is kept. In as pre-computations.
particular, no corruption of the projected Jacobian shdadd The PBCL algorithm has globally a similar asymptotic
observed when the template is noiseless. complexity, but requires an additional projecti¢fz Jg) to

The theoretical results derived in this subsection will blee computed. In practice, it can be performed more effigientl
validated experimentally in paragraphs V-B2 and V-B3. using a QR decomposition of; but it remains quite costly.



IEEE TRANSACTIONS ON IMAGE PROCESSING, ACCEPTED ON 18 MAR 201&RTIP-05252-2009.R1 9

Algo Pre-computation Steps
1 2 3 4 Total

FCL pN — — — pN

ICL pN | N | pN | p°N | p°N

Others | pN | N | pN — pN
Algo Iterative Steps

5 6 | 7 8 9 10 11 | Total
FCL pN | N | N | pN — p°’N | p? | p°N
ICL pN | N | — — — pN | p? | pN
ESM pN | N | N | pN | pN | p°N | p? | p°N
BCL pN | N | N | pN — p’N | p2 | p°N
PBCL | pN | N | N | pN | p2N | p°N | p? | p°N

TABLE |
ASYMPTOTIC COMPUTATIONAL COMPLEXITY OF CONVENTIONAL AND B c D £

NEW IMAGE ALIGNMENT ALGORITHMS FOR p PARAMETERS AND NV

PIXELS (WITH p << N).
( P ) Fig. 4. Images used for the experiments. First row: The noiseimage (left)

is used for extracting the template image. Imdgs then obtained by adding

i gaussian noise to the noise free image. The noisy images)(aghtshown
Algo Pre-computation Steps with respective SNR: 15 dB, 10 dB and 5 dB. Second row: othegésaised

1 2 3 4 | Total for the experimentations. Images A and E come from the INRIA hiegrand
fccﬁ iéi’ T T T ‘;g? Recognition in Vision (LEAR) dataset (http://lear.inpak.fr/data). Images B

s : : . - and C come from the benchmark of Baker and Matthwews [2]. Image® w
Others | 4.23 | 0.43 | 1.67 0 6.33 - : - .
synthetized using an openGL implementation.

Algo Iterative Steps
5 6 7 8 9 10 11 Total
FCL 442 [ 0.02 [ 0.43 [ 1.70 0 0.40 [ 0.15 | 7.12 ) . . .
ICL 440 | 0.02 | 0 0 0 [ 008 [0.15 | 4.66 with the estimated deformation (denoted RMS point error).
ESM 4.42 0.01 0.43 1.70 0.71 0.40 0.15 7.82 H H H H .
el oo Tom F i o it oo 51s Two main performance criteria are considered:
PBCL | 443 | 0.01 | 0.44 | 1.65 | 3.08 | 0.40 | 0.15 | 10.25 - Average frequency of convergence: percentage of tests
where an algorithm converged to the correct estimate (d&fine
TABLE Il as a RMS Point Error less than 1 pixel),
COMPUTATIONAL TIME (IN MILLISECONDS) OF CONVENTIONAL AND NEW i
IMAGE ALIGNMENT ALGORITHMS WITH p = 8, N = 10000. FOR - Average rates of convergence: _for tests_that converge for
ITERATIVE STEPS THE TIME IS GIVEN FOR ONE ITERATION all methods, the average RMS point error is plotted against

the algorithm iteration number.
In the following, we present average results obtained with

. ) . the five images shown in figure 4. The motion model is a
The BCL algorithm has the same asymptotic complexity 45, mography parameterized as in [5]. For each algorithm and

the ESM algorithm, but requires solving a system with tWicg,,op test, 30 iterations are done. For average frequency of
the number of parameters, which makes step 9 more cosfly, ergence, 500 tests are done per image and per Point

This is compensated by the fact that the jacobian matrices §@]ma. For Average rates of Conververgence, 100 tests are
not need to be added in step 8. The total time is therefore or&gne per image.

slightly larger.
1) Frequency and rate of convergenc€&igure 5 shows

B. Convergence and robustness evaluation a comparison of the different approaches in three typical

L . situations: no noise (left), noise on the image only, thepiate
The benchmark used is inspired by the one proposed in [ sing noiseless (middle), and noise on both image (right).

Random disturbances are generated by adding a spatial Gau%-he BCL and the PBCL exhibit identical performances

sian noise of _standa_rd devia_timw_ise (called Poin_t Sigma) for all tests. This confirms experimentally equation (49)d a
to four canonical point locations in a reference image;: }]uestifies that they will be assimilated in the discussion.

these four pairs of points (canonical and test points) defi Th ¢ int £f f q
an homography warp parameter vector for the disturbance, € periormances In terms of frequency of Convergence an

Using these parameters, the reference image is warped rate of convergence (Fig. 5) present similar ranking. BiG&.

onto template imagé,. ; ' provide the best overall performance when noise is present,
I,y andT,.; are corrupted with additive gaussian noiset.’e!ngI only sllghltl)f/t Iesls performant than tHeSM in the

I'=1I.¢+erandT =T,.5 + er. The noise levels are char-"0ISEIESS case (left column). . . .

acterized by their variances® ando2 and the corresponding In the case where the template is noiseless and the image

Signal to Noise Ratio§ N R; and SN Rt with respect to the corrupted by a SNR of 10dB (middle cplumrIDL_ i? better_
noise-free image: than ESM at convergence rate and final precision, which

B[ .2 illustrate the detrimental effect of noise in the JacobiBine
SNR = 10log,, ( ( r;f )). (69) BCL approach converges faster and reache_s the same accuracy
o as ICL, althoughBCL includes corrupted image gradients
The image alignment algorithms are then run in order to fit the estimation. This illustrates the ability of our apgch
image! to imageT'. The convergence criteria is the root meato project out the noise from the Jacobian when there is
squared error of the distance between the test point lowati@symmetry in the noise levels, as expected from (68).
and the destination locations of the canonical points warpe When noise is present on both image and template at



IEEE TRANSACTIONS ON IMAGE PROCESSING, ACCEPTED ON 18 MAR 201&RTIP-05252-2009.R1 10

% Converged
% Converged
% Converged
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BCL
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RMS Point Error
RMS Point Error
RMS Point Error
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Fig. 5. Frequency of convergence (top row) and rate of cayareze in logarithmic scale for a Point Sigma equal fgixels (bottom row) for th&"CL, ICL,
SCL, BCL and PBCL approaches using a Gauss-Newton optimization with Forwapdste rule. Left andT" are noiseless. Middle: additive gaussian
noise of SNR=10dB was added 10 7" is noiseless. Right: additive gaussian noise was added timilmages, SNR=10dB fof, SNR=15dB forT".

[ Ago [ PT [ J [ e | sa
ICL Idn JEE e(0)
ESM ]dN J@ e(O)
PBCL Py Jo e(0)
BCL Idy | [JEFIIEE] | e(0) 3
ESM,.; | Idn Jons | €ns(0)
PBCL- | Py, Ja e(0) 8
PBCL. | Pj Jo e(0)
TABLE Il
PROJECTION MATRIXPL, JACOBIAN MATRIX J AND INITIAL ERROR e &3 .
ASSOCIATED TO THE ALGORITHMS DEFINED IN EQUATION(70). i 5 5

SNR Image

Fig. 6. Frequency of convergence for ti8M, ICL and PBCL algorithms
. . . . compared to the synthetikBCL_, PBCL, and theESM,, y algorithms for
different levels (right column)BCL is slightly better than a point Sigma equal to 12 and a decreasing image noise (-15dBdiB)2

ESM. They both outperform the unidirectional approaches e noise has been used on the template.
this context.

2) Impact of the projection:In order to evaluate more . o . .
accurately the impact of the projectim’g in the performance sensitive to _the_ presence of noise in the Jacobian matrik, an
gain, we define three additional reference synthetic algms  that the projection approach is relevant.

PBCL_, PBCL, and ESM,,; which use noise-free data in The synthetic® BCL_ algorithm uses the noise-fre: ., s
some of their computations. All algorithms estimateusing Projection. It provides approximatively the same perfonoe

the following equation: as theESM method, which shows that projecting lﬂg has
1ot little undesirable effect on the performance. It is slighags
ov=(P=J)" e (70)  robust thanESM in low-noise conditions. The Jacobiah,

A summary of the specific values of the matif, J ande has therefore a small correlation with the spatial gradiet
is shown in table Il for the synthetic algorithms, as well athe images, which leads to projecting out a little amount of
the standard ones. The figure 6 shows their performances wievant information.

respect to image noise. The PBCL algorithm provides the best performances within
The syntheticPBCL, algorithm assumes the Jacobidn non synthetic algorithms over almost the full range of noise
of the noisee is known, as defined in (59). levels. Like thePBCL_, it becomes slighty less robust than

It provides the best performance amongst the methods thaM in low-noise conditions. These results can be related
use a noisy error by projecting out the noise that corrupts to equation (68) to confirm that theBCL approach uses a
It has a similar performance as th8M,,; over a large set of relevant projection, which has a slight side-effect in these-
noise conditions, which confirms that the estimation is veffyee case, but improves the robustness as soon as there is
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asymmetry in the noise levels. ‘ A -:e:‘"

3) Impact of the noise asymmetrihe following experi- | e -y
ments show the evolution of the performances with respegt . —
to noise asymmetry. Noise is parameterized by a variafige e
and an asymmetry coefficiept [0, 1]. The amount of noise
allocated tol and T is defined as follows: -

0? = (1—B)o? o4 =pc% with 3€0,1]. (71) Fig.8. Images used for the low-light condition experimentsaragraph V-C.
First row: images extracted from the high quality video seges from the
where gf (resp_cr%) is the variance of the noise corruptingFast Far” set of [19] available at http:/www.metaio.corséarch. Second
imageT (resp. the templat@). Additive white gaussian noise "W Simulated low-light acquisitions.
is used. Since the noises of the two images are independent,
2 _ 2 2 . .
i]'egte(cjjj ir:ogtTher?jFi)frl.‘gf:r?ct:se itgzgtgal Tn)o'ﬁ_ievigfrr;cse Otsgitnw%sn asymmetric image alignment problem where the current
) . . 0 P g image is registered to the templafg of higher quality. We
total SNR is computed as in (69) with respect to the variance | h ful fh lqorith
of the image. now evaluate the usefulness of the proposed algorithmscim su

The figure 7 shows the average frequency of conver engecontext.
X I d y g Low-light video sequences with controled ground-truth and

with respect tos. The results are obtained on the images of

fig. 4 for two levels of noise (SNR of 10dB and 5dB) and fOPara.mete_rs. are not pupllcally avallaple, or are subject to
. S LT e confidentiality use. We simulated low-light conditions kyrc
two levels of imprecision in the initialization (Point signof

. rupting publicly available videos (see Fig. 8) taken in dgpt
6 and 12 pixels). conditions [19]. The corruption procedure consists ingrisg
We can observe that thECL approach (respICL) has

. . 0 I(x) a random value drawn from a Poisson distribution of
a decreasing performance whgndecreases (resp. increases .
; ) ) o ean(a-I(x)+b). The scaling factora andb are chosen to
which corresponds to an increasing level of noise in the

. : réscale the image values in the rargglo].
grad]ents off (re;p.T). For_ alflxed SNR, th&SM approach The groundtruth is constructed from the initial high-qtyali
provides approximately similar results for all values /of sequence. The region of interest is defined on the first frame
Indeed, the noise variance if*M = 2 (J; + Jr) is § of the q : 9

. . . Lot . of the video, and its content is initially used as templatagm
sum of the noise variances ify and Jr, which is constant in y patag

this experiment. This lower variance combines with eqmatioT' The EESM algorithm is used to track the region of interest,

(38) o explain the much better performance of B for using the same homography model as in subsection V-B. This
5= 0.5 in the case of noise estimation is used as ground truth (true parameigts). We

The ESM approach outperforms the&CL and ICL ap- (r;}e}:tjearlleygtcgﬁ?;&(:)ieth:enqué:é\élsmanaged to track the object

proaches for all tested conditions, excepted for high aSYM The tests are performed on the corrupted sequences as fol-
metry of the noise levels. For a 10dB SNR, they have simil?

r o )
. . ) ows. The performance analysis involves the same algosithm
performances for noise-free template or image (Fig. 7 ledt a P Y 9

. : S . as in subsection V, run witho iterations. The template is
middle). This ranking is reversed only for both a high leve : . .

N _ ) . . omputed on the first nine frames of the video sequence

of noise, i.e. SNR=5dB, and highly asymmetric noise Ievegs : . . .

(Fig. 7 right) y averaging the compensated images. Motion estimation is

'?He BgL ;';1 roach performs as good or better than t eerformed from framet = 11 to 100 using the averaged

PP P g eémplate and the current corrupted image: for each framigeof t

ESM, FCL and ICL. It has almost the same performance . ; : R .
Sequence the image alignment algorithm is reinitializeth wi

as theESM for 5 = 05 and prowdes_ an increasing gain n(t+1) = fi(t) and ud(t + 1) = 0. We compute the RMS
when the amount of noise asymmetry increases. This gainj$. / .
oint error by comparing the four corners of the region of

small for low noise situations, where teSM .has., al_rggdy interest predicted by the tested algorithm and the grocunti-t
near perfect convergence performances, but is signifecativ A
o I . . ; . In order to obtain significant results, we averaged the tesul
more difficult conditions, involving a higher noise level ar ) N »
S on 7 video sequences from the "Fast Far” set, and generated
farther initialization. . S .
10 different corrupted sequences for each initial high-dyali
o o ) _ sequence, yielding a total 6300 estimation results for each
C. Application to tracking in a low-light environment approach.

In low-light conditions, an optical imaging system prodsice Figure 9 shows the cumulative distribution of the RMS Point
bad quality images that can be modeled according to [1L&rror obtained by the various approaches, which charaeteri
the observed number of photons at one pixel is drawn frothe frequency of convergence for various values of RMS Point
a Poisson distribution whose parameter is proportional &oror thresholdr. The statistics of these distributions for=
the average received intensity. Thus tracking an objectgusi3 pizels are summarized in table IV.
gradient-based approach becomes a challenging task leecau3he BCL approach provides the best performances with
the Poisson noise can severely corrupt the gradients of tath the lowest mean RMS Point Error, lowest standard
images. In order to improve the tracking performance on thieviation, and best frequency of convergence for any tlotdsh
kind of data, one would try to lower the noise on the template In terms of frequency of convergenceat= 3 pixels, it
by averaging several registered frames. This approachksyieis followed by the ESM algorithm and thelCL approach.
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Fig. 7. Frequency of convergence for tR€L, ICL, ESM, PBCL and BCL algorithms with respect to noise asymmetry. Left: SNR=10dBntpsigma
= 6 pixels. Middle: SNR=10dB, point sigma = 12 pixels. RighNF=5dB, point sigma = 6 pixels

[_Algo [ FOL | ICL [ ESM | BOL | Inat | corrupted by noise. Th&SM or the BCL approach should
[ freq. conv. [ 93.1% | 93.4% | 98.5% [ 99.1% || ] . . . .
be prefered in most other situations. When the level of noise
mean 12813 0.5711] 0.6784 | 0.4216 | 3.2620 : ) )
Sid 0.6300 | 03150 | 03782 | 02835 [ 1.7023 is low, or when both images have the same level of noise, the
S}fid 0.0082 | 0.0040 | 0.0048 | 0.0036 ESM would be slightly faster, for a slightly better robustness.
et The BCL approach should be more robust on a range of
TABLE IV noise conditions, and should provide better performances

FREQUENCY OF CONVERGENCE AND ACCURACY EXPRESSED AS MEAN for intermediate asymmetry of nOise, particularly in diflic
AND STANDARD DEVIATION OF THE RMS POINT ERROR OBTAINED FOR conditions

THE EXPERIMENT OF PARAGRAPHV-C. ONLY TESTS THAT CONVERGED
FORT = 3 pixels ARE TAKEN INTO ACCOUNT. THE INITIAL RMS POINT
ERROR STATISTICS IS ALSO PROVIDED AS REFERENCE

VI. CONCLUSION

In this paper we have presented a novel formulation of
image alignment based on the combination of the bidireation
compensation of both image and template and a Lie group
parameterization of the motion. Extending previous work
[6], we derive two new algorithms within the bidirectional
composition framework.

First, using a Gauss-Newton procedure with a Forwards
update rule, we have proposed the Bidirectional Compasitio
‘ o ‘ ‘ ‘ Lie (BCL) algorithm based on the joint compensation of the
R image and the template. TRCL algorithm is shown to have
Fig. 9. Frequency of convergence for the experiment of papgh/-C with local invariance properties with respect to the compedsate
respect to the threshold on the RMS Point Error. coordinate frame. Secondly, tHeBCL algorithm is an ap-

proximation of theBCL which highlights other theoretical

properties of the approach. On one hand, in the noise-fige ca
In terms of average accuracy tH€L algorithm is better the PBCL is shown to have similar second-order minimization
than theESM algorithm. By computing its gradients only onproperties as theé2SM approach [5] when considering a
the noisier imagel, the FCL approach provides the worstprojected invariant error. On the other hand, in presence of
results. These promising results concerningBied. illustrate  asymmetric levels of noise, the use of an adaptive projectio
the perspectives of application of the proposed approachr&iuces the amount of noise in the Jacobian matrix and
improve image alignment results on real world low-SNRnproves the robustness.
image data. Experimental results performed on several images show that
the proposed algorithms provide significant improvement of
performance in the case of strong noise levels and different
. ) ) ) levels of noise between the two images. It is almost as

From the point of view of computational complexity (Segyeitormant in terms of frequency of convergence and rate of
tab. 1l and 1), theICL approach is the most efficient. Butyq e gence than the best existing approach in other cases.
this criterion has to be balanced with respect to the ConV&izage roperties may be useful for possible applications of
gence properties, which are rather in favor of approaches tlﬂ]is approach in the context of online registration for lbgit

take information from both of the image and the templatﬁnagery, or to other cases of strongly corrupted images.
The ESM is only slightly slower than thé'CL with much

improved converge properties. TBCL approach is itself a REFERENCES
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