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BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED
TOEPLITZ OPERATORS

ANDREAS HARTMANN & WILLIAM T. ROSS

ABSTRACT. Functions in backward shift invariant subspaces have aiwytic continuation
properties outside the spectrum of the inner function dafithe space. Inside the spectrum
of the inner function, Ahern and Clark showed that under sdisteibution condition on the zeros
and the singular measure of the inner function, it is posdiblobtain non-tangential boundary
values of every function in the backward shift invariantspéice as well as for their derivatives up
to a certain order. Here we will investigate, at least wheniner function is a Blaschke product,
the non-tangential boundary values of the functions of tiektvard shift invariant subspace after
having applied a co-analytic (truncated) Toeplitz oparakbere appears to be a smoothing effect.

1. INTRODUCTION

Let H? denote the Hardy space of the open unit disk {|z| < 1} andL? = L?(df/2x) denote
the classical Lebesgue space of the unit ciiitle {|z| = 1} with norm| - |. H? is regarded as a
closed subspace @? in the usual way via non-tangential boundary values. Fonaarifunction
I, we letK; = H? © I H? be the well-known model spack [NIK86].

The boundary behavior of functions ity have been well studied. For example, every function
in K; has a meromorphic pseudo-continuation to the extendedi@xtisk [[CROD,[DSS10,
RS02]: For everyf € K, there is a meromorphic functioR on the extended exterior disk
whose non-tangential boundary values match thogeatinost everywhere. As another example
[Moe62], everyf € K; has an analytic continuation acrdgs. o (1), where

o) = {1 mlr ) -0}
A=z
is the spectrum of. If I = B,s,, whereB, is the Blaschke factor with zerds= {\,,},>1 c D
(repeated according to multiplicity) ang is the singular inner factor with associated singular
measurg: on T, then

o(I)=A"usuppy).
Note that every function irf; has a pseudo-continuation acrdgslthough, if the Blaschke

product has zeros which accumulate everywherél'aor if the support ofu is all of T, for
example, functions i&; might not have an analytic continuation across any subaft of
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2 ANDREAS HARTMANN & WILLIAM T. ROSS

Our starting point for this paper is a result of Ahern and K[C708] which examines the
non-tangential boundary behavior of functionsiin even closer by considering what happens
nearo (/) where analytic continuation is not guaranteed. To stati tesult, we set a bit of
notation: LetP; be the orthogonal projection df? onto K; and A, : K; - K, A.f = Pi(zf)
be the compression of the shift (‘multiplication byon H?) to K.

Theorem 1.1 ([AC70R]). For an inner function/ = B, s, and( € T, the following are equivalent:
(1) Everyf € K; has a non-tangential limit &, i.e.,

F(Q) = 1im f(A)

exists.
(2) Foreveryf e Ky, f(\) is bounded as. — ¢ non-tangentially.
(3) P;1 € Rng(Id—CA,).
(4) (Id-MA.)"1P;1 is norm bounded as — ¢ non-tangentially.
(5) I has an angular derivative in the sense of Caratheodoxy, ae.,

41\1{2[()\) =neT
and
«limI'(\) exists
A=(

(6) The following two conditions hold:

1- A
@2 LA
(1.3) i l?’f(éé < o0

This is only a partial statement of the Ahern-Clark resulhey went on further to charac-
terize the existence of non-tangential boundary limitshefderivatives (up to a given order) of
functions ink;.

Note that simple examples show that one can have an innetidant and a{ € T such
that every function in{; has a non-tangential limit gt without necessarily having an analytic
continuation to a neighborhood ¢f

If one (and hence all) of the equivalent conditions of the kh€lark theorem is satisfied,
then it makes sense to evaluate functigns K; at {, and the corresponding point evaluation
functional can be represented bé/ That is to say that

FQ)=(f.ki) VfeKr

In this paper, we study the boundary values of function&’jreven further - beyond pseudo-
continuation, analytic continuation, or the above AhetarCresult - by replacing the function
Pr1 in conditions (3) and (4) in the Ahern-Clark theorem withh whereh € H2.
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Let us take a closer look &fd -\ A, )1 P;1 from condition (4). Sinc¢A.)"g = P;z"g for any
g € Ky, we get, for everyf ¢ K; and)\ e D,

[RXEREME ( DIPY m} (5.
oo o)
(1.4) fN).

Thus(Id-AA,)~ P;1 is the reproducing kernét for the model spacé’; and the Ahern-Clark
theorem gives a condition as to whefconverges weakly to the boundary reproducing kernel
function ké as\ — (¢ non-tangentially.

(f, Ad-XA,)"'P1) 1

5y Pﬂ)

When P, 1 is replaced byP; h, whereh € H?, an analogous calculation to the one[in)(1.4) gives
us, at least formally,

(1.5) (f,(Id-AA) 7 Prh) = (AR f)(N),

whereA; f = P;(hf) is the truncated Toeplitz operator &fy - which we assume to be bounded.
Note thatA; is initially densely defined on bounded functions &n and, for certaim, can be
extended to be bounded dfy. Certainly if h ¢ H°, the bounded analytic functions @h then
As is bounded orf{;. However, there are unboundéd H? which yield boundedi;. We will
discuss these details further in the next section. Trudcibeplitz operators have been studied
quite a lot recently and we refer the reader to the seminatmplay Sarason which started it all

[Bar07].

By examining the weak convergence of the kernel functions
(1.6) kR = (Id-XA,) ' Prh

as\ — ¢ (non-tangentially), we will determine the boundary bebawaf functions inRng Az,
the range of the truncated Toeplitz operathy. SinceRng A;; c¢ K, functions in this range
will have finite non-tangential limits at at all poingse T where conditions[(7].2) and[ (1.3) are
satisfied. Certain choices éfcan force other points € T to be points of finite non-tangential
limits. In the Sectioi]5 of this paper, we will make a few reksaabout the boundary behavior
of the functions

fh(/\) = <f7 (Id _XAZ)71PIh>

(which is the left-hand side of (1.5)), where the truncatedglitz operatord; is not necessarily
bounded and € K is not necessarily in the domain 4f..

To state our main theorem, we introduce some notationAFkdD, let
Z-A
by(z) = —
A (2) 1-XAz
be the single Blaschke factor with zero)at For a Blaschke produdB, = [Tycx (JA|/A)ba With
zerosA = { )\, }.>1, repeated accordingly to multiplicity, let the Takenakalijuist-Walsh func-

tions be defined by
/ |A 2 n-1
n(2) = H b, (2).

n
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It is well known [N1k86, p. 117][Tak25] thaf~, : n € N} is an orthonormal basis fdkz, . In
fact, this basis was used in the proof of the Ahern-Clark tbeomentioned earlier. With our
notation set, our main result reads as follows.

Theorem 1.7. When! is a Blaschke product with zerds= {\,},.; andh € H? so thatA; is
bounded onk;, every function ilRng A; has a finite non-tangential limit &t e T if and only if

(1.8) > [(Az3) (O < o0.

n>1

The alert reader might question whether or 1#~,,)(¢) in (.8) actually exists. Itis after all
the non-tangential boundary value of a function fréin However, as we will see in the proof
of this theorem A;-y,, will turn out to be a rational function whose poles lie outsaf D~ and so
Az, can be evaluated gtwithout any difficulty. Also observe that whén= 1,

1- |>‘n|2
A7) (O = X2 a(OP = Y. 5
n>1 n>1 n>1 |< )\n|

giving us condition[(I]2) in the Ahern-Clark theorem.

The proof of Theorenh 1.7 will show that when conditipn (1 8$atisfied then, as — ¢ non-
tangentially, the kernel functiorig; from (L) converge weakly to some functib?ne K;. This
function turns out to be sort of a reproducing kernelReig A5 at( in that

(Az/)(CQ) = ([, k) VfeKr
We will see from the proof of Theorem 1.7 that

[k¢ 12 = X2 1(Azmm) (P

n>1

In Section[B we will compute an explicit formula fot;~,,(¢) which turns out to be quite
cumbersome in the general case. Still, we are able to give sxamples in Sectidi 4 of when
the condition in[(1]8) holds. We mention that whieis an interpolating Blaschke produft[Gar07,
Ch. VI, the condition in [1.B) becomes much simpler.

Theorem 1.9. If I is an interpolating Blaschke product with zerds- {\,,},..1 andh € H? such
that A5 is bounded ori;, then every function iRng A;- has a finite non-tangential limit &te T
if and only if

(1.10) Y (- h (A )

n>1

We will discuss an example in Sectiph 4 which will show thas tbondition does, in ge-
neral, not apply to non-interpolating Blaschke productsfakt, it already fails when we take
a Blaschke product associated with a non-separated unitwooihterpolating sequences. Al-
though we do not develop this further here, the correspgneikample will show how one can
obtain a condition for finite unions of interpolating Blakehproducts.

Non-tangential boundary values of functions in spacesaéle backward shift invariant sub-
spaces have been studied recently. We would like to mentipaiticular the results by Fricain
and Mashreghi dealing with de Branges-Rovnyak spatgés [FM083,[FM08p] which are one
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way of generalizing the backward shift invariant subspa&se Sarason’s book [Sar94] for re-
lations between the spacd(a) := Tz H? and# (b) whenb is non extreme (this guarantees that
there isa € Ball(H*>) such thafa|? + |b]? = 1). Our situation is somewhat different since we
consider Toeplitz operators not on the whaéié but only on the model spadg;.

Finally, the first mentioned author has considered anatgitinuation questions in weighted
backward shift invariant subspaces which appear natuiralige context of kernels of Toeplitz
operators[[Har]. We refer the reader to the suryey [FH10ffore information.

The reader has probably noticed that we only discuss inmetitns/ which are Blaschke
products, i.e./ has no singular inner factor. We will make some commentseaetid of the
paper as to the difficulties which arise in the the preseneesafigular inner factor.

A final word concerning numbering in this paper: in each sective have numbered theo-
rems, propositions, lemmas, corollarexl equations consecutively.

2. PRELIMINARIES

For an inner functiod, let K; = H? © I H? be the model space corresponding t&inceH?
is a reproducing kernel Hilbert space with kernel

1
) = 15

then so isk; with reproducing kernel

EL(2) = (P (2) = L)
1-)Az
whereP; is the orthogonal projection df? onto K;. Note that these kernels are bounded func-
tions and finite linear combinations of them form a dense estub&K’;. This enables us, for
¢ € L?, to define the operatod,, densely onk; by A, f = P;(¢f). These operators, called
truncated Toeplitz operatorkave many interesting propertigs [Sar07] which we wonttige
here. We do, however, mention a few of them which will be int@ot for our purposes.

First we note that the symbols which represent truncateglifv®perators are not unique. In
fact [SarOy, Thm. 3.1]

(2.1) A, = Ay, <> 01—y € TH* + TH?.

Secondly, whewp is a bounded function then certainly the truncated Toeppiratord,, extends

to be a bounded operator dti; with |[A,|| < |¢|~. However, there are bounded truncated
Toeplitz operators (i.e., ones which extend to be boundeH grwhich do not have a bounded
symbol [BCE1Q].

In this paper, we focus our attention on the co-analyticdated Toeplitz operatot-, where
h e H2. As mentioned earlier, whel ¢ H, the bounded analytic functions dh then A4;. is
bounded onk;. Although by using[(2]1) every boundet}: has an unbounded symbol, a well-
known result of Sarasoh [Sat67] says that if a co-analyticdated Toeplitz operator is bounded,
then it can be represented bypaundedco-analytic symbol.
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The central step in the Ahern-Clark approach is to expresseproducing kernét! in terms
of the resolvent of a certain operatorirapplied to a fixed function:
kL= (Id-MA,) TPl

In this situation, the following lemma allows to deduce thestence of the boundary limits at a
point( € T from the fact tha{ld - A.) is injective andP;1 is in the range of this operator.

Lemma2.2 ([AC70H]). Leté € T andL be a contraction on a Hilbert spadé such tha{ld —£ L)
is injective. Furthermore, lef)\, },.-1 be sequence of points i tending non-tangentially t§
asn — oo. Then, for a fixed, € H, the sequence

wy, = (Id-\, L)y
is uniformly bounded if and only if belongs to the range d¢fid -£ L), in which casew,, tends
weakly towy = (Id - L) 1y.
Remark 2.3. Below we will apply this lemma to the operatdr, on K;. Clearly A, is a con-
traction onK;. To show tha(ld -£ A, ) is injective, observe, fof € K, that
(Id-€A)f=0e P((1-£2)f)=0< (1-£2)f e TH?

But sincez — (1 -¢2) is an outer function, theh divides the inner part of from which we get
felH?andso, sincg e K;=H?e [H?, f=0.

As mentioned in[(1]5), fok € H2, the function

kP = (Id-M\A,)LPh
serves as a reproducing kernel fnig A;- in the sense that
From this and the identity
(Az )N = (Pr(hf),ka) = (f.hkL) = (f, Pr(hkY)),  Vf e Ko,

we also deduce that
(2.5) kY = Pr(hkl).

The next proposition, similar to Theordm]1.1, begins to géheboundary behavior of func-

tions in Rng A;. The proof is pretty much the same but we include it anywayttiersake of
completeness.

Proposition 2.6. For an inner function/, a point¢ € T, and a functiom: € H? so thatAy is
bounded ok, the following are equivalent:

(1) Every function ilRng A;; has a finite non-tangential limit &t

(2) P;h e Rog(Id—CA,).
(3) k% is norm bounded as — ¢ non-tangentially.

Proof. By (£.4), along with the uniform boundedness principle, vageh(1) implies (3). State-
ment (3) is equivalent to (2) by LemnjaR.2. Statement (3) iesp(l) follows from Lemma 2].2

and (Z.h). [ |

Corollary 2.7. The following statements are equivalent:
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(1) Every function ilRng A;; has a finite non-tangential limit &t
(2) There exists € H? andk € K; which solve the following interpolation problem

(2.8) Prh=(1-C2)k + Iu.

Proof. Assuming statement (1) holds, we can use Proposjitidn 2rgaldth Lemmd 2]2 to say
thatk! converges weakly to soml% e K as\ — ( non-tangentially and moreover,

kE = (1d—CA,) ' Pyh.
Using the the general observatiéh(zv) — zv = (P; —1d)(zv) € Ker P; = [ H? we see that
Prh = (1d -CA,)k!
= k:é? - Q“Azkg
=k} = Czkl+ Tu, weH?
=(1 —Zz)k? + Tu.
This shows that (1) implies (2). To show (2) implies (1), siymgverse the argument. [ ]
The above proof also says the following.
Corollary 2.9. If A;f has a finite non-tangential limit &t for everyf € K; then
(Azf)(C) = (. kE).
Proof. In this situation, using[(Z]5), we will have, for evefy K/,
(F.ke) = 2Hm(fik3) = < Tm(f, Pr(hky)) = < lim(f, hkn) = < lim(Rf, k)
(ARf)(Q).

3. THE MAIN RESULTS

Remark 3.1. Until we say otherwise, we will assume tita¢ H? is chosen so that; is bounded
on K. Furthermore, by[(2 145 = Ap7; and so we will also assume thiat K.

We will proceed as if[AC70b]. For a Blaschke prodiiatith zero set\ = {), } -1, we have
already introduced the functions
/1 |>\ 2 n-1

H bAk (Z)

\.......ﬁ,_._/
=:Bp-1(2)

Yn(2) = ——=—

which form an orthonormal basis fa¥;.

It turns out that the central point in the result is the bebeef A5, at a boundary point. This
is what we will determine now. Before proceeding though, iveusd justify that the expression
(477,)(C) is always defined. First observe thagtbelongs td 5, , a finite dimensional subspace
of rational functions whose poles lie outsifle. Moreover, A;v, ¢ Kp,. This is because
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A acts onK g, as the restriction of the co-analytic Toeplitz operdfgr and7;Kp, c Kp,.
Consequently, we can evaluate, at¢ € T without any difficulty.

Proposition 3.2. let A be a Blaschke sequence ald H?2. Then, writing

[1Gz=2) =TT - m)™,
=1 =1
we have, forany € T,
L dat | () T (1= Ap)
(3.3)  (Az7)(C) = V1I-|Aaf Z = g :
h 7 (ki —1)! d/ﬁfl ' (1=Cm) szl,thl(,ul - py)k
Proof. SinceA; = T7|K; andT5 K, c Kp, we get, fork e D,

(A71)(A) = (Ta)(N) = (Pehyn) (V).
This last quantity is now equal to

(R, k)Y = /1 = | An|2(k, B, hky).

We thus have to compute
1 nz-)
[1—="()

ks Bo_1. hi :f _
<)\n ! )\> Tl—)\zlll—)\lz 1- )\

Passing to the conjugate expression and then replacingghsurelm = df/(27) by dz/(2miz)
we get

dm(z).

"11 Nz 1 dz
Tn By By = f h(z)——
(R 1 hk) i 1- z)\nll zZ—=N ()1_)\2,2

1 1 " 1-N\z 1
_.AZ 1 h(z) =

2mi - T 2N 1-Xz

1y 1 RIS -N2)
(3.4) Q—WfTHZ—N[ 1-)\z dz

Now let [T, (2 = \) = [1-;(z — w)* wherey, are thedifferentzeros ofB,, andk; are their
corresponding multiplicities. Then from the residue tle@ome obtain:

L 1 dki1 h 1-M\p
(x, Boos, Blin) = 3 - () Ty 21 (1= M) —|.
=1 (k?l - 1)- d/il (1 - )\/il) j:l,j¢l(/~bl - Nj) ’

This expression is perfectly well behaved for— (, so that by conjugating back and multiply-
ing by the normalization constaryl - |)\,,[2, we obtain the desired result. ]

In the situation of simple zeros we get a much nicer formuéd e will use in the example
at the end of this paper.

Corollary 3.5. Let A be a Blaschke sequence with simple zeros. Then we havecfof edl,

h'Yn (C) / | nPZ h()‘l) ; |)‘l|2

S 1-2C By, ) L= N




BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED TE@PLITZ OPERATORS 9

where

I1 b

k=1,k#l

The interesting observation here is that the expreggéiBp),, (\;)| measures, in a sense, the
deviation ofA from an interpolating sequence. This will be very usefulim Exampld 4]9.

Proof. Starting from the computatiof (3.4) the residue theorem gioes:

n h(N) TS (1= 2 A)
=1 1=\ e A=A

(kx, Bn-1,hky) =

We split the above sum in two pieckés n — 1 and/ = n and do some regrouping to get

n h(A\) H?:Hl(l ) ﬁ
j=1,5 )\‘

in IDYY j
SRO) T -AA) = 1 hQW IO - M) e
Z 1—>\)\l JI—L,M Aj 1- M, Hkn—
Now
"*1(1_TA) ﬁ N TP = 1—)\_j)\l:1—|)\l|2(”1 1- )\)\l)l Y
j=1 Lyl AL A A= An jliga M= A M= A \Ghga A A 1=
1A 1
1= (B (N
Also,
L 1 1— [\ 1
T e et e I o e w3
Hence
ih()\l I (A-XAA) - 1
= 1-A\ j=1,j# A=A
IR O I S S YO B W 1
S A0 = XA (Bu)a () (1=2A) 1= XA (B, ()
which concludes the proof. [ ]

Remark 3.6. It is worth reminding the reader again that we are assumirgK; and A; is
bounded onk;.

Proof of Theorenh 1} 7By Corollary[2.} the existence of finite non-tangential baany limits of
all functions inRng A;, is equivalent to the interpolation problem of findifa@e K7 such that

(3.7) (1-C2)kl—helH?,

where! is now a Blaschke product.
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Let us use some ideas frofn JACTOb]. If there is a functipre K satisfying [3]7) then there
are complex coefficients, such that

n>1
with 3,51 |e,|? < oo. In particular,
Cn = (T, k).
But sincey,, ¢ K; we can use Corollary 2.9 to get
(s k) = (Az7) (Q)

which proves the necessity.

Let us now prove the sufficiency.

Assumingy.,..; |(A77,)(¢)|? < oo, we can define the function

(3.9) u= ) (Az7)(Om
n>1
in K;. In order to verify the interpolating condition if (3.7) jstsufficient to check that
__h
1- ZE

vanishes to the right order, meaning that at each pomf\ these differences vanish with order
corresponding to the multiplicity oX. The reader might observe that these differences are not
necessarily in2. However, it is clear thak(z)/(1 - z) is controlled byl /(1 - (z)3/? so that

we can write the interpolation condition as

u— h_eIHp
1-2C

for p < 2/3, but we will not really use this formulation.

The proof of the interpolating condition will be very tecbai in the general case. However,
if the zeros aresimple which we assume to be the case for the moment, then the farfoul
Asv,(¢) in Corollary[3.b simplifies the argument considerably. lis gituation, we have

h’7n (C) / |>\ |QZ h()‘l) ; |)‘l|2

=1 1- )\lC (B )AZ(AZ) 1- )\l
Hence using Fubini’s theorem we get, for ed¢l N,

u(Ay) = Zlm%(AN)
_ TS O 1 |)\z|2\/w
) Z . Z1 ¢ (B )Al(>\l)1 A 1=y Bt (A)
CRS T YRS Mo o

F1-NCE 1= 1=y (Bo)a ()

= QN
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So, in order to show the interpolation conditio@\y) = h(Ax)/(1 - (\y) it suffices to show

that
(1 ifl=N
AUNZ) 0 ifl<N.

Clearly, ifl = N thenay v = 1 (observe in particular thadt=n = N and(By)», = Bn-1)-

Now let k,¢(z) = 1/(1 - r€z) be the reproducing kernel fai2 at ¢ for any ¢ e T. Let
Pg,, be the orthogonal projection onfoz,, which can be written explicitly using the Takenaka-
Malmquist-Walsh basis so that

7

N
Uy = PBNkT§ = Z<kr£ﬁn>7n = Z fyn('r’ﬁ)”yn
n=1

n=1
Sincev, — k¢ € ker P, = ByH? we getuv,.(\,) = ke(N,) forn =1,...,N. All functions
involved are rational function with no poles @ so that we can pass to the limitas> 1~ so
that .

1_5)‘n’
N

U(An):1ﬁg11@(An): n=1,2,...,N.

Notice also that v
U= Y = Y (A7) (€) -
n=1 n=1
Replacing the function by 1 in (3.10), we obtain
N1 X1 A2 1|\ B,
U()\N):Z _Z |_>‘l| |)‘n| n 1()‘]\7) :
=1 1- )\lf n=l[ 1- )\n)\l 1- )\n)\N (Bn)kl()‘l)

= QN

and sincer(\y) = 1/(1 - CAy) anday v = 1, we get

N-1 1
Z =) N = 0
=1 1=\

for every¢. The reproducing kernels for differefitare linearly independent, so that the coeffi-
cientsa; y must necessarily vanish for= 1,2, ..., N - 1, which finishes the proof for simple
zeros.

The reader might observe that the explicit formgfy is not really of importance (well, it is,
of course...). The central point is thak y = 1. We will now generalize this argument to the
case of arbitrary Blaschke products. As to be expected, i 5 more technical.

For the proof in the general situation, let= \y,; be any point of the sequence such that
u+ A foreveryl < N. ltis the first time we meet this zero. Suppose also thiaas multiplicity
ko. We have to show that for evety< k < ko,

(k-1)
WD) () = (L_) ().

1-¢z
Let us compute the derivatives of Let [T "F (2 - \,) = [T/, (z - )" wherey, = p andk, = k
(and notky). Evaluating the k — 1)-st derivative of the function, as defined in[(3]9), at needs
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only to take into account the firé{ + k£ terms of the sum since for> N + k + 1, ,, has a zero
of sufficiently high order ap thaty{" ™" (1) = 0. Thus from [3}4) we get

N+k

W® () = Y () (O™ ()

n=1

Nik(l |A|)Z 1 dkl_l[ h() TISA (1= Mgt

N 2 an_ (k-1) [
B 1)!dﬂfﬁl (1= Cp) =1 jer (pa —Mj)kj:|[ ’ ! (1)

N+k k-1 - p
-go-mn St & ar )
dhty [ o (1= i)
dﬂkl o (1-Aw) Ty (o = Ik
We will now apply Fubini’s theorem. In order to do this, we ebg that the double sum

Y1 Z’” runs exactly through the zeros, n = 1,2,..., N + k. Let us define a function in
two varlables by

(3, Bt %7V ().

-

—_

o(l,p)=(p+1)+

M

ki

[y

J

which is a bijection of a disjoint union of sets = {
{1,2,...,N +k}. Hence

=

...k =1}, 1 =1,...,r to the set

N+k

WD) = 3 () (O ()

- ' (k=1 &2 [ h(w)
Z 1)'2( p )d_ufll—fuz]x

N+k dk; -1-p nfl (1 )\_>\l) 1
(3.11) R [ [y, B ] (1)
noz(;,p) d kl o j 1]¢Z(Ml Mj) '

Let us investigate the term we are particularly interestefibi the interpolation problem. It
corresponds to the very last terin: » andp = k, — 1 = k — 1. In this situationp = o(r, k- 1) =
N + k. We compute the last factor:

_ klik-1 _
i Bl 0= 35 (M )i, BED 0

p=0

Now By -1 = b’*C Ny b’“l so that all derivatives up to ordér- 2 of this product evaluated at
w1 will vanish and

r—1
BYD, (1) = (05 FD () TT 05 ().

=1
It is well known, and easy to verify (e.g. using once againlteiniz rule), that

1y y - (R DE
G e



BOUNDARY VALUES IN RANGE SPACES OF CO-ANALYTIC TRUNCATED T@PLITZ OPERATORS 13
Hence

[k, Bat ] (1) = Mu)% T - % T

k—
We are now in a position to compute the coefficient of the tg‘iﬂg_l—llh(—“_) (corresponding to
l=r,k =k p=k-1,and hence, as already seen; o(l,p) = N + k, Ay = i1). Itis given by
1 k-1 dk-1-p (1 )\m,u) (k-1)
_ kx B,,-
i) s | e | e

o [T O (- ] (kD
e ] R e e U
312) =1

Hence we are led to show that the remaining sum adds up to Ghisoit is sufficient to show
thatforeveryl=1,....,r-1,p=0,....k,—1andforl=r,p=0, ...,k - 2, we have

N+k dkl_l_p I—Infl (1 . )\_Al) 1
(3.13) (- hP) [ b ) P T I
noz(;,p) dp P L T e = )™ :

The trick is the same as for simple zeros: redo all the contipafrom above for the cage= 1
for which we will deduce[(3.13) from the interpolating protye

For this, let¢ e T and0 < r < 1. Set

N+k N+k

vr(2) = Zl (A1) (r&)m(2) = ;%(Tf)%(z)-

Let us first check that, interpolates what it should (while this is of course congdim [AC70b]
we add here a proof for completeness). To this end, as bd#irk,. be theH? reproducing
kernel atré € D. Also let Pg,,,, be the orthogonal projection onto the spdcg, ,. Using the
Takenaka-Malmquist-Walsh functions we obtain

N+k N+k
PBN+kkT§ = Z <k7“§>7n>7n = Z ’Yn(rg)%z = Up.
n=0 n=0

Hence
Uy — kr§ € ker PBN+Ic = BN+kH2.

Now all these functions are rational functions with no pofe® so that we can pass to the limit
r — 1~ to obtain forp and1 < k£ < kg (same meaning of these parameters as in the first part of
the proof),

i ) dk-1
v () = k8D () = g ke ().

(Note that again the differenee- &, is not in H? sincek is not.)
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Exactly as in [31]11) we obtain

N+k

v () = Z (A (O ()

i 1)' Z (klz; )dd_ﬁ}ll—lémlx

N+k dk; -1-p n—l (1 )\_>\l) (k1)
<3 asmpa o, B 10 1),
nzaz(;p) M P j 1]¢Z(Ml Mj) '

The leading coefficient far=r andp = k. — 1 = k - 1 has already been computed [n (3.12) to be
1. Hence subtracting the term corresponding to the leadiefficient, we obtain (splitting the
sum into the terms fare {1,2,...,r -1} andl =)

1 -1\ dr 1
-5 wy 1),2( ) )d_ﬁ[l—zullx

2k dhi-tp r (L= Npr) (k=1)
3 P [ Antt) Tp B 107D ()
naz(; D) Mkl o ] 1 j#l(Ml Mj)k

1 k=2 (k- — 1\ qr 1
+<k—1>!p20( p )d_w[l—zulx

N+k dki-1-p n-1 I_E ~
x 3 (=1 [%’f( “l)][kAan_l]““ ().
J

n=o(l,p) d kl o :%(M_Mj)kj

The above formula is valid for everye T. Now, observe that the functions

dp 1
S d_:“f[l—gﬂl]

form alinearly independant family fér=1,...,r-1,p=0,....k,—1andforl=r,p=0, ..., k-2,
implying that the coefficients

e dietr lHZJi(l — Ajt)
n=o(l,p) d,ukl o :i(:u - :uj)kj
have to vanish in the required ranges of the parametdr® of [

Remark 3.14. From the identityc? = P;(hk{) from (2.5), and the fact thdty, : n € N} forms
an orthonormal basis fdk;, we see that

[KXI? = [P (hES)[? = ZI(PI(hki),%HQ:;I(kﬁﬁvn)lz

n>1

>le(Amn)(A)IQ-

] ler, Bt )0 ()

From (3.8) it follows that
[ke 1 = 32 (A7) (OF.

n>1
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Proof of Theorenh T} 9lnstead of deriving this result from our main theorem, thesids to use
directly the interpolation property as if JAC]0b]. The égisce of the boundary limits is as
before equivalent to the existence of the funcnh?n And from the interpolation conditior (3.7)

the existence of the functiolc? is equivalent to the solution of the problem

B = 2
1-C\n
From Shapiro-Shield$ [S361], this is equivalent to
W) |
-\ 4] <o
nZZ:l( [AF) =
This proves the result. [ ]

4. SOME EXAMPLES

Recall that a truncated Toeplitz operators with co-analgyimbol is just the restriction of
the regular Toeplitz operator with symbiolto a model spacé;. Let us discuss some simple
examples which illustrate the smoothing effects of apmylioeplitz operators to functions in
K or evenH?2,

Example 4.1. The following general fact is well known for functiorfsin {2 :

1
4.2 2)| =0 .
(4.2 7 ( 1_|Z|)

It can actually be shown that this growth condition can béaegd in a non-tangential approach
region by a little-oh condition:

1
VI-

The notationz — ¢ means that tends non tangentially t§. As a consequence, we observe

that if ¢ is anaytic andy(z)| < \/1-|z| asz — ¢ — which is for instance the case when
¢(z) = /¢ - z — then every function in the range of thealytic Toeplitz operatof, f, where
actually f € H2, will have a boundary limit (zero) at

(4.3) |f()\)|=o( ) A—(CeT.

Example 4.4. The situation is more intricate when considering co-amalgymbols. A simple
observation is the following: Ik(z) = 1 - z, then for every functiorf € H?2,

f(z)-f0) _f(R)E-1)  f(0)

z

Trf(2) = Ti=f(2) = f(2) -

which tends in fact te- f(0) (and which is in general not 0) when— 1 (we have used (4.2)).

Example 4.5. In this example we use Theordm]1.9 to show that the naturdiptiet /1 - z,
which makes every function iff? vanish non-tangentially at 1 (as observed in Exarmiple 4s1), i
not sufficient for co-analytic Toeplitz operators.
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Let A = (1-55)ns1, I be the Blaschke product with these zeros, Ar(@d) = (1-z)'/2+. Then
every functionf € Rng Az has non-tangential limit in 1, if and only if the condition(.10) is
fulfilled. Now observe that

> (1~

n>1

1/2n(1/2+5) 2
1/2n

-y

n>1

— Z 2—2718

n>1

which converges if and only & > 0. So we need the symbalto decrease faster thafil - z to
ensure existence of the boundary limits of functionRing A;.

It is possible to consider a decrease closey'lo- z, for example
Vi-z

(—log(1-2))

(for which h(),,) = 1/(n27/2)), but we can never reaciil - z.

Example 4.6. In this next proposition, we see that Theorfenj 1.9 is not tou@bn-interpolating
Blaschke sequences.

h(z) =log?2

Proposition 4.7. There exists a point € T, a Blaschke product whose zerod c D satisfy the
condition(.I0)at ¢, a functionh € K; such that4; is bounded ori;. Still there are functions
in A7 K; which do not have finite non-tangential boundary limitg at

Proof. The proof of this result relies on a result concerning indéapon on finite unions of inter-
polating sequencef [BN@96, Har96]. Let= {\.},>1 = {1-1/2"},51, which is an interpolating
sequenceJ[GarD7] and l&t = {\2},,.; satisfy|b,1 (A\2)| = 1/n. The sequenca; is a sufficiently
small perturbation of\; such thatA, will also be interpolating. Also note that the sequence
A := A; u A, accumulates non tangentially@t 1. Let

1
1 _ 2 _
v, = o3 v, =0.

The central result used here is the following: a sequenceloes(w?),.1..-12 IS a trace of a

function f € H2 (or K;) if and only if [BN@96,[Harop]
2
] oo

For the values!, = v!, that we have given above, we get:

2. (1= MW)[WJQ ]NZ;;[(m;ﬂ)'ﬂlﬂxfp)

2
< 00,
n>1
and so that there is a functiénin H2 or in K taking the values? at \%,.

Next we check the conditiof (1]10). Note that singe?2) = v2 = 0, we only have to sum over
A1. Indeed we get

> (L= AP

n>1

2 1

— Wy

A"(An)

n>1

(4.8) > (L= A )[kvnF

1
~Un

b L(2)

h(») 1/(n27?) [

1/2n

1

=Z—<oo.

1
B 22_11 n21n2

n>1
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Let us check that the sequence defined by
wi o= M) o112,
C=A,

cannot be realized by a function i; so thatk” does not exist and hence there are functions in
Az K that do not admit boundary limits iQy= 1. In order to do so, we have to check that this
sequence does not satisfy the condition](4.8). We compugetto

2

nn/Q
N P 1 ([P [ -0
AN wiP+ |22 | 2 Y=
n>1 bA}L()‘n) ns1 2" 1/Qn 1/”

Z(%+1)=+oo

n>1
so that this value sequence cannot be realized by a functifin.i

We finally have to check that; is bounded ori;. For this, note thak(; is ani?-sum of K 5,
whereB,, is the finite Blaschke product with zergs’, \2} (see [NikOP, Theorem C3.2.14]). By

n? n

this we mean that everg e K; can be written as

f=2 I fueKp, IfIP=201fal

n>1 n>1

We use the Takenaka-Malmquist-Walsh system to genéfgie

oV TP e-
’j/n7 Z)=—————", Tn,2\%) = — p—
' 1-Alz ? 1-X22 1-)Alz

So, every functiory € K; can be written as

f = Z(O‘n,lfyn,l + an,27n,2)
n>1
With | f]? = ¥ s | 1|2 + ] 2| < 0o. Apply now A; to this sum (we could start with finite sums
and check that we have a uniform norm control). Clearly

Agvna = h(AL) Y1
The action of4;-y, » can be deduced from Corollafy B.5. We obtain

ML) 1 (=P Q2 1
Asyn2)(2) = /1| N2 Lron 1o 1oL ool
(rma)(®) = V1= WP | S s o * T o

Note thath(\2) = v2 = 0, and hence

h()\l) 1 (1 —|>\1|2)
Arvno)(2) =1 - | N|P—= —— — = = B, Y1,
( R 72)( ) | | 1- )\1112’ b)\%(Arlz) 1- )\%A% Tl

where

_VI-IEPVI-INP hOY)

1= AN bxz (A7)

Bn
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In view of the explicit values ol h(A}) and|by: (A})], the sequencép, },»1 is bounded (it
actually tends to zero quickly). We thus get

Aﬁf = Z (an,lm%@,l + an,26n7n,1) = Z (an,lm + an,Qﬁn) Tn,1

n>1 n>1

and hence, sinckis also bounded on; (actually decreasing very fast to 0),
[AZFI? = 20 [R(AL) oy + Brano* S 3 lana* + ool = £

n>1 n>1

Note how in this examplé? does not have non-tangential limit@t 1. Indeed,B vanishes
at its zeros and, in the middle between two successive pajrs\2} and{\!l, ;A2  }, we are

far from the elements of the two interpolating sequenteandA,. ThusB will be big at these
points.

The second remark is that fb(z) = 1-z we have already seen that every functioRity Ay—
will have a limitat¢ = 1. Choosing, as mentioned in Examplg 4.5;) = log2v/1 - z/(-log(1-
2)) (which gives exacthyi(\L) = 1/(n2%?)) andw?, = h(\?), it can be checked thgt(4.8) is true
so that for this functiorh, every f € A;-K; has non tangential limit & = 1. If the reader prefers
a function inKj, it is sufficient to project into K; which does not change the values/®n

The arguments given in the proof of Propositjon 4.7 inditete to adapt the construction to
generalize Theorefn 1.9 to finite unions of interpolatingussges.

Example 4.9. In this final example, we apply Theorgm]1.7 to a sequence wkidet a finite
union of interpolating sequences. Fix (1/2,1). Let

1
e

Ap =1

and letB be the Blaschke product associated with the sequaneg )\, },,. Since the conver-
gence of this sequence tas sub-exponential, there will be dyadic intervpls-1/27,1-1/2"+1]

in the radiug[0, 1) containing arbitrarily big numbers of elements ofso that the associated
measure),..; (1 - |\,[?)dy, cannot be Carleson (sge JGgr07] for more information oneSari
measures).

Let us first estimatgB,,, (\,,)| whereB,, is the Blaschke product associated with the sequence
A~ {)\.}. In order to do these estimates, we will consider

1/2n" —1/2K
1/277 4 12k — 12k +n”

log| B, (\)[™ 3 log by, (M) =Y log

k+n k#n
p L |
Z log

on? — ok”
We can suppose thatis large enough so that we do not have to worry about-thehich occurs
in the last numerator. We will now split the summation (in theex k) into 4 (or 2) pieces.

Case 1Considem +1 <k <n+n'b. Then

on? 4 ok°
2n? — k"

ok’ ok’ 1

k% _on? T ] _gnf-k?”

~

2n? — k"
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Note that
0 > nP—kP>n’—(n+nP)P =nf-nf(1+nP)°
= nf—nP(1+B/n” +o(1/nP))
(4.10) = -B+o(1).

S0,-1<-In2<-BIn2 < (In2)(n” - k%) < 0 (where the &” is asymptotically, forn - oo, a
“<”), and hence

o’k = (k) o 1 4 (In2)(nf - kP),
so that
on’ 4 ok”
onf _ ok

1 N 1
1 - 27k = In2(kPf - nf)
Now, settingk =n + [ with 1 € {1,2,... ,n!'-¢} we get

~

l
(n+1)P-nf=nf(1+=)-nf~ f :
n nl-8
Hence
n+nl=8 ni-# nl-8
log by, (M) = ) log :
k:z:ml a2 IZ; Blln2
And switching back to the product we get
n+nl=8 ) nl—ﬂ !’ 1
by, (AN =~ )
L moor=(553) - G
Using Stirling’s formula
NN eN
N 2xN’
we obtain withN = n1-5,
n+nl=8 nl=8
e 1 1-8
(4.11) by (M) ~ ( ) < oo
kI;[1 [, (An)] Tz s
for some suitable constaat
Case 2Suppose now that > n + n'-?. Observe
Qnﬁ kB nB
;2 - 1 + 22— .
1P — ok” 2K onf
Then
on” on” 1

R _onB = Q(neniP)P _onf . (et )Pl _ [’
which, by similar computations as if (4]10), is controlled b
1

281"
This enables us now to write

nB 9 Qnﬁ

1+2 22kﬁ—nﬁ_152?.

log

2K onf
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Using the estimate
f e dy ~ Ml_ﬁe_MB,

M
we can compute

> log

k>n+nl-8

so that we also get

B
" B 1 B ZBN\I-
$2 E 2722 (n+n16)16

k>n+nl-8

1
~ nl_ﬂ

1+2 Sy =

2K gnf

[T [t <e™”

k>n+nl-8

for some suitable constant

We will also include a brief discussion of the cases J#—n'<) <k<n-1—and 4 —
1 <k < (n-n'"*) —which are treated in essentially the same way.

Case 3Considem —n!f <k<n-1. Then

on’ 4 ok” on’
on® k| T 20 — ok

1
12k

~

Now

0>k —nP>(n-n'"P) —nf~-p+0o(1)
asin [4.ID). So;1<-In2<-FIn2 < (In2)(k? - nf) < 0 (where the ¥” is asymptotically, for
n — oo, a“<”), and we can conclude as in the case 1 to obtain

n—1 nl=8
1 cni-p

b &1-12( c ) <e
h}EP5|M( ) B1n2 V2rnl-8

for some suitable constant

Case 4Suppose now that < n - n'-#. Observe

on’ 4 ok”
on? — 9k?

kB
1+2

P _ Ok

Then
28 1 1

Qnﬁ _ Qkﬂ - 2n3—k3 -1 < 2nﬂ,(n,n1—ﬂ)ﬂ -1
which, by similar computations as if (4]10), is controllgd b
1

26 -1

This enables us now to write
kP Qkﬂ Qkﬂ
1+2

~

log

2 S—.
on® _ ok” onf _ k% ™ onP
Using

Mo -
f e dx ~ M Pe
1
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we can estimate

Z log

k<n-nl1-8

so that we also get

nB
< 2% o2V 2%(71 —plBY =BT 16

k<n-nl-8

1+2

ok? _gn”

H |b>\k()‘n)|_1 < ecnliﬁ

k<n-nl-8

for some suitable constant

Putting this all together we obtain
1-B

0 = |Bx,(A\p)| 2 e
for some suitable constant

Let us now return to our problem of estimatip:,,(¢)|. From Propositiof 3|5, we have
" h(N) 1 1—|N\J?
(Apm)(€) = V1= [Aal? = =
" l; L=NC(Bp)a (M) 1= N,

Our Blaschke product constructed above accumulatés dtand contains only points if0, 1).
Leth(z) = (1-2)'*. Then

(Ar) Ol s VI=A S R e i s VT, 3

=N BN T=-N

Recall that\, = 1 - L5 ands, > e’ Hence

n 18
|(A_ )(C)| < 1 Z 2 < 1 nQenﬂecnl_ﬂ — n2€n5+cln2n1_ﬂfn5/2
nin ~ 2n5/2 = e—cll‘ﬂ ~ 2n5/2

which is square summable as longsas1/2 andj > 1/2.

Note that again our zeros are contained in the radius) and the functiork has to go slightly
faster to zero than the square root as in the situation whevas an interpolating Blaschke
sequence irf0, 1).

Note also that in this example
2 %\Hr% B()\) =0.

5. UNBOUNDED OPERATORS

For anyh € H? the truncated Toeplitz operatek; turns out to be a closed, densely defined
operator onk; with a domainD(A;) which contaings; n H* [Bar08]. If one looks closely at
the proof of the two main theorems of this paper (Theofein ad7 eheoreny 1|9), one realizes
that the sufficiency parts still hold but wiltng A;- defined as4; D(Ay,).

Furthermore, the conditions given in these theorems dfafiicient for everyh € H2 when
Rng A;, as defined in the previous paragraph, is replaced by tharlmenifold{ f; : f € K},
wheref;, is defined by the left-hand side ¢T (L.5), i.e.,

fh(/\) = (fv (Id _XAZ)_1PIh>'
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Repeating the argument in (fL.4), we can also write

Ju(A) = (f, kaPrh).
Note that the linear manifoldif;, : f € K} is not necessarily a subset &f. However,

is a Cauchy transform of the finite measyit® hdm. Since Cauchy transforms of finite measures
on the circle are known to belong to all the Hardy clas§edor 0 < p < 1 [CMR08, p. 43], we

know that the non-tangential limits ¢f, exist almost everywhere. Theorefng 1.7 1.9 give
sufficient conditions when these non-tangential limitseat specific points of the circle.

6. OPEN QUESTIONS

Conspicuously missing from this paper is a discussion oftwla@pens td&ing A; when [
is a general inner functioh = Bs, and not necessarily a Blaschke product as was discussed
here. In this case, if we are aiming for a similar characé&ign as in Theorems 1.7 apd]1.9,
we would need a different orthonormal basis tHan : n € N}. So suppose thdtp, : n € N}
is an orthonormal basis fak’; for a general inner functiolh. Some examples can be found in
[AC704]. Then Propositioh 2.6 still holds and so the norgtantial boundary values at a fixed
point¢ e T will exist for all functions fromRng Ay if and only if the kernel functions” remain
bounded whenever — ¢ non-tangentially. The exact same computation as in Remark\aill

show that
|K3)? = le(Awn)(A)IQ-

At this point, two problems stand in our way. The first is toy@dhat( Az, )(¢) exists as it
did so nicely for(A;v,)(¢). Recall thatAd;y, is a rational function whose poles are offlbf.

Is A¢,, such a nice function so we can computg;»,,)(¢) without any difficulty? The second
problem, assuming we can overcome the first, is to show thiagps the natural choice of kernel

function
k=3 (Appn) (Oen

n>1

satisfies the interpolation condition in Corolldry]2.7.

One could also ask whether or not one could extend our regulstermine, as in Ahern-
Clark, when thelerivativegof certain orders) of functions iRng A;;, have non-tangential limits
atC eT.
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