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Abstract: This paper presents a survey on some recent advances in the error rate
control in multiple testing methodology. We consider the problem of controlling the k-
family-wise error rate (kFWER, probability to make k false discoveries or more) and the
false discovery proportion (FDP, proportion of false discoveries among the discoveries),
the latter being controlled either via its expectation, which is the so-called false discovery
rate (FDR), or via its upper-tail distribution function. The emphasis is put both on the
results which we want as unified as possible and on the mathematical proofs which we
want as concise and simple as possible. This way, this paper is intended to a possibly
non-specialist reader which would like to recover state-of-the-art multiple testing results
using short proofs. As an additional contribution, we extend some previous work for
controlling the kFWER and the upper-tail distribution of the FDP.
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1. Introduction

The multiple testing problem arises in any data analysis where one tries to extract significant
features among a large set of candidates. Classical instances are microarray analysis [45, 15],
neuro-imaging analysis [3, 33] and source detection [31]. For illustration, we detail below the
case of microarray data analysis.

1.1. Microarray data

In a typical microarray experiment, the level expressions of a set of genes are measured under
two different experimental conditions and we aim at finding the genes that are differentially
expressed between the two conditions. For instance, if the genes come from tumor cells in the
first experimental condition, while they come from healthy cells in the second, the differentially
expressed genes may be involved in the development of this tumor and thus are genes of special
interest. Several techiques exist to perform a statistical test for a single gene, e.g. based on
a distributional assumption or on permutations between the two group labels. However, the
number of genes m can be large (for instance several thousands), so that non-differentially
expressed genes can have a high score of significance by chance. Therefore, a non-corrected
procedure (level α for each single test) is likely to select a lot of non-differentially expressed
genes (usually called “false discoveries”). A multiple testing procedure aims at correcting
the level of the single tests in order to bound a global type I error rate, as for instance
the probability to make at least k errors among the genes declared differentially expressed
(k-family-wise error rate, k-FWER) or the proportion of errors among the genes declared
differentially expressed (false discovery proportion, FDP). Of course, one feature that increases
the complexity of this issue is the presence of dependencies between the single tests.

Note that the multiple testing issue can be met in microarray analysis under other forms,
for instance when we search the co-expressed genes or the genes associated with clinical
covariates or outcomes, see Section 1.2 of [15].

1.2. Instance of multiple testing settings

Example 1.1 (Two-sample multiple t-tests). Let us observe

X = (X1, ...,Xn) =
(
(Y 1, ..., Y n1), (Z1, ..., Zn2)

)
∈ R

m×n
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a couple of two independent samples, where (Y 1, ..., Y n1) is a family of n1 i.i.d. copies of a
random vector Y in R

m and (Z1, ..., Zn2) is a family of n2 i.i.d. copies of a random vector Z
in R

m (n1 + n2 = n). Following the above microarray example, Y j
i (resp. Zj

i ), 1 ≤ i ≤ m,
corresponds to the expression level measure of the i-th gene for the j-th individual of the first
(resp. second) experimental condition. Also, typically, the sample size is much smaller than
the number of tests, that is, n ≪ m. The distribution P of the observation X lies in a specific
distribution set P that constitutes the statistical model. Assume that P is such that X is an
integrable random vector and let µi,1(P ) = EYi and µi,2(P ) = EZi, for any i ∈ {1, ...m}. A
way to investigate the problem of the previous section is to decide whether P belongs to the
set Θ0,i = {P ∈ P : µi,1(P ) = µi,2(P )} or not, that is, we aim at testing test

H0,i : “µi,1(P ) = µi,2(P )” against H1,i : “µi,1(P ) 6= µi,2(P )”,

simultaneously for all i ∈ {1, ...,m}. Given P , a null hypothesis H0,i (called sometimes a
“null” for short) is said to be true (for P ) if P ∈ Θ0,i, that is, if P satisfies H0,i. It is said
false (for P ) otherwise. The index set corresponding to true nulls is denoted by H0(P ) = {1 ≤
i ≤ m : µi,1(P ) = µi,2(P )}. Its complementary is denoted by H1(P ). In the above microarray
example, H1(P ) = {1 ≤ i ≤ m : µi,1(P ) 6= µi,2(P )} is thus the index set corresponding to
differentially expressed genes. The aim of a multiple testing procedure is to recover the set
H1(P ) from the observation X.

A multiple testing procedure is commonly defined from individual test statistics, by re-
jecting the null hypotheses with a large test statistic. Here, each individual test can be for
instance built upon a (two-sided) two-sample t-statistic Si(X) ∝ |Y i − Zi|, rescaled using a
standard deviation estimate. In order to provide a uniform normalization for all the tests, it
is convenient to normalize each Si(X) into a variable called the p-value

pi(X) = T0,i(Si(X)), (1)

where T0,i(s) = PH0,i(Si(X) ≥ s) is the upper-tail distribution function of the statistics under
the null (we have chosen “≥” in T0,i to use Lemma 1.3, see below). Since T0,i is non-increasing,
a multiple testing procedure rejects the null associated to small p-values. The precise relation
between “Si(X) large” and “pi(X) small” easily derives from Lemma 1.3.

The calculation of the p-values (1) requires the knowledge of the (T0,i)1≤i≤m, that is, of the
distribution of the test statistics under the null. For instance, the latter can be done simply
if the model P is such that Yi and Zi are Gaussian variables with the same variance. Namely,
if Si(X) is rescaled with the so-called “pooled” standard deviation, the null distribution
is the Student distribution of n − 2 degrees of freedom. In that case, each p-value (1) has
the remarkable property to be uniformly distributed on (0, 1) when the corresponding null
hypothesis is true. More generally, when Si(X) may have a discrete distribution under the
null, these p-values have the slightly weaker property to be stochastically lower-bounded by
a uniform variable, that is, ∀i ∈ H0(P ), ∀u ∈ [0, 1], P(pi(X) ≤ u) ≤ u, see Lemma 1.3. The
latter weaker property also appears in the case of one-sided tests (see Example 1.2 below).
Finally, under no distributional assumption on the Yi and Zi under the null, the function
(T0,i)1≤i≤m are unknown and thus the p-values (1) cannot be directly computed. In that case,
they can still be approached by using a Fisher permutation test [20], which uses permutations
of the group labels. Conveniently, the so-derived p-values can be proved to enjoy the same
stochastic dominance as above (see, e.g., [34] for a recent reference).
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Example 1.2 (One-sided testing on the mean of a Gaussian vector). A very convenient
mathematical framework to do multiple testing is the case where we observe a R

m Gaussian
vector X = (Xi)1≤i≤m ∼ P , having an unknown mean µ(P ) = (µi(P ))1≤i≤m ∈ R

m and a
covariance m×m matrix Σ(P ) with entries on the diagonal equal to 1, and we aim at testing

H0,i : “µi(P ) ≤ 0” against H1,i : “µi(P ) > 0”,

simultaneously for all i ∈ {1, ...,m}. Then we may define the p-values pi = Φ(Xi), where
Φ(x) = P(Z ≥ x) for Z ∼ N (0, 1), which fulfilled the required stochastic domination under
the null: if µi(P ) ≤ 0, for u ∈ [0, 1],

P(pi(X) ≤ u) ≤ P(Φ(Xi − µi(P )) ≤ u) = u.

Sometimes, a convenient assumption is to assume that alternative means are all equal to
τ
√
n, where τ is a positive parameter and n is a “sample-size” parameter. Finally, we may

tune the parameter Σ(P ) to cover many p-value dependency structures: for instance, we can
assume that Σ(P ) has only non-negative entries, that the non-diagonal entries of Σ(P ) are
equal (equi-correlation), or that Σ(P ) is diagonal.

Lemma 1.3. Let Z be a random variable with upper-tail distribution function T (z) = P(Z ≥
z) and consider the random variable U = T (Z). Then, for any u ∈ [0, 1], we have:

{U ≤ u} =

{
{Z ≥ F−1(1− u)} if F (F−1(1− u))− δu ≥ 1− u
{Z > F−1(1− u)} otherwise

,

where F is the c.d.f. of Z, F−1(v) = min{z ∈ R : F (z) ≥ v} is the generalized inverse of F
and δu denotes P(Z = u) for any u ∈ [0, 1]. As a consequence, U is such that P(U ≤ u) ≤ u,
for any u ∈ [0, 1]. Additionally, in the particular case where T is continuous, U has a uniform
distribution on (0, 1) and {U ≤ u} = {Z ≥ F−1(1− u)}.

1.3. General multiple testing setting

We provide in this section the classical abstract framework in which the multiple testing
theory may be investigated in broad generality.

Let us consider a statistical model, defined by a measurable space (X ,X) endowed with a
subset P of distributions on (X ,X). Consider an observation X of the model, that is, a random
variable with values in X and with a distribution P ∈ P. Consider a family (Θ0,i)1≤i≤m of
m ≥ 2 subsets of P. From X, we want to test the null hypotheses H0,i : “P ∈ Θ0,i” against
the alternative H1,i : “P ∈ Θc

0,i”, simultaneously for all i ∈ {1, ...,m}. For any P ∈ P, let
H0(P ) = {1 ≤ i ≤ m : P ∈ Θ0,i} the set of the indexes i for which P satisfies H0,i, that is,
corresponding to true null hypotheses. Its cardinal |H0(P )| is denoted by m0(P ). Similarly,
the set {1, ...,m} will be sometimes denoted by H. The set of the false null hypotheses is
denoted by H1(P ) = H\H0(P ). The goal is to recover the set H1(P ) from X, that is, to find
which null hypotheses are true/false from the knowledge of X. Of course, the distribution P
of X is unknown, and thus so is H1(P ).

A standard multiple testing setting includes the knowledge of p-values (pi(X))1≤i≤m satis-
fying

∀P ∈ P,∀i ∈ H0(P ), ∀u ∈ [0, 1], P(pi(X) ≤ u) ≤ u. (2)

As a consequence, for each i ∈ {1, ...,m}, rejecting H0,i whenever pi(X) ≤ α defines a test of
level α. As we already mentioned, in some cases, the p-value pi(X) is exactly distributed like
a uniform variable in (0, 1) under H0,i, in which case (2) is an equality.
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1.4. Multiple testing procedures

In all what follows, we will use the observation X only through the p-value family p(X) =
{pi(X), 1 ≤ i ≤ m}. Therefore, for short, we will often drop the dependence in X in the
notation and define all quantities as functions of p = {pi, 1 ≤ i ≤ m} ∈ [0, 1]m. However, one
should keep in mind that the underlying distribution P (the distribution of interest on which
the tests are performed) is the distribution of X and not of p.

A multiple testing procedure is defined as a function

R : q = (qi)1≤i≤m ∈ [0, 1]m 7−→ R(q) ⊂ {1, ...,m},

taking as input an element of [0, 1]m and returning as output a subset of {1, ...,m}. For such a
general procedureR, we add the technical assumption that for each i ∈ {1, ...,m}, the mapping
x ∈ X 7→ 1{i ∈ R(p(x))} is measurable. The coordinates selected by R(p) correspond to the
rejected null hypotheses, that is, i ∈ R(p) ⇔ “H0,i is rejected by the procedure R(p)”. Thus,
for each p-value set p, there are 2m possible choices for R(p). This number becomes huge as
the number m of hypotheses grows. However, according to the stochastic property (2) of the
p-values, a natural rejection region for each H0,i is of the form pi ≤ ui, for some ui ∈ [0, 1].
In this paper, we will mainly focus on the case where the threshold is the same for all the
p-values. The corresponding procedures, called thresholding based procedures, are of the form
R(p) = {1 ≤ i ≤ m : pi ≤ t(p)}, where the threshold t(·) ∈ [0, 1] may depend on the data (in
a measurable manner).

1.5. Type I error rates

In order to evaluate the quality of a multiple testing procedures, many error rates have been
proposed in the multiple testing literature. According to the Neyman-Pearson approach, of
primary interest are the type I error rates, that is, rates that evaluate the importance of true
null hypotheses (wrongly) rejected. These are the elements of the set R(p) ∩ H0(P ). In this
paper, we will use the following type I error rates, which are the most used nowadays: for a
given procedure R,

• the k-family-wise error rate (k-FWER) of R (see e.g. [26, 34]) is defined as the proba-
bility that the procedure R makes at least k false rejections: ∀P ∈ P,

k-FWER(R,P ) = P(|R(p) ∩H0(P )| ≥ k), (3)

where k ∈ {1, ...,m} is a pre-specified tuning parameter. In the particular case where
k = 1, the latter is simply called the family-wise error rate of R and is denoted by
FWER(R,P ).

• the false discovery proportion (FDP) (see e.g. [42, 4]) of R is defined as the proportion
of errors in the set of the rejected hypotheses: ∀P ∈ P,

FDP(R(p), P ) =
|R(p) ∩H0(P )|

|R(p)| ∨ 1
. (4)

The “∨1” in the denominator is only present to make the FDP equals to zero when
R makes no rejection. Since the above quantity is random, this does not define an
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error rate. Two main error rates have been derived from the FDP. First, the γ-upper-
tail distribution of the FDP of R, defined as the probability that the FDP exceeds γ:
∀P ∈ P,

P(FDP(R(p), P ) > γ), (5)

where γ ∈ (0, 1) is a pre-specified tuning parameter. Second, the false discovery rate
(FDR) [4], defined as the expectation of the FDP of R: ∀P ∈ P,

FDR(R,P ) = E[FDP(R(p), P )] = E

[ |R(p) ∩H0(P )|
|R(p)| ∨ 1

]
. (6)

Note that (5) is equivalent to upper-bound the (1 − α)-quantile of the FDP distribution by
γ. For instance, if the probability in (5) is upper-bounded by α = 1/2, this means that the
median of the FDP is upper-bounded by γ. With some abuse, controlling the probability (5)
is called “controlling the FDP” from now on.

Choosing the most relevant type I error rate depends on the context. When controlling (3),
we tolerate a fixed number k−1 of erroneous rejections. By contrast, controlling (5) allows to
increase the number of erroneous rejections as the number of rejections becomes large, that
is, it automatically selects k “close” to γ|R| in order to tolerate a small proportion γ of errors
among the final rejections. Controlling (6) has become popular because it is a simple error
rate based on the FDP and because it came together with the simple Benjamini-Hochberg
FDR controlling procedure [4] (some dependency structure assumptions are required, see
Section 3). As a counterpart, controlling the FDR does not prevent the FDP from having
large variations, so that any FDR control does not have necessarily a clear interpretation in
terms of the FDP (see the related discussion in Section 6.2).

1.6. Goal

Let α ∈ (0, 1) be a pre-specified nominal level (to be fixed once for all throughout the paper).
We want to control each of the type I error rates defined above at level α, for a subset of
distributions P ′ ⊂ P as large as possible. That is, taking one error rate E(R,P ) among those
defined in the last section, we aim at finding a procedure R such that

∀P ∈ P ′, E(R,P ) ≤ α, (7)

for P ′ ⊂ P as large as possible. Of course, R should depend on α but we omit this in the
notation for short. Similarly to the single testing case, taking R = ∅ will always ensure (7)
with P ′ = P. This means that the type I error rate control is inseparable from the power
maximization issue. Probably, the most natural way to extend the notion of power from the
single testing to the multiple testing setting is to consider the expected number of correct
rejections, that is, E|H1(P ) ∩ R|. Along the paper, we will often meet the case where two
procedures R and R′ satisfy R′ ⊂ R (almost surely) while they both ensure the control (7). In
this situation, the procedure R is said less conservative than R′. This obviously implies that
R is more powerful than R′. For instance, R and R′ can be thresholding-based procedures
using respective thresholds t and t′ satisfying t ≥ t′ (almost surely). Hence, our goal is to find
R providing (7), with a rejection set R as large as possible.

Finally, we emphasize that we want a control (7) valid for any fixed m ≥ 2 and not only
when m tends to infinity. That is, we consider a setting which is non-asymptotic in the
parameter m.
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1.7. Presentation of the paper

In Section 2, we present some general tools and concepts that will be used throughout the
paper. Section 3, 4 and 5 present surveys on FDR, k-FWER and FDP controlling methodology,
respectively.

Moreover, while this paper is mostly intended to be a review paper, some new contribu-
tions with respect to the existing multiple testing literature are given in Section 4 and 5,
by extending the results of [24] for the k-FWER control and the results of [35] for the FDP
control, respectively.

2. Key concepts and tools

2.1. Model assumptions

Throughout this paper, we will consider several (sub)models. Each model corresponding to a
specific assumption on the p-value family p = {pi, 1 ≤ i ≤ m} distribution. The first model,
called the “independent model” is defined as follows:

PI =
{
P ∈ P : (pi(X))i∈H0(P ) is a family of mutually independent

variables, and (pi(X))i∈H0(P ) is independent of (pi(X))i∈H1(P )

}
. (8)

The second model uses a particular notion of positive dependence between the p-values,
called “weak positive regression dependency” (in short, “weak PRDS”), which is a slightly
weaker version of the PRDS assumption of [7], defined as follows: first, a subset D ⊂ [0, 1]m

is called nondecreasing if for all q, q′ ∈ [0, 1]m such that ∀i ∈ {1, ...,m}, qi ≤ q′i, we have
q ∈ D ⇒ q′ ∈ D.

Definition 2.1 (Weak PRDS p-value family). The family p is said to be weak PRDS on
H0(P ) if for any i0 ∈ H0(P ) and for any measurable nondecreasing set D ⊂ [0, 1]m , the
function u 7→ P(p ∈ D | pi0 ≤ u) is nondecreasing on the set {u ∈ [0, 1] : P(pi0 ≤ u) > 0}.

The only difference between the weak PRDS assumption and the “regular” PRDS assump-
tion defined in [7] is that the latter assumes “u 7→ P(p ∈ D | pi0 = u) nondecreasing”, instead
of “u 7→ P(p ∈ D | pi0 ≤ u) nondecreasing”. Hence, weak PRDS is a weaker assumption,
as shown for instance in the proof of Proposition 3.6 in [11]. We can now define the second
“weak PRDS model”, where the p-values have positive dependencies:

Ppos =
{
P ∈ P : p(X) is weak PRDS on H0(P )

}
. (9)

It is not difficult to see that PI ⊂ Ppos because when P ∈ PI , pi0 is independent of (pi)i 6=i0

for any i0 ∈ H0(P ). We refer to the general case of P ∈ P (without any additional restriction)
as the “arbitrary dependence case”.

As an illustration, in the one-sided Gaussian testing framework of Example 1.2, the PRDS
assumption (regular and thus also weak) is satisfied as soon as the covariance matrix Σ(P )
has nonnegative entries, as shown in [7] (note that this is not true anymore for two-sided
tests, as proved in the latter reference).
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2.2. Dirac configurations

If we want to check whether a procedure satisfies (7), a particularly simple p-value distri-
bution (called often “configuration”) that one can consider is the so-called “Dirac-uniform
configuration” (see [19]), in which the variables (pi)i∈H0(P ) are i.i.d. uniform and the other
p-values are all identically equal to zero. Similarly, any configuration where the p-values of
H1(P ) are equal to zero (without any assumption on the p-values of H0(P )) is called here
simply a “Dirac configuration”.

These configurations can be seen as the asymptotic p-value family distribution where the
sample size available to perform each test tends to infinity, while the number m of tests is
kept fixed (see the examples of Section 1.2). This situation does not fall into the classical
multiple testing framework where the number of tests is much larger than the sample size.
Besides, there is no multiple testing problem in these configurations because the true nulls
are perfectly separated from the false null (almost surely). However, our point is that these
special configurations are still interesting, because they sometimes have the property to be
the distributions for which the type I error rate is the largest. In that case, they are called the
“least favorable configurations” (see [19]). This generally requires that the multiple testing
procedure and the error rate under consideration have special monotonous properties (see
[18, 37]). In this case, proving the type I error rate control for the Dirac configurations is
sufficient to state (7) and thus appears to be very useful.

2.3. Algorithms

In order to derive (7), a generic method that emerged from the multiple testing literature is
as follows:

1. start with a family (Rκ)κ of procedures depending on an external parameter κ;
2. find a set of values for κ for which Rκ satisfies (7);
3. take among these values the κ that makes Rκ the “largest”.

The latter is designed to maintain the control of the type I error rate while maximizing the
rejection set. As we will see in Section 3 (κ is a threshold t), Section 4 (κ is a subset C of
H) and Section 5 (κ is a rejection number ℓ), this gives rise to the so-called “step-up” and
“step-down” algorithms, which are very classical instances of type I error rate controlling
procedures.

2.4. Adaptive control

A way to increase the power of type I error rate controlling procedures is to learn (from the
data) part of the unknown distribution P in order to make more rejections. This approach is
called “adaptive type I error rate control”. Since the resulting procedure uses the data twice,
the main challenge is often to show that it maintains the type I error control (7). In this
paper, we will discuss the adaptivity with respect to the parameter |H0(P )| in Section 3.3
(for E = FDR) and to both |H0(P )| and the dependency structure between the p-values in
Section 4 (for E = k-FWER). Let us finally note that some other work studied the adaptivity
to the alternative distributions of the p-values (see [46, 38, 36]).
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3. FDR control

After the seminal work of Benjamini and Hochberg [4], many studies have investigated the
FDR controlling issue. We provide in this section a survey of some of these approaches.

3.1. Thresholding based procedures

Let us start from thresholding type multiple-testing procedures

Rt = {1 ≤ i ≤ m : pi ≤ t(p)},

with a threshold t(·) ∈ [0, 1] possibly depending on the p-values. We want to find t such that
the corresponding multiple testing procedure Rt controls the FDR at level α under the model
Ppos, following the general method explained in Section 2.3. We start with the following
simple decomposition of the false discovery rate of Rt that follows from (6):

FDR(Rt, P ) = αm−1
∑

i∈H0(P )

E

[
1{pi ≤ t(p)}

α Ĝ(p, t(p)) ∨ (α/m)

]
, (10)

where Ĝ(p, u) = m−1
∑m

i=1 1{pi ≤ u} is the empirical c.d.f. of the p-value family p = {pi, 1 ≤
i ≤ m} taken at a threshold u ∈ [0, 1].

In order to create a link between the numerator and the denominator inside the expectation
of (10), we consider the so-called “self-consistent” threshold set:

T (p) = {u ∈ [0, 1] : Ĝ(p, u) ≥ u/α}. (11)

With different notation, the latter was introduced in [11, 18]. Now, let us choose a self-
consistent threshold t(p) ∈ T (p) (almost surely). By using the decomposition (10), we obtain
the following upper-bound:

FDR(Rt, P ) ≤ αm−1
∑

i∈H0(P )

E

[
1{pi ≤ t(p)}

t(p)

]
, (12)

with the convention 0
0 = 0. Since by (2), pi(x) > 0 for P -almost every x when i ∈ H0(P ), the

denominator inside the expectation of the RHS of (12) can only be zero when the numerator is
also zero and therefore when the ratio is zero. Next, the following purely probabilistic lemma
holds (see a proof in Appendix A of [11] for instance):

Lemma 3.1. Let U be a nonnegative random variable which is stochastically lower bounded
by a uniform distribution, i.e., P(U ≤ u) ≤ u for any u ∈ [0, 1]. Then the following inequality
holds:

E

[
1{U ≤ V }

V

]
≤ 1 , (13)

for any nonnegative random variable V satisfying either of the two following conditions:

(i) V = g(U) where g : R+ → R
+ is non-increasing,

(ii) the conditional distribution of V conditionally on U ≤ u is stochastically decreasing in u,
that is, ∀v ≥ 0, u 7→ P(V < v | U ≤ u) is nondecreasing on {u ∈ [0, 1] : P(U ≤ u) > 0}.
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A consequence of the previous lemma in combination with (12) is that the FDR is controlled
at level αm0(P )/m as soon as V = t(p) satisfies (ii) with U = pi. For the latter to be true,
we should make the distributional assumption P ∈ Ppos and add the assumption that the
threshold t(·) is non-increasing with respect to each p-value, that is, for all q, q′ ∈ [0, 1]m, we
have t(q) ≤ t(q′) as soon as for all 1 ≤ i ≤ m, q′i ≤ qi. By using the latter, we easily check
that the set

D = {q ∈ [0, 1]m : t(q) < v}
is a nondecreasing measurable set of [0, 1]m, for any v ≥ 0. Thus, the weak PRDS condition
defined in Section 2.1 provides (ii) with U = pi and V = t(p) and thus also (13). Summing
up, we obtained the following result, which appeared in [11]:

Theorem 3.2. Consider a thresholding type multiple testing procedure Rt based on a threshold
t(·) which is self-consistent, i.e., such that t(p) ∈ T (p) (almost surely) (see (11)) and non-
increasing in each p-value, i.e., satisfying that for all q, q′ ∈ [0, 1]m with q′i ≤ qi for all
1 ≤ i ≤ m, we have t(q) ≤ t(q′). Then, for any P ∈ Ppos, FDR(Rt, P ) ≤ αm0(P )/m ≤ α.

It is important to note that the set T (p) only depends on the p-value family (and on α) so
that self-consistent thresholds can be easily chosen in practice. As an illustration, we depict
the set T (p) in Figure 1 for a particular realization of the p-value family.

Remark 3.3. If we want to state the FDR control of Theorem 3.2 only for P ∈ PI without
using the PRDS property, we can use Lemma 3.1 (i) conditionally on p−i = (pj , j 6= i) ∈
[0, 1]m−1, by taking V = t(U,p−i) and U = pi, because pi is independent of p−i when P ∈ PI .
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Fig 1. The p-value e.c.d.f Ĝ(p, u) and u/α are plotted as functions of u ∈ [0, 1]. The points u belonging to the
set T (p) lie on the X-axis of the gray area. m = 10; α = 0.5.

3.2. Linear step-up procedures

From Theorem 3.2, under the weak PRDS assumption on the p-value dependence structure,
any algorithm giving as output a self-consistent and non-increasing threshold t(p) leads to a
correct FDR control. Therefore, we may ask which one should we choose.
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As explained in Section 1.6 and Section 2.3, for the same FDR control we want to get a
procedure with a rejection set as large as possible. Hence, it is natural to choose the following
threshold:

tsu(p) = max{T (p)} (14)

= max{u ∈ {αk/m, 0 ≤ k ≤ m} : Ĝ(p, u) ≥ u/α}
= α/m ×max{0 ≤ k ≤ m : p(k) ≤ αk/m}, (15)

where p(1) ≤ ... ≤ p(m) (p(0) = 0) denote the order statistics of the p-value family. This choice
was made in [4] and is usually called linear step-up or “Benjamini-Hochberg” thresholding.
One should notice that the maximum in (14) exists because the set T (p) contains 0, is upper-
bounded by 1 and because the e.c.d.f. is a non-decreasing function. It is also easy to check
that the maximum u = tsu(p) satisfies the equality Ĝ(p, u) = u/α, so that tsu(p) can be seen
as the largest crossing point between between u 7→ Ĝ(p, u) and u 7→ u/α, see the left-side of
Figure 2. It also implies that tsu(p) ∈ {αk/m, 0 ≤ k ≤ m}, which, combined with the so-called
switching relation Ĝ(p, αk/m) ≥ k ⇐⇒ p(k) ≤ αk/m, gives rise to the second formulation
(15). The latter is illustrated in the right-side of Figure 2. The formulation (15) corresponds
to the original expression of [4] while (14) is to be found for instance in [21].

Moreover, it is worth noticing that the procedure Rtsu using the thresholding tsu(p) is also
equal to {1 ≤ i ≤ m : pi ≤ tsu(p) ∨ α/m}, so that it can be interpreted as an intermediate
thresholding between the non-corrected procedure using t = α and the Bonferroni procedure
using t = α/m.
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tsu

tsu

Ĝ(tsu)

|Rtsu |

Fig 2. The two dual pictorial representations of the Benjamini-Hochberg linear step-up procedure. Left: c.d.f.
of the p-values, the solid line has for slope α−1. Right: ordered p-values, the solid line has for slope α/m. In
both pictures, the filled points represent p-values that corresponds to the rejected hypotheses. m = 10; α = 0.5.

Since tsu(p) is obviously coordinate-wise non-increasing and self-consistent, Theorem 3.2
shows that, for any P ∈ Ppos, FDR(Rtsu , P ) ≤ αm0(P )/m. As a matter of fact, as soon as
(2) holds with an equality, we can prove that for any P ∈ PI , the equality FDR(Rtsu , P ) =
αm0(P )/m holds, by using a surprisingly direct argument. Let p0,−i for the p-value family
where pi has been replaced by 0, and observe that the following statements are equivalent:

(i) pi ≤ tsu(p0,−i)
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(ii) Ĝ
(
p0,−i, t

su(p0,−i)
)
≤ Ĝ

(
p, tsu(p0,−i)

)

(iii) tsu(p0,−i)/α ≤ Ĝ
(
p, tsu(p0,−i)

)

(iv) tsu(p0,−i) ≤ tsu(p).

The equivalence between (i) and (ii) is straightforward from the defintion of Ĝ(·, ·). The
equivalence between (ii) and (iii) follows from Ĝ

(
p0,−i, t

su(p0,−i)
)
= tsu(p0,−i)/α, because

t = tsu(p0,−i) is a crossing point between Ĝ(p0,−i, t) and t/α. The equivalence between (iii)
and (iv) comes from the definition of tsu(p) together with tsu(p0,−i) ≤ tsu(p) ⇐⇒ tsu(p0,−i) =
tsu(p), the latter coming from the non-increasing property of tsu(·). As a consequence, pi ≤
tsu(p0,−i) ⇐⇒ pi ≤ tsu(p), with tsu(p0,−i) = tsu(p) when these assertions are true. By using
the first decomposition (10) of the FDR, we thus derive the following equalities:

FDR(Rtsu , P ) = αm−1
∑

i∈H0(P )

E

[
1{pi ≤ tsu(p)}

α Ĝ(p, tsu(p)) ∨ (α/m)

]

= αm−1
∑

i∈H0(P )

E

[
1{pi ≤ tsu(p)}

tsu(p)

]

= αm−1
∑

i∈H0(P )

E

[
1{pi ≤ tsu(p0,−i)}

tsu(p0,−i)

]

= αm−1
∑

i∈H0(P )

E

[
tsu(p0,−i)

−1
E
(
1{pi ≤ tsu(p0,−i)}

∣∣p0,−i

)]

= αm0(P )/m,

where we assumed in the last equality both that for all i ∈ H0(P ), pi is independent from p−i,
that is, P ∈ PI , and that each p-value associated to a true null is uniform on [0, 1], that is,
condition (2) holds with an equality. To sum up, we have proved in this section the following
result.

Theorem 3.4. Consider the linear step-up procedure Rtsu using the threshold defined in (14).
Then, for any P ∈ Ppos, FDR(Rtsu , P ) ≤ αm0(P )/m. Moreover, the latter is an equality if
P lies in PI and (2) is an equality.

This theorem is due to [4, 7]. The short proof mentioned above has been independently given
in [17, 36, 18]. Theorem 3.4 proves that the inequality “∀P ∈ Ppos, FDR(Rtsu , P ) ≤ α” is sharp
as soon as each p-value associated to a true null has a marginal distribution which is uniform
on [0, 1] and there exists P ∈ PI such that H0(P ) = H, that is, when ∩i∈HΘ0,i ∩ PI 6= ∅.

Other instances of self-consistent procedures include linear “step-up-down” procedures as
defined in [39]. Theorem 3.2 establishes that the FDR control also holds for these procedures,
as proved in [11, 18].

3.3. Adaptive linear step-up procedures

In this section we denote by π0(P ) the proportion m0(P )/m of hypotheses that are true for
P . Since we aim at controlling the FDR at level α and not at level απ0(P ), Theorem 3.4
shows that there is a potential power loss when using tsu when the proportion π0(P ) is small.
A first idea is to use the linear step-up procedure at level α/π0(P ) which would provide a final
FDR control at level απ0(P )−1π0(P ) = α. Unfortunately, since P is unknown, so is π0(P )
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and an interesting challenge is to estimate π0(P ) within a multiple testing procedure while
still rigorously controlling the FDR at level α, in despite of the additional fluctuations added
by the π0(P )-estimation. This problem, called π0(P )-adaptive FDR control, has received a
growing attention in the last decade, see e.g. [5, 44, 8, 22, 6, 32, 40, 12].

To investigate this issue, a natural idea is to consider a modified linear step-procedure using
the threshold

tsuf (p) = max
{
u ∈ [0, 1] : Ĝ(p, u) ≥ u/

(
α f(p)

)}
. (16)

where f(p) > 0 is an estimator of π−1
0 to be chosen. The latter is called adaptive linear step-up

procedure. We describe now a way to choose f so that the FDR control FDR(Rtsuf
, P ) ≤ α

still holds for P ∈ PI . It uses techniques similar to those of Section 3.2. First, to keep the
non-increasing property of the threshold tsuf (·), we assume that f(·) is coordinate-wise non-
increasing. Second, using a decomposition of the FDR analogous to the non-adaptive case,
we may write for any P ∈ PI ,

FDR(Rtsuf
, P ) = αm−1

∑

i∈H0(P )

E

[
1{pi ≤ tsuf (p)}

tsuf (p)
f(p)

]

≤ αm−1
∑

i∈H0(P )

E

[
1{pi ≤ tsuf (p)}

tsuf (p)
f(p0,−i)

]

= αm−1
∑

i∈H0(P )

E

[
f(p0,−i)E

[
1{pi ≤ tsuf (p)}

tsuf (p)

∣∣∣∣p0,−i

]]

≤ αm−1
∑

i∈H0(P )

E
[
f(p0,−i)

]
, (17)

where we used Lemma 13 (i) in the last inequality (conditionally on the p-values of (pj , j 6= i),
because f is coordinate-wise non-increasing). Additionally assuming that f(·) is permutation
invariant, we can upper-bound the RHS of (17) by using the Dirac-uniform configuration
because f(·) is non-increasing. This gives rise to the following result.

Theorem 3.5. Consider the adaptive linear step-up procedure Rtsuf
with a threshold defined

in (16) using a π−1
0 -estimator f satisfying the following properties:

• f(·) is coordinate-wise non-increasing, that is, for all q, q′ ∈ [0, 1]m with for all 1 ≤ i ≤
m, q′i ≤ qi, we have f(q) ≤ f(q′);

• f(·) is permutation invariant, that is, for any permutation σ of {1, ...,m}, ∀q ∈ [0, 1]m,
f(q1, ..., qm) = f(qσ(1), ..., qσ(m));

• f satisfies
∀m0 ∈ {1, ...,m}, Ep∼DU(m0−1,m)(f(p)) ≤ m/m0, (18)

where DU(k,m) denotes the Dirac-uniform distribution on [0, 1]m for which the k first
coordinates are i.i.d. uniform on (0, 1) and the remaining coordinates are equal to 0.

Then, for any P ∈ PI , FDR(Rtsuf
, P ) ≤ α.

The method leading to the upper-bound (17) was investigated in [6] and described latter
in detail in [12]. The simpler result presented in Theorem 3.5 appeared in [12].

Next, we should find a good estimator f of π−1
0 . This issue has an interest in its own

right and many studies investigated it since the first attempt in [41] (see for instance the
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references in [13]). Here, we only deal with this problem from the FDR control viewpoint,
by providing two families of estimators that satisfy the assumptions of Theorem 3.5. First,
define the “Storey-type” estimators, which are of the form

f1(p) =
m(1− λ)∑m

i=1 1{pi > λ}+ 1
,

for λ ∈ (0, 1) (λ not depending on p). It is clearly non-increasing and permutation invari-
ant. Moreover, we may check that f1 satisfies (18): for any m0 ∈ {1, ...,m}, considering
(Ui)1≤i≤m0−1 i.i.d. uniform on (0, 1),

Ep∼DU(m0−1,m)(f1(p)) =
m

m0
E

[
m0(1− λ)

∑m0−1
i=1 1{Ui > λ}+ 1

]
≤ m

m0
,

because for any k ≥ 2, q ∈ (0, 1) and for Y having a binomial distribution with parameters
(k − 1, q), we have E((1 + Y )−1) ≤ (qk)−1, as stated e.g. in [6]. This type of estimator has
been introduced in [43] and proved to lead to a correct FDR control in [44, 6].

The second family of estimators satisfying the assumptions of Theorem 3.5 is the “quantile-
type” family, for which the estimators may be seen as Storey-type estimators using λ = p(k0);
the latter are of the form

f2(p) =
m(1− p(k0))

m− k0 + 1
,

for k0 ∈ {1, ...,m} (k0 not depending on p). Straightforwardly, f2(·) is non-increasing and
permutation-invariant. Additionally, f2(·) enjoys (18) because for any m0 ∈ {1, ...,m}, con-
sidering (Ui)1≤i≤m0−1 i.i.d. uniform on (0, 1) ordered as U(1) ≤ ... ≤ U(m0−1),

Ep∼DU(m0−1,m)(f2(p)) = E

[
m(1− U(k0−m+m0−1))

m− k0 + 1

]
=

m(1− E[U(k0−m+m0−1)])

m− k0 + 1

=
m(1− (k0 −m+m0 − 1)+/m0)

m− k0 + 1
≤ m

m0
,

by using the convention U(j) = 0 when j ≤ 0. These quantile type estimators have been
proved to lead to a correct FDR control in [6]. The above simple proof was given in [12].

Which choice should we make for λ or k0? Using extensive simulations (including other
type of adaptive procedures), it was recommended in [12] to choose as estimator f1 with λ
close to α, because the corresponding procedure shows a “good” power under independence
while it maintains a correct FDR control under positive dependencies (in the equi-correlated
Gaussian one-sided model described in Example 1.2). Of course, a “dynamic” choice of λ (i.e.
using the data) can increase the accuracy of the π−1

0 estimation and thus leads to a better
procedure. However, proving that the corresponding FDR control remains valid in this case
is an open issue to our knowledge. Also, outside the case of the particular equi-correlated
Gaussian dependence structure, very little is known about adaptive FDR control.

3.4. Arbitrary dependencies

Many corrections of the linear step-up procedure are available to maintain the FDR control
when the p-value family has arbitrary and unknown dependencies. We describe here the so-
called “Occam’s hammer” approach presented in [10] which only uses Fubini’s theorem and
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allows to recover the well-known “Benjamini-Yekutieli” correction [7]. Let us consider

tβsu(p) = max{u ∈ [0, 1] : Ĝ(p, β(u)) ≥ u/α}, (19)

= max{u ∈ {αk/m, 1 ≤ k ≤ m} : Ĝ(p, β(u)) ≥ u/α},
= α/m ×max{0 ≤ k ≤ m : p(k) ≤ β(αk/m)}, (20)

for a non-decreasing function β : R+ → R
+. Then the FDR of Rβ(tβsu) can be written as

follows: for any P ∈ P,

FDR(Rβ(tβsu), P )

= αm−1
∑

i∈H0(P )

E

[
1{pi ≤ β(tβsu(p))}

tβsu(p)

]

= αm−1
∑

i∈H0(P )

E

[
1{pi ≤ β(tβsu(p))}

∫ +∞

0
u−21{tβsu(p) ≤ u}du

]

= αm−1
∑

i∈H0(P )

∫ +∞

0
u−2

E
[
1{tβsu(p) ≤ u}1{pi ≤ β(tβsu(p))}

]
du

≤ αm−1
∑

i∈H0(P )

∫ +∞

0
u−2

P(pi ≤ β(u))du

= αm0(P )/m

∫ +∞

0
u−2β(u)du. (21)

Therefore, choosing any non-decreasing function β such that
∫ +∞
0 u−2β(u)du = 1 provides a

valid FDR control. This leads to the following result:

Theorem 3.6. Consider a function β : R+ → R
+ of the following form: for all u ≥ 0,

β(u) =
∑

i:αi/m≤u

(αi/m)νi, (22)

where the νis are nonnegative with ν1 + · · ·+ νm = 1. Consider the step-up procedure Rβ(tβsu)

using tβsu defined by (19). Then for any P ∈ P, FDR(Rβ(tβsu), P ) ≤ αm0(P )/m.

Note that the function β defined by (22) takes the value (α/m)ν1 + · · ·+ (αi/m)νi in each
u = αi/m and is constant on each interval (αi/m,α(i + 1)/m) and after α. Thus, it always
satisfies that β(u) ≤ u, for any u ≥ 0. This means that the procedure Rβ(tβsu) rejects always
less hypotheses than the linear step-up procedure Rtsu . Therefore, while Rβ(tβsu) provides a
FDR control under no assumption about the p-value dependency structure, it is substantially
more conservative than Rtsu under weak PRDS dependencies between the p-values.

As an illustration, taking νi = i−1γ−1 for γ = 1 + 1/2 + ... + 1/m, we obtain β(αi/m) =
γ−1αi/m, which corresponds to the linear step-up procedure, except that the level α has been
divided by γ ≃ log(m). This is the so-called Benjamini-Yekutieli procedure proposed in [7].
Theorem 3.6 thus recovers Theorem 1.3 of [7].

We mention another example, maybe less classical, to illustrate the flexibility of the choice
of β in Theorem 3.6; take νm/2 = 1 (assuming that m/2 is an integer) so that β(αi/m) =
(α/2) 1{i ≥ m/2}. In that case, the final procedure Rβ(tβsu) rejects the hypotheses corre-
sponding to p-values smaller than α/2 if 2p(m/2) ≤ α and rejects no hypothesis otherwise.
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Theorem 3.6 ensures that this (quite uncommon) procedure also controls the FDR, under no
assumption on the model dependency. Many other examples are given in Section 4.2.1 of [11].

Remark 3.7 (Sharpness of the bound in Theorem 3.6). In Lemma 3.1 (ii) of [30] (see also
[25]), a specifically crafted p-value distribution was built on [0, 1]m (depending on β) for
which the FDR of Rβ(tβsu) is equal to α (and m0(P ) = m). If the underlying model P
is such that (pi(X))1≤i≤m may have this very specific distribution for some P ∈ P, the
inequality “P ∈ P, FDR(Rβ(tβsu), P ) ≤ α” in Theorem 3.6 is sharp. However, the latter is
rarely true for a “realistic” model P, because the p-value distribution of [30] assumes quite
unrealistic dependencies between the p-values. Related to that, several simulation experiments
showed that the standard LSU procedure still provides a good FDR control under “realistic”
dependencies, see e.g. [16, 29]. This means that the corrections defined in this section are
generally very conservative for real-life data, because their actually achieved FDR is much
smaller than αm0(P )/m.

Finally, let us underline the fact that, without additional studies, any FDR control valid
under arbitrary dependency suffers from a lack of interpretability for the underlying FDP, as
discussed in Section 6.2.

4. k-FWER control

The methodology presented in this section for controlling the k-FWER under arbitrary de-
pendencies can probably be attributed to many authors, e.g. [27, 47, 34, 35]. Here, we opted
for a general presentation which emphasizes the rationale of the mathematical argument.
This approach has been sketched in the talk [9] and investigated more deeply in [24] where
it is referred to as the “sequential rejection principle”. While the latter point of view allows
to obtain elegant proofs, it is also useful for developing new and potentially more complex
FWER controlling procedures, see [24, 23, 28]. This methodology has been initially developed
for the FWER. We propose in Section 4.4 a new extension to the k-FWER.

In this section, for simplicity, we drop the explicit dependence of the multiple testing
procedure R w.r.t. p in the notation. The tuning parameter k is fixed in {1, ...,m}.

4.1. Subset-indexed family

As a starting point, we assume that there exists a subset-indexed family of multiple testing
procedures {RC}C⊂H satisfying the two following assumptions:

• C 7→ RC is non-increasing, that is,

∀C, C′ ⊂ H such that C ⊂ C′, we have RC′ ⊂ RC ; (NI)

• RC controls the k-FWER when C is equal to the subset of true null hypotheses, that is,

∀P ∈ P, k-FWER(RH0(P ), P ) ≤ α. (FWC0)

A natural way of deriving such a family is to take a thresholding-based family of the form

RC = {1 ≤ i ≤ m : pi ≤ tC}, (23)
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where tC ∈ [0, 1] is a threshold which possibly depends on the data p. Assumption (NI) then
holds as soon as we take tC non-increasing in C (if C ⊂ C′ then tC′ ≤ tC). However, tC should
be carefully chosen in order to ensure (FWC0), as we discuss below.

A first instance of a thresholding-based family satisfying (NI)-(FWC0) is the “Bonferroni
family” that chooses tC = 1∧(αk/|C|). Condition (FWC0) results from the Markov inequality:

P(|H0(P ) ∩RH0(P )| ≥ k) ≤ k−1
∑

i∈H0(P )

P(pi ≤ tH0(P )) ≤ |H0(P )|tH0(P )/k ≤ α.

This family is not adaptive w.r.t. the dependence structure of the p-values. As an illustration,
when the true p-values are all equal, say, to pi0 , i0 ∈ H0(P ), we have

P(|H0(P ) ∩RH0(P )| ≥ k) = P(|H0(P )|1{pi0 ≤ tH0(P )} ≥ k) ≤ tH0(P ).

Thus, under this extreme dependency structure, the Bonferroni threshold 1∧ (αk/|C|) can be
replaced by α. Since the only case which matters is |C| ≥ k (see Remark 4.1 below), there is
a potential loss when using the Bonferroni family. In practice, the Bonferroni family is often
used as a “benchmark family” for evaluating the performance of other families.

In order to improve on the Bonferroni family, one can try to choose a threshold tC that
captures the dependencies between the p-values while it still satisfies (NI)-(FWC0). For this,
first note that for RC defined by (23),

k-FWER(RC , P ) = P(∃i1, ..., ik ∈ H0(P ) : pi ≤ tC) = P(k-min{pi, i ∈ H0(P )} ≤ tC),

where k-min{pi, i ∈ H0(P )} denotes the k-th smallest element of {pi, i ∈ H0(P )}. Therefore,
a natural choice for tC is the α-quantile of the distribution of k-min{pi, i ∈ C}. However, the
latter is generally unknown because the underlying distribution P is unknown. An idea is
therefore to approach it by using a randomized thresholding procedure. Roughly speaking,
this method uses that the null hypothesis is invariant under the action of a finite group of
transformations of the original observation set X onto itself (such a transformation can be
for instance a permutation or a sign-flipping, see [34, 35, 1, 2]). For a recent and general
description of this method, we refer the reader to Theorem 2 of [24]. Note that [24] has
developed this method only for k = 1. However, it can be directly generalized to the case of
k ≥ 1 (using their notation, “max” should be simply replaced by “k-max”). The resulting
family (and thus also the derived k-FWER-controlling procedure) satisfies (NI)-(FWC0) while
it is “adaptive” with respect to the p-value dependence structure, in the sense that tC = tC(p)
implicitly takes into account the potential relations existing between the p-values.

Remark 4.1. Any subset-indexed family {RC}C⊂H satisfying (NI)-(FWC0) can be modified
in the following way: take R̃C = H (reject all hypotheses) when |C| < k and R̃C = RC

otherwise. This maintains the conditions (NI)-(FWC0), because the k-FWER is always zero
when |H0(P )| < k.

In what follows, we investigate the problem of the k-FWER control once we have fixed a
subset-indexed family {RC}C⊂H satisfying (NI)-(FWC0).

4.2. Single-step method

From assumption (FWC0), the procedure RH0(P ) using C = H0(P ) controls the k-FWER. Of
course, this procedure cannot be used because H0(P ) depends on the unknown underlying
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distribution P of the data. We can use instead RC with C = H because, from the two as-
sumptions (NI)-(FWC0) above, we have k-FWER(RH, P ) ≤ k-FWER(RH0(P ), P ) ≤ α. This
implies that RH always controls the k-FWER at level α. The latter is generally called the
single-step procedure (associated to the family {RC}C⊂H). However, we argue that RH could
be often too conservative w.r.t. RH0(P ), for the two following reasons:

• H0(P ) can be much smaller than H;
• the way the procedures {RC} have been built implicitly assumed that C = H0(P ) and

can be very conservative when C is much larger than H0.

For instance, these behaviors have been extensively discussed in [2] for particular Rademacher-
resampled thresholding procedures. Therefore, we seek for a procedure controlling the k-FWER
which is “close” to RH0(P ) and which can be derived from the family {RC}C⊂H via a simple
algorithm.

4.3. Step-down method for FWER

We present in this section the special case of k = 1, following the approach of [34] with the
presentation proposed in [9, 24]. Let us denote by AC the sets (RC)

c of non-rejected hypotheses
for the subset-indexed family. Consider the event

Ω0 = {RH0(P ) ∩H0(P ) = ∅} = {H0(P ) ⊂ AH0(P )}.

By assumption (FWC0), we have P(Ω0) ≥ 1− α. Since from (NI), AC is non-decreasing in C,
the following holds on Ω0: for any C ⊂ H,

H0(P ) ⊂ C =⇒ AH0(P ) ⊂ AC =⇒ H0(P ) ⊂ AC . (24)

Thus, on the event Ω0, taking C = C0 = H in (24) gives that H0(P ) ⊂ AC0 , which in turn
implies H0(P ) ⊂ AC1 by taking C = C1 = AC0 in (24), and so on. By recursion, this proves
the following result:

Theorem 4.2. Assume that there is a family {RC}C⊂H of multiple testing procedures satis-
fying the conditions (NI) and (FWC0) and consider the corresponding family of non-rejected
hypotheses {AC}C⊂H. Define Ĉ by the following “step-down” recursion:

• Step 0: let C0 = H and compute AC0 ;
• Step 1: let C1 = AC0 and compute AC1 . If AC1 = C1, let Ĉ = C1 and stop. Otherwise go
to step 2;

• Step j ≥ 2: let Cj = ACj−1
and compute ACj . If ACj = Cj, let Ĉ = Cj and stop. Otherwise

go to step j + 1;

Then the procedure R = (Ĉ)c, which also equals RĈ, controls the FWER at level α for any
P ∈ P.

Note that for all j ≥ 2, we have Cj+1 = ACj ⊂ ACj−1
= Cj, because C1 ⊂ C0 and AC is

non-decreasing in C. Thus, the set of rejected hypotheses can only increase during the step-
down algorithm. In particular, the final procedure Ĉc = RĈ is always less conservative than
the single-step procedure RH, for the same FWER control. In that sense, using a step-down
algorithm is always more powerful than the single-step method.
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As illustrated in Figure 3, Theorem 4.2 can be used with the Bonferroni family RC =
{1 ≤ i ≤ m : pi ≤ α/|C|}. In that case, by reordering the p-values p(1) ≤ ... ≤ p(m) (with
p(0) = 0), the corresponding step-down procedure defined in Theorem 4.3 can be reformulated

as rejecting the nulls with pi ≤ α/(m− ℓ̂+1), where ℓ̂ = max{ℓ ∈ {0, 1, ...,m} : ∀ℓ′ ≤ ℓ, p(ℓ′) ≤
α/(m− ℓ′+1)}. This is the well known step-down Holm procedure which was introduced and
proved to control the FWER in [27]. By contrast with step-up procedures, the step-down Holm
procedure starts from the most significant p-value and stops the first time that a (ordered)
p-value exceeds the critical curve.
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Fig 3. Illustration of the two equivalent definitions of Holm’s procedure. The left picture is the classical step-
down representation: ordered p-values together with the solid curve ℓ 7→ α/(m−ℓ+1). The filled points represent
p-values that corresponds to the rejected hypotheses. The right picture illustrates the algorithm of Theorem 4.2:
ordered p-values with the three thresholds α/10 (step 1), α/7 (step 2) and α/5 (step 3). For i ∈ {1, 2}, the
points filled with “i” are rejected in the ith step of the algorithm. Both pictures use the same p-values and
m = 10; α = 0.5.

4.4. Step-down method for k-FWER

We would like to generalize Theorem 4.2 to the case of the k-FWER. This time, we should
consider the event

Ω0 = {|RH0(P ) ∩H0(P )| ≤ k − 1} = {∃I0 ⊂ H, |I0| = k − 1 : H0(P ) ⊂ AH0(P ) ∪ I0},
which satisfies by assumption P(Ω0) ≥ 1− α. For any subset C ⊂ H, let

φ(C) =
⋃

I⊂H,|I|=k−1

AC∪I =
⋃

I⊂Cc,|I|≤k−1

AC∪I . (25)

Then we may prove that the following holds: on the event Ω0, for any C ⊂ H,

∃I ⊂ H, |I| = k − 1 : H0(P ) ⊂ C ∪ I =⇒ AH0(P ) ⊂ AC∪I ⊂ φ(C)
=⇒ ∃I ′ ⊂ H, |I ′| = k − 1 : H0(P ) ⊂ φ(C) ∪ I ′.

The first implication holds because AC is non-decreasing in C and the second implication holds
by considering I ′ = I0. Thus, on the event Ω0, for any C ⊂ H,

|Cc ∩H0(P )| ≤ k − 1 =⇒ |(φ(C))c ∩H0(P )| ≤ k − 1.
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This leads to the following result.

Theorem 4.3. Assume that there exists a family {RC}C⊂H of multiple testing procedures
satisfying the conditions (NI) and (FWC0), consider the corresponding family of non-rejected
hypotheses {AC}C⊂H and let φ be defined by (25). Define Ĉ by the following “step-down”
recursion:

• Step 0: let C0 = H and compute AC0 ;
• Step 1: let C1 = AC0 and compute φ(C1). If φ(C1) = C1, let Ĉ = C1 and stop. Otherwise
go to step 2;

• Step j ≥ 2: let Cj = φ(Cj−1) and compute φ(Cj). If φ(Cj) = Cj, let Ĉ = Cj and stop.
Otherwise go to step j + 1;

Then the procedure R = (Ĉ)c, which also equals (φ(Ĉ))c = ⋂
|I|=k−1RĈ∪I , controls the k-FWER

at level α for any P ∈ P.

From (25), φ(·) is non-decreasing, that is, ∀C ⊂ C′, φ(C) ≤ φ(C′). As a consequence, we
may derive from C1 = φ(C0) ⊂ C0 that Cj = φ(Cj−1) ⊂ Cj−1 for all j ≥ 2. Therefore, the
rejection set can only increase at each step of the step-down algorithm. In particular, the final
procedure Ĉc =

⋂
|I|=k−1RĈ∪I is always less conservative than the single step method RH, for

the same k-FWER control. Therefore, using the step-down algorithm always leads to a power
improvement.

To illustrate Theorem 4.3, let us consider a thresholding-based family of the form RC =
{1 ≤ i ≤ m : pi ≤ tC} with a non-increasing threshold function C 7→ tC (i.e., such that
for C ⊂ C′, we have tC′ ≤ tC) and such that {RC}C satisfies (FWC0). The recursion relation
C′ = φ(C) may be rewritten in that case as:

(C′)c =
⋂

I⊂Cc,|I|≤k−1

RC∪I

=
⋂

I⊂Cc,|I|≤k−1

{1 ≤ i ≤ m : pi ≤ tC∪I}

=
{
1 ≤ i ≤ m : pi ≤ min

I⊂Cc,|I|≤k−1
{tC∪I}

}
.

This recovers the generic step-down method described in Algorithm 2.1 of [35], which was
developed in the case where the subset-indexed family is thresholding based.

Furthermore, note that when we choose the Bonferroni family, i.e. the threshold family
tC = αk/|C|, we have

min
I⊂Cc,|I|≤k−1

{tC∪I} =
αk

m ∧ (|C| + k − 1)
.

Therefore, in terms of the ordered p-values 0 = p(0) ≤ p(1) ≤ ... ≤ p(m), the procedure of

Theorem 4.3 can be reformulated as rejecting the nulls when pi ≤ αk/(m∧ (m− ℓ̂+k)) where
ℓ̂ = max{ℓ ∈ {0, 1, ...,m} : ∀ℓ′ ≤ ℓ, p(ℓ′) ≤ αk/(m∧(m−ℓ′+k))}. The latter is the generalized
Holm procedure, which was introduced and proved to control the k-FWER in [30].

As a consequence, Theorem 4.3 recovers at once several interesting results of the state-of-
the-art k-FWER controlling methodology.
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5. FDP control

For controlling the FDP, Romano and Wolf (2007) proposed to use a family {Sk}k of k-FWER
controlling procedures and to choose k that ensures that the corresponding rejection number
|Sk| is “sufficiently large”, see [35]. Roughly speaking, choosing k such that |Sk| is larger than
(k − 1)/γ implies that, with high probability:

FDP(Sk, P ) = |Sk ∩H0(P )|/|Sk| ≤ (k − 1)/|Sk| ≤ γ.

Of course, as it is, the above reasoning is not rigorous, because the chosen k depends on
the data. Theorem 4.1 (i) of [35] establishes that the latter approach leads to a correct FDP
control in the asymptotic setting where the sample size available to do each test tends to
infinity. This may be seen as a Dirac configuration where each p-value corresponding to false
nulls are equal to zero.

In this section, we propose to reformulate this approach by using as index the rejection
number ℓ instead of k. Roughly speaking, if we choose {Rℓ}ℓ such that each Rℓ controls the
(γℓ+ 1)-FWER and we choose ℓ such that |Rℓ| ≥ ℓ, we obtain with high probability:

FDP(Rℓ, P ) = |Rℓ ∩H0(P )|/|Rℓ| ≤ γℓ/|Rℓ| ≤ γ.

Similarly to the previous paragraph, this argument is not valid because the chosen ℓ depends
of the data. The main task of this section is to rationalize this approach. This leads to a general
result, which covers both Theorem 4.1 (i) of [35] in the “Dirac” setting (see Section 5.4) and
the earlier result of [30] (see Section 5.3). Moreover, we propose in Section 5.3 a procedure
more powerful than the one of [30] when the data are assumed to follow the particular model
PI .

In this section, the tuning parameter γ is fixed once for all in (0, 1).

5.1. Family indexed by rejection numbers

Assume that we have at hand a family {Rℓ}1≤ℓ≤m of multiple testing procedures and a class
of distributions P ′ ⊂ P satisfying the following properties:

• Rℓ is non-decreasing with respect to ℓ, that is,

∀ℓ ∈ {1, ...,m − 1}, Rℓ ⊂ Rℓ+1 ; (ND)

• Rℓ controls the (⌊γℓ⌋ + 1)-FWER at level α for any P ∈ P ′ such that less than m− ℓ+
⌊γ(ℓ− 1)⌋ + 1 null hypotheses are true, that is,

∀ℓ ∈ {1, ...,m}, ∀P ∈ P ′ s.t. |H0(P )| ≤ m− ℓ+ ⌊γ(ℓ− 1)⌋ + 1,

P(|Rℓ ∩H0(P )| ≥ ⌊γℓ⌋+ 1) ≤ α ; (FWC)

• for any P ∈ P ′, for any ℓ ∈ {1, ...,m}, the false rejection number of Rℓ is independent
of the correct rejection numbers of Rℓ′ , for 1 ≤ ℓ′ ≤ m, that is,

∀P ∈ P ′,∀ℓ ∈ {1, ...,m}, |Rℓ ∩H0(P )| is independent of {|Rℓ′ ∩H1(P )|, 1 ≤ ℓ′ ≤ m} .
(DA)
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In condition (FWC), for any x ≥ 0, ⌊x⌋ denotes the largest integer n such that n ≤ x.
Condition (ND) is natural because the index ℓ can be interpreted as a rejection number. It is
easy to check in the examples below.

For any P ′ ⊂ P, condition (FWC) can be fulfilled using the (single-step or step-down)
k-FWER controlling procedure of the previous section, by taking k = ⌊γℓ⌋ + 1. As a first
instance, we may use the (single-step) Bonferroni family Rℓ using the threshold α(⌊γℓ⌋+1)/m.
Moreover, note that |H0(P )| ≤ m − ℓ + ⌊γ(ℓ − 1)⌋ + 1 in (FWC), thus we can consider the
improved threshold

tLRℓ =
α(⌊γℓ⌋ + 1)

m− ℓ+ ⌊γ(ℓ− 1)⌋ + 1
. (26)

The threshold (26) is slightly larger than the threshold used in Theorem 3.1 of [30] (they used
⌊γℓ⌋ instead of ⌊γ(ℓ − 1)⌋ in the denominator). As a second instance, we may substantially
improve on the above threshold family when we additionally assume that the distribution P
of the data lies in the smaller subset P ′ = PI : for this, note that for any P ∈ PI and for any
t ∈ [0, 1], the variable |{i ∈ H0(P ) : pi(X) ≤ t}| is stochastically upper-bounded by a binomial
distribution of parameters |H0(P )| and t, which in turn is stochastically upper-bounded by
a binomial distribution of parameters m − ℓ+ ⌊γ(ℓ − 1)⌋ + 1 and t. Therefore, choosing the
(deterministic) quantile-based threshold family (tQℓ )1≤ℓ≤m defined by

tQℓ = max{t ∈ [0, 1] : P
(
Z ≥ ⌊γℓ⌋+ 1

)
≤ α for Z ∼ B(m− ℓ+ ⌊γ(ℓ− 1)⌋+ 1, t)}, (27)

we obtain a family of thresholding procedures satisfying (FWC) with P ′ = PI . Of course, since
tLRℓ in (26) is only based upon the Markov’s inequality, which is not accurate for binomial

variables, the threshold family tQℓ defined by (27) is substantially larger, as illustrated in
Figure 4.
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Fig 4. Threshold tQℓ in (27) for model PI (solid line) and threshold tLR
ℓ in (26) for model P (dashed line) in

function of ℓ ∈ {1, ..., m}. m = 200; γ = 0.2. Right: α = 0.5; left: α = 0.05.

Assumption (DA) is a dependence assumption which is typically satisfied in the two fol-
lowing cases:

− each procedure Rℓ uses a deterministic threshold and the p-values associated to true
nulls are independent of the p-values associated to false nulls, for all the distributions
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of P ′, that is,

∀ℓ ∈ {1, ...,m}, Rℓ = {i ∈ {1, ...,m} : pi ≤ tℓ} for one deterministic tℓ ∈ [0, 1]

and ∀P ∈ P ′, (pi(X))i∈H0(P ) is independent of (pi(X))i∈H1(P ); (DA’)

− for all the distributions of P ′, the number of correct rejections of each Rℓ is deterministic,
that is,

∀P ∈ P ′, {|Rℓ′ ∩H1(P )|, 1 ≤ ℓ′ ≤ m} is deterministic. (DA”)

Condition (DA”) is satisfies for instance when H1(P ) ⊂ Rℓ′ , for any ℓ′, which is the case
for procedures of the form Rℓ = {i ∈ {1, ...,m} : pi ≤ tℓ(p)} using a possibly data-depend
threshold tℓ(p) ∈ [0, 1], when we assume that the p-values are in the Dirac configuration, that
is, when they are equal to zero under the alternative.

5.2. Generic step-down theorem

The approach below is an adaptation of the proof of Theorem 3.1 in [30] to our setting. Let
us consider a family {Rℓ}1≤ℓ≤m and a class of distributions P ′ ⊂ P satisfying (ND)-(FWC)-

(DA). We aim at selecting ℓ = ℓ̂ that provides ∀P ∈ P ′, FDP(Rℓ̂, P ) ≤ α.
First note that, by using the definition of the FDP, we have for any ℓ ∈ {1, ...,m} such that

|Rℓ| = ℓ:

{FDP(Rℓ, P ) > γ} = {|H0(P ) ∩Rℓ| > γℓ}
= {|H0(P ) ∩Rℓ| ≥ ⌊γℓ⌋+ 1}
= {ℓ ∈ L}, (28)

where L = {ℓ ∈ {1, ...,m} : ℓ− |H1(P ) ∩Rℓ| ≥ ⌊γℓ⌋ + 1} is a set which only depends on the
set {|H1(P ) ∩Rℓ′ |, 1 ≤ ℓ′ ≤ m}.

Second, note that for any ℓ ∈ {1, ...,m} such that |Rℓ| ≥ ℓ,

{ℓ ∈ L} ⊂ {|H0(P ) ∩Rℓ| ≥ ⌊γℓ⌋+ 1}. (29)

Let us consider ℓ⋆ = min{L} (letting ℓ⋆ = m + 1 when L = ∅). From (28) and (29), taking
ℓ̂ ∈ {1, ...,m} such that |Rℓ̂| = ℓ̂ and such that for any ℓ ≤ ℓ̂, |Rℓ| ≥ ℓ, we obtain

{FDP(Rℓ̂, P ) > γ} ⊂ {ℓ⋆ ≤ ℓ̂}
⊂ {|H0(P ) ∩Rℓ⋆ | ≥ ⌊γℓ⋆⌋+ 1}.

Moreover, if ℓ⋆ ≥ 2, we have by definition of ℓ⋆ that ℓ⋆ − 1 /∈ L. Hence, we can obtain the
following upper-bound for |H0(P )|:

|H0(P )| = m− |H1(P )| ≤ m− |H1(P ) ∩Rℓ⋆−1| ≤ m− ℓ⋆ + ⌊γ(ℓ⋆ − 1)⌋+ 1.

Since the above bound is also true when ℓ⋆ = 1, it holds for any possible value of ℓ⋆.
Finally noting that ℓ⋆ only depends on the variable set {|H1(P ) ∩ Rℓ′ |, 1 ≤ ℓ′ ≤ m} and

using (FWC)-(DA), we have proved that for any ℓ ∈ {1, ...,m},
P(FDP(Rℓ̂, P ) > γ | ℓ⋆ = ℓ) ≤ P(|H0(P ) ∩Rℓ| ≥ ⌊γℓ⌋+ 1 | ℓ⋆ = ℓ)

= P(|H0(P ) ∩Rℓ| ≥ ⌊γℓ⌋+ 1)

≤ α.
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Also, the probability P(FDP(Rℓ̂, P ) > γ | ℓ⋆ = m + 1) is zero, because it is smaller than

P(ℓ̂ ∈ L | ℓ⋆ = m+ 1). This leads to the following result.

Theorem 5.1. Assume that there exists a family {Rℓ}1≤ℓ≤m of multiple testing procedures
and a class of distributions P ′ ⊂ P satisfying the conditions (ND)-(FWC)-(DA) defined in
Section 5.1. Consider the procedure Rℓ̂ where

ℓ̂ = max
{
ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, |Rℓ′ | ≥ ℓ′

}
, (30)

(with the convention R0 = ∅). Then Rℓ̂ controls the FDP in the following sense:

∀P ∈ P ′, P(FDP(Rℓ̂, P ) > γ) ≤ α. (31)

The algorithm performed to find (30) is a step-down algorithm; it starts from the small
rejection numbers and stops the first time that |Rℓ| is below ℓ. Note that the maximum in
(30) is well defined because ℓ = 0 satisfies |Rℓ| ≥ ℓ. Furthermore, using (ND), relation (30)
implies that ℓ̂ ≤ |Rℓ̂| ≤ |Rℓ̂+1| < ℓ̂+1, so that |Rℓ̂| = |Rℓ̂+1| = ℓ̂ holds. As a consequence, the
procedure of Theorem 5.1 can be equivalently defined by Rℓ̃ where

ℓ̃ = min{ℓ ∈ {1, ...,m + 1} : |Rℓ| ≤ ℓ− 1}, (32)

with the convention Rm+1 = Rm (so that the minimum in (32) is well defined).

5.3. Theorem 3.1 of [30] and a novel result as corollaries

Going back to the specific setting (DA’) described in Section 5.1, we may derive from Theo-
rem 5.1 the following corollary.

Corollary 5.2. Let us consider the deterministic threshold family (tLRℓ )1≤ℓ≤m defined by (26)
and consider

ℓ̂ = max
{
ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, p(ℓ′) ≤ tLRℓ′

}
, (33)

where 0 = p(0) ≤ p(1) ≤ ... ≤ p(m) denote the ordered p-values and by convention tLR0 = 0.

Then the procedure Rℓ̂ = {i ∈ {1, ...,m} : pi ≤ tLR
ℓ̂

} satisfies the FDP control (31) for the

subset P ′ of distributions P ∈ P such that the family (pi(X))i∈H0(P ) is independent of the
family (pi(X))i∈H1(P ).

By reproducing the end of the proof of Theorem 5.1 in the particular setting of Corollary 5.2,
we may increase a bit the distribution set P ′ in Corollary 5.2 to the set of P ∈ P such that
for any i ∈ H0(P ), ∀u ∈ [0, 1], P(pi(X) ≤ u | (pi(X))i∈H1(P )) ≤ u. This is the distributional
setting of Theorem 3.1 of [30]. Hence, we are able to recover the latter result (with a slight
improvement in the threshold family).

Furthermore, if we want to ensure the FDP control (31) only for the smaller distribution
set P ′ = PI , we may consider the larger threshold family (tQℓ )1≤ℓ≤m:

Corollary 5.3. Let us consider the deterministic threshold family (tQℓ )1≤ℓ≤m defined by (27),

and ℓ̂ = max{ℓ ∈ {0, ...,m} : ∀ℓ′ ∈ {0, ..., ℓ}, p(ℓ′) ≤ tQℓ′} (with tQ0 = 0). Then the FDP control

(31) holds for P = PI and Rℓ̂ = {i ∈ {1, ...,m} : pi ≤ tQ
ℓ̂
}.

The above result has never been reported before to our knowledge. It establishes a FDP
control which is suitable for independent p-values.
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5.4. Theorem 4.1 (i) of [35] as corollary

In Section 4 of [35], a step-down procedure Sk̂ was defined from a generic family {Sk}1≤k≤m

of thresholding based procedures, where each Sk controls the k-FWER for 1 ≤ k ≤ m and
Sk ⊂ Sk+1 for 1 ≤ k ≤ m− 1. The index k̂ was obtained as follows:

k̂ = min{k ∈ {1, ...,m + 1} : γ|Sk| < k − γ}, (34)

where we use here the convention Sm+1 = Sm (so that the above set always contains k =
m+1). The authors showed that Sk̂ controls the FDP in the asymptotic sense, as the sample
size available to perform each test tends to infinity. This can be reinterpreted as a (non-
asymptotic) FDP control in a Dirac configuration where the p-values corresponding to false
nulls are equal to zero. Set under this form, this result can be derived from Theorem 5.1.

For this, let Rℓ = S⌊γℓ⌋+1, for ℓ ∈ {1, ...,m}, and note that the family {Rℓ}1≤ℓ≤m satisfies
(ND)-(FWC) and (DA”), by taking the distribution set P ′ corresponding to Dirac configura-
tions for the p-values. Hence, Theorem 5.1 establishes the FDP control for the Dirac configu-
rations of the procedure Rℓ̃ where ℓ̃ is defined by (30), or equivalently by (32). Thus, it only
remains to show that the step-down algorithms (34) and (32) lead to the same procedure,
that is,

Rℓ̃ = Sk̂.

To prove the latter, we establish k̂ = ⌊γℓ̃⌋+1. First, using (32), ℓ̃ satisfies γ|S⌊γℓ̃⌋+1| ≤ γℓ̃−γ.

Since γℓ < ⌊γℓ⌋ + 1, we deduce from the definition of k̂ that ⌊γℓ̃⌋ + 1 ≥ k̂. Conversely, by
considering the unique integer ℓ ∈ {1, ...,m} satisfying k̂/γ − 1 ≤ ℓ < k̂/γ and thus also
⌊γℓ⌋ + 1 = k̂, we have that for any integer j, γj < k̂ ⇒ j ≤ ℓ. Applying the latter for
j = |Sk̂| + 1, we obtain from γ(|Sk̂| + 1) < k̂ that |Sk̂| ≤ ℓ− 1 and thus ℓ ≥ ℓ̃, by using the

definition of ℓ̃. This in turn implies k̂ ≥ ⌊γℓ̃⌋ + 1. We thus have proved the following result,
which can be seen as Theorem 4.1 (i) of [35] in the Dirac setting.

Corollary 5.4. Assume that there exists a family {Sk}1≤k≤m of multiple testing procedures
(with the convention Sm+1 = Sm) satisfying

- for each k ∈ {1, ...,m}, Sk is of the form {i ∈ {1, ...,m} : pi ≤ tk(p)} for a possibly
data-depend threshold tk(·) ∈ [0, 1];

- for each k ∈ {1, ...,m − 1}, Sk ⊂ Sk+1;
- for each k ∈ {1, ...,m}, ∀P ∈ P, k-FWER(Sk, P ) ≤ α.

Consider k̂ defined in (34) and the subset P ′ of distributions P ∈ P corresponding to a Dirac
configuration, i.e., such that ∀P ∈ P ′, ∀i ∈ H1(P ), pi(x) = 0 for P -almost every x ∈ X .
Then we have ∀P ∈ P ′, P(FDP(Sk̂, P ) > γ) ≤ α.

6. Discussions

6.1. Complexity of the k-FWER step-down approach

One major limitation of the k-FWER approach presented in Section 4 is that the computation
of φ(·) in (25) can become complex when k is large because we should consider all the subsets
I of Cc of cardinal k − 1 (say that |Cc| ≥ k − 1). However, we may modify this algorithm by
considering only the set I equals to the k − 1 coordinates of Cc corresponding to the k − 1
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largest p-values. As noted in [35], this “streamlined” step-down procedure still controls the
k-FWER control in the Dirac model where each false null has a p-value equals to zero. The
latter is true because in this model, as soon as |Cc ∩ H0(P )| ≤ k − 1, we know that the set
Cc ∩H0(P ) is included in the set I of coordinates corresponding to the k− 1 largest p-values
in Cc (because the p-values of Cc ∩ H1(P ) are zero). Nevertheless, no proof of this k-FWER
control stands without this Dirac assumption.

6.2. FDR control is not FDP control

Since the only interpretable variable is the FDP and not its expectation, controlling the FDR
is meaningful only when the FDP concentrates well around the FDR. As the hypothesis
number m grows, Neuvial (2008) showed that the latter holds for step-up type procedures
when a Donsker type theorem for the e.c.d.f. is valid, so for instance under independence or
“weak” dependence, see [32]. However, under some unspecified dependencies, we do not know
how the FDP concentrates. For instance, even under a very simple ρ-equi-correlated Gaussian
model (corresponding to Example 1.2, where the non-diagonal entries of Σ(P ) are all equal to
ρ), its was shown in [14] that the convergence rate of the FDP to the FDR can be arbitrarily
slow when ρ = ρm tends to zero as m tends to infinity. Additionally, it was proved in [19]
that there is not concentration at all when ρ is kept fixed with m. Also, as shown in [37], the
“sparsity” (π0 = π0,m tends to 1 as m tends to infinity) is one other feature that can slow
down the FDP convergence. Therefore, in all these cases where the FDP convergence is slow,
controlling the FDR does not lead to a clear interpretation for the underlying FDP.

The latter drawback does not arise while controlling the FDP upper-tail distribution: for
instance, the FDP control P(FDP > 0.01) ≤ 0.5 ensures that, with a probability at least
0.5, the FDP is below 0.01, and this interpretation holds whatever the FDP distribution is.
However, the FDR stays useful, because this is a simpler criterion for which the controlling
methodology is much more developed in comparison with the FDP controlling methodology.

6.3. Conclusion

In this paper, we have recovered some of the classical state-of-the-art multiple testing proce-
dures for controlling the FDR, k-FWER and the FDP. Each result was given together with
a proof, which we wanted as short and meaningful as possible. Besides, we tried to write the
paper under a scholarly form, for a possibly non-specialist reader. Some new contributions
were also given for k-FWER and FDP control, by extending and unifying some previous work
of multiple testing literature.

The type I error rate control research area has still many unsolved issues. Among the major
concerns, remember that the FDP control in Section 5 needs a very strong distributional
assumption on the test statistics, namely the independence or “Dirac” assumption. To our
knowledge, no procedure adaptive to dependencies is proved to control the FDP without
assuming such a strong requirement. This is a room left for future developments, which would
have a strong impact on the high-dimensional data analysis.

Acknowledgements
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