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Muscle contraction: A mechanical perspective

L. Marcuccia and L. Truskinovsky

Laboratoire de Mechanique des Solides, CNRS-UMR 7649, Ecole Polytechnique, 91128, Palaiseau, France

Abstract. In this paper we present a purely mechanical analog of the conventional chemo-mechanical modeling of muscle
contraction. We abandon the description of kinetics of the power stroke in terms of jump processes and instead resolve the
continuous stochastic evolution on an appropriate energy landscape. In general physical terms, we replace hard spin chemical
variables

 

by

 

soft

 

spin

 

variables

 

representing

 

mechanical

 

snap-springs.

 

This

 

allows

 

us

 

to

 

treat

 

the

 

case

 

of

 

small

 

and

 

even
disappearing

 

barriers

 

and,

 

more

 

importantly,

 

to

 

incorporate

 

the

 

mechanical

 

representation

 

of

 

the

 

power

 

stroke

 

into

 

the

 

theory

 

of
Brownian

 

ratchets.

 

The

 

model

 

provides

 

the

 

simplest

 

non-chemical

 

description

 

for

 

the

 

main

 

stages

 

of

 

the

 

biochemical

 

Lymn-
Taylor

 

cycle

 

and

 

may

 

be

 

used

 

as

 

a

 

basis

 

for

 

the

 

artificial

 

micro-mechanical

 

reproduction

 

of

 

the

 

muscle

 

contraction

 

mechanism.

1 Introduction

The sliding-filament hypothesis [1–3] assumes that during
contraction actin filaments move past myosin filaments
while actively interacting with them through myosin heads
known also as cross-bridges. The interaction is powered by
the hydrolysis of ATP and the motor part of the myosin
head acts as an enzyme which, simultaneously, increases
the hydrolysis reaction rate and converts the released
chemical energy into useful work. The whole system re-
mains in permanent disequilibrium because the chemical
potentials of the reactant (ATP) and the products of the
hydrolysis reaction (ADP and P) are kept out of balance
by a steadily operating exterior mechanism (e.g. [4–6]).
From an engineering point of view, it is of interest to un-
derstand how the energy input due to a non-equilibrium
chemical reaction and a random thermal noise are incor-
porated in this ingenious design to produce a highly ef-
ficient force-producing machinery. A purely mechanical
model of an attached cross-bridge has been recently in-
troduced in [7]. Here we develop this model further by
including also the description of attachment-detachment
process.

A simplified four-state biochemical scheme of the
cross-bridge cycle, known as Lymn-Taylor model [3], con-
tains the description of the most important chemical
states involved in muscle contraction. These states, com-
monly known by their chemical compositions as M-ATP,
A-M-ADP-P, AM-ADP and AM, can be associated with
particular mechanical configurations of the globular re-
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gion. The Lymn-Taylor model assumes that when at-
tached to actin, each myosin head uses stored potential
energy to stretch (or move) the actin filament through a
rotation of the lever arm representing the terminal part of
the myosin head (power stroke). The underlying conforma-
tional change, advancing the system from the pre-power-
stroke state to the post-power-stroke state, is assumed to
be related to a chemical transition A-M-ADP-P → AM.
To return in its original pre-power-stroke configuration the
head needs to split an ATP molecule. In the process, it
first detaches from the actin filament (chemical transition
AM → M-ATP) and then uses the energy of hydrolysis
to recharge (reprime) the power stroke mechanism and to
bind a new active site on the actin filament (chemical tran-
sition M-ATP → A-M-ADP-P). Subsequently, the whole
process repeats itself (e.g., [5, 8–10]).

The chemo-mechanical approaches to muscle contrac-
tion were developed to complement purely biochemical
schemes. They mostly follow the ideas first proposed in
the classical papers [11, 12] that can be seen as comple-
mentary since the first paper describes the attachment-
detachment process and the events related to the slow time
scale (hundreds of milliseconds), while the second paper
deals with the power stroke and the events related to the
fast time scale (milliseconds). There have been a consid-
erable number of attempts to extend (e.g. [8, 13–16]) and
to unify these two types of models (e.g. [6, 15, 17–24]).
In the chemo-mechanical framework, muscle contraction
is modeled as a set of reactions among discrete chemical
states of a motor molecule. These states form a network
describing, on one side, various chemical compositions
of the catalytic domain and, on the other side, different
mechanical configurations of the myosin head. A variety
of crystallographically identified configurations (attached
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and detached [11], strongly and weakly attached [25], pre
and post power stroke [12], associated with the first or sec-
ond myosin head [26], etc.) are then identified with par-
ticular sites of the chemical network.

The mechanics enters the chemical models through
phenomenological assumptions regarding the dependence
of the chemical rate constants on a single continuous
variable characterizing the state of the force-generating
spring. It is implied that the discrete chemical states are
replaced by one-parametric configurational spaces. The
functional freedom remaining in these models after the
local conditions of detailed balance are fulfilled originates
from the lack of information about the energy barriers
separating different states. In the chemo-mechanical mod-
els this freedom is used to fit the experimental curves and
therefore the best of these models reproduce available data
quite well. However, such approach gives only limited in-
sight regarding the actual micro-mechanical functioning of
the force-generating mechanism (e.g. [24] and references
therein).

The development of the theory of Brownian mo-
tors which are fundamentally involved in muscle con-
traction, has followed a more mechanically explicit path
(e.g. [27–34]). In this class of models the motion of the
myosin II is typically represented as a biased diffusion of
a particle on a periodic asymmetric potential subjected
to a colored noise. The white component of the noise re-
flects the presence of a heat reservoir while the correlated
component mimics the non-equilibrium chemical environ-
ment. A direct application of these models to muscle can
be found in the papers [21, 35, 36] that are focussed on
the attachment-detachment process at the expense of the
analysis of the short time scales, requiring a detailed de-
scription of the power stroke. Such reduced models col-
lapse the four-state Lymn-Taylor cycle onto a two-state
cycle by absorbing the configurational changes associ-
ated with the transitions M-ATP → A-M-ADP-P and
AM → M-ATP into more general transitions M-ATP →
AM-ADP and AM-ADP → M-ATP. On the mechanical
level the complexity of the structure of the myosin head
is once again reduced to a single degree of freedom repre-
senting a stretch of a series elastic spring.

Despite the unquestionable heuristic value of such min-
imal models, the crystallographic reconstructions suggest
that the myosin head is formed by at least two irreducible
domains which act in synchrony to generate force. Thus, in
the classical lever arm theory, the myosin is divided into a
motor or catalytic domain (CD), which contains the actin
binding site together with the ATP binding pocket. This
domain is attached to the actin filament during the power
stroke. The power stroke is generated by the combined
action of the converter region, which ensures rotation (in
the range of 70 degrees), and the long terminal part of
the myosin head, which amplifies the rotation acting as
a lever arm and causing the relative motion of the two
filaments. Since the lever is formed of a heavy chain he-
lix which carries two light chains, it is sometimes called
light chain domain [5, 37, 38]. Mechanically, the converter
and the lever arm can be seen as one bi-stable molecular
complex and in what follows we refer to it as the “snap-

spring” (SS) [7]. Notice that most of the converter related
activity (associated with a millisecond time scales) is lost
in the Brownian ratchet theories where the SS domain and
the CD domain are usually combined into one collective
variable which represents the motor location on the actin
filament.

In this paper we argue, following [17, 39], that in or-
der to deal simultaneously with the fast time scale re-
sponse, which implies an almost mechanical discharge of a
power stroke mechanism [12], and the slow time scale iso-
metric contractions, necessarily implying the attachment-
detachment cycle [40], the minimal theory must operate
with at least two non-trivial mechanical degrees of free-
dom describing separately the state of the CD and the
state of the SS. The CD related internal variable, respon-
sible for the attachment-detachment process, should be
exposed to a periodic asymmetric potential generated by
the actin filament. On the contrary, the SS related vari-
able, responsible for the power stroke, is expected to see
a bi-stable energy landscape. In addition to these two de-
grees of freedom one also needs a trivial mechanical vari-
able describing a series elastic spring. This spring creates
micro-metastability (see [7]) and allows one to bridge the
cases of isotonic (soft device) and isometric (hard device)
contractions.

Following these heuristic ideas, we develop in the
present paper a minimal purely mechanical analog of the
conventional chemo-mechanical approach. To achieve uni-
formity of the mathematical language we abandon the
Huxley-Simmons–type description of kinetics of the power
stroke in terms of a jump process and instead attempt to
resolve the continuous stochastic evolution on an appropri-
ate energy landscape. In general physical terms, we replace
a conventional description of the active-force–generating
system in terms of hard spin variables (indicating differ-
ent mechanical states in the chemical approach) by a fully
mechanical description in terms of soft spin variables im-
itating bi-stable snap-springs. This allows us to treat the
cases of small and even disappearing barriers which are
not amenable to classical Kramers theory [41] and, more
importantly, to incorporate seamlessly the mechanical rep-
resentation of the power stroke into the theory of Brow-
nian ratchets (see other advances in the same direction
in [6, 21–23,42]).

To represent all three main collective variables char-
acterizing skeletal Myosin II —position of the motor do-
main, configuration of the lever domain and the stretch
state of the series elastic element— we use three con-
tinuous coordinates and project a more general MD pic-
ture into the stochastic Langevin dynamics on a three-
dimensional phase space. For determinacy and mechanical
transparency we utilize a particular representation of the
Brownian ratchet proposed by Magnasco [29, 43–45]. Al-
though this ratchet has low efficiency due to considerable
diffusion which accompanies the drift, it has unambiguous
mechanical meaning. We expect that other ratchet mod-
els could also be used as the building blocks of similar
mechanical models (e.g. [33–35]).

The paper is organized as follows. In sect. 2 we in-
troduce the system of stochastic ordinary differential
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Fig. 1. The mechanical representation of a cross-bridge as a series connection of a linear elastic element Ee, a bi-stable
snap-spring Ec and a Brownian ratchet Em.

equations describing the behavior of N cross-bridges posed
in parallel. The parameter selection and scaling are dis-
cussed in sect. 3. In sect. 4 we simulate the behavior of
an effective sarcomere and show that the model can suc-
cessfully reproduce the observed mechanical response of
the muscle fiber to sudden length and force increments
and produces a realistic force-velocity curve. In sect. 5 we
focus on the detailed description of the sequence of me-
chanical processes behind isotonic contractions. The final
sect. 6 contains our conclusions.

2 The model

We view a half-sarcomere as a parallel connection of N
cross-bridges. Each cross-bridge is represented as a chain
containing a linear elastic spring, which generates the
force, a bi-stable contractile element, responsible for the
power stroke (SS), and a molecular motor representing
the ATP regulated attachment-detachment process (CD)
(see fig. 1). As in [35], each cross-bridge is attached to a
common rigid backbone (thick filament), however, we sub-
stitute the rigid links adopted in [35] with the bi-stable
snap-springs. The system is loaded either by a given force
f representing a cargo or is constrained by the fixed dis-
placement of the backbone.

The elastic energy of the linear spring can be written
as

Ee(ǫe) =
1

2
K(ǫe − l)2, (1)

where ǫe is the deformed length, K is the elastic modulus
and l is the reference length characterizing the pre-strain.
The energy of the bi-stable lever arm mechanism (light
chain domain or SS) is assumed to be piece-wise quadratic

Ec(ǫc) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

2
k1(ǫc)

2, ǫc ≥ b1,

−1

2
k3(ǫc − b)2 + c, b2 ≤ ǫc < b1,

1

2
k2(ǫc − a)2 + d, ǫc < b2,

(2)

where ǫc is the elongation, ki, i = 1, 2 are the curvatures
of the distinct energy wells representing pre-power-stroke
and post-power-stroke configurations, respectively; a < 0
is the characteristic size of the power stroke. The driving
force d sets the bias towards the post-power-stroke state
and is somewhat arbitrarily chosen to ensure that the two
wells have the same energy in the isometric contraction.

The energy barrier is characterized by the position b, the
height c and the curvature k3 of the maximum. The values
of parameters b1 and b2 are chosen from the condition of
continuity of the energy function.

We model the catalytic domain (CD) as the Brown-
ian ratchet of Magnasco type [29]. It can be viewed as a
particle moving in an asymmetric periodic potential and
subjected to a correlated noise. The periodic potential is
assumed to be piece-wise linear in each period n

Em(ǫm) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q

λ1L
(ǫm − nL), 0 < ǫm − nL < λ1L,

Q

λ2

− Q

λ2L
(ǫm − nL), λ1L < ǫm − nL < L,

(3)
where Q is the amplitude, L is the period, λ1 − λ2 is the
measure of the asymmetry of the potential and λ1+λ2 = 1.
The variable ǫm indicates the location of a particle in the
periodic energy landscape: by our convention it is attached
if it is close to one of the minima and is detached if it is
close to one of the maxima.

It is convenient to identify the coordinates of the nod
points on fig. 1 as x, y and z, implying that ǫm = x,
ǫc = y − x and ǫe = z − y. Using these notations the
system of N cross-bridges connected in parallel can be
described by the set of Langevin equations
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ηxẋi =−E′

m(xi)+E′

c(yi−xi)+F (t+ti)+
√

ηxkBθΓ (t),

ηy ẏi =−E′

c(yi − xi) − K(yi − z − li) +
√

ηykBθΓ (t),

ηz ż=
N

∑

i=1

K(yi − z − li) + f +
√

ηzkBθΓ (t).

(4)
Here the random term Γ (t), representing thermal fluctu-
ations, has the standard properties

〈Γ (t1)〉 = 0, 〈Γ (t1)Γ (t2)〉 = 2δ(t1 − t2),

where θ is the temperature and kB is the Boltzmann con-
stant. All elements experience viscous resistance charac-
terized by the corresponding drag coefficients ηx, ηy, ηz.
The correlated component of the noise F (t), imitating the
activity of the ATP, is assumed to be periodic and piece-
wise constant

F (t) =

{

+A, 0 < t − mT < T,

−A, T < t − mT < 2T.
(5)

m = 0, 2, 4, . . ., where A is the amplitude and 2T is the
period.
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Since the ATP activity at different sites is expected
to occur independently, we introduced temporal de-syn-
chronization in (4) through the phase shift parameters
ti. We assume ti as independent random variables uni-
formly distributed in the interval [0, 2T ]. Following [18]
we also assume that the pre-strains li are different for
different i which introduces spatial de-synchronization.
Again, we assume that li are independent random vari-
ables that are now uniformly distributed in the inter-
vals [iL − a/2, iL + a/2]. Such temporal and spatial de-
synchronization eliminates spontaneous oscillations that
were observed in muscles under some special conditions
(e.g. [46]) and later explained in the collective Brownian
ratchet framework by introducing chemo-mechanical feed-
back effects [47].

3 Normalization and parameter selection

To obtain quantitative predictions, we need first to non-
dimensionalize the system of equations (4). For normal-
ization we choose the (power-stroke–related) length scale
a and the (viscosity related) time scale τ = a2ηy/(kBθ).
It is also natural to choose the energy scale kBθ and the
force scale kBθ/a. The dimensionless system depends on
several non-dimensional parameters which fully define its
qualitative behavior.

Knowing that K ∼ 2 pN/nm, a ∼ 8 nm and kBθ ∼
4 pN/nm (e.g. [5]), we put for the main measure of elastic-
ity the value Ka2/kBθ = 32; the values of relative elastic-
ities of the two conformations k1/K = 5, k2/K = 2 then
guarantee that we can reproduce the linear regimes in the
T1 and T2 data. The last elastic parameter k3/K = 2.45,
defining the energy barrier for the power stroke, was cho-
sen to ensure the appropriate rate of fast force recov-
ery relatively to the rate of slower movement of the CD
controlled by parameter Q (see below). The assumptions
b/a = −0.247 and c/a = 1.61 make the barrier be-
tween the two energy wells sufficiently localized to exclude
its interference with the equilibrium behavior associated
with the two energy minima. We have chosen the value
ηx/ηy = 10 to make the process of detachment and re-
attachment of the myosin head sufficiently slower than
the power stroke. The parameter ηz/ηy = 100 describes
even slower movement of the backbone.

The period of the actin potential L was taken to be
twice as large as the characteristic amplitude of the power
stroke L/a = 2. It implies a much longer distance tra-
versed by the CD in the attachment-detachment process
comparing to the characteristic amplitude of the power
stroke. This assumption is crucial for the possibility of a
purely mechanical recharge of the power stroke mecha-
nism and at this stage of the schematization, we did not
attempt to link it with the actual geometry of the actin
and myosin molecules.

The normalized period of the external force imitating
the ATP hydrolysis T/τ = 2 104 was chosen to ensure suf-
ficient number of tilting oscillations in the ratchet between
two attachment-detachment events. We fixed the asymme-
try parameter at λ1 = 0.3. To speed up numerical exper-

iments we artificially increased the rate of the processes
reducing the energy barrier and choosing Q/(kBθ) = 60.
For the ATP-related force amplitude we assumed the value
A = 1.4 Q/(1 − λ1)L between the minimal and the max-
imal values of the force generated by the asymmetric po-
tential. Given the size of the energy barrier in the power
stroke mechanism, the above “accelerating” assumptions
do not affect the normalized curves T (δ) and V (t).

We studied the system (4) numerically by using the
simplest Euler discretization of the Langevin equations.
We assumed that N = 2000 implying that experimental
data are obtained for many sarcomeres working in unison.
The dimensionless time scale of discretization 5 10−5 was
chosen to be below the smallest physical time scale in the
model.

4 Length clamp and force clamp experiments

The mechanical behavior of the contracting muscle in
the short time scale (milliseconds) revealing the quasi-
mechanical nature of the power stroke mechanism was first
studied in [12] and our model allows one to reproduce nu-
merically these classical length clamp experiments. In the
simulations we applied to the backbone z a sudden in-
crement of length δ at time t. The increments varied in
the interval [−1.4a, 0.1a] and the force generated by the
system was evaluated from

T (t) =

N
∑

i=1

K(yi(t) − z(t) − li). (6)

The normalized response curves T (t) (see fig. 2),
closely resemble the experimentally observed behavior
(e.g., [12]). Thus, in the first few microseconds after the
application of the displacement increment one observes
an elastic response usually denoted by T1(δ), which is fol-
lowed by a recovery of the initial value of the isometric
force (T0). Between T1(δ) and T0 one can distinguish a
plateau, known as T2(δ). The simulated functions T1(δ)
and T2(δ), shown in fig. 3, quantitatively agree with exper-
imental observations (experimental points from [48] nor-
malized for a = 8nm), including the prediction of a pro-
nounced softening region around δ = 0.

A particularly important prediction concerns the dif-
ference in slopes of the linear segments of the curves T1(δ)
and T2(δ) at large values of the applied shortening. Such
divergence of the two curves agrees well with recent pre-
cise measurements [48] and indicates the sensitivity of the
amplitude of the power stroke to the value of the applied
force. We stress that this effect, which is due to the differ-
ent curvatures of the two wells in the power stroke poten-
tial Ec, cannot be obtained in the hard spin model with
only two chemical states.

In another typical experiment, illustrating the mechan-
ical response of skeletal muscles, one records the velocity
of contraction at different external loads (e.g. [40]). It is
known that a myofibril contracting against a constant load
lower than T0, assumes, after a transient related to the
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Fig. 2. Force versus time response curve for δ = −1.1a. The
value of T2 is obtained by averaging in the dashed column. The
insert shows the functions T (τ) at different values of δ (see also
fig. 3).

Fig. 3. Triangles: the values of T1 and T2 generated from
the force trajectories shown in fig. 2. Dots: experimental data
from [48] scaled with a = 8 nm.

synchronization of the power strokes [48], a constant veloc-
ity. To analyze the force-velocity behavior in our model we
impose an external force f and study the behavior of the
backbone coordinate. The typical z(t) curves are shown in
the insert in fig. 4, for the values of f ranging from 0.8 T0

to zero. The general structure of the normalized force-
velocity curve, shown in fig. 4, agrees reasonably well with
the experimental data reported in the figure from [48].

5 Mechanical phenomena behind isotonic

contractions

In this section we study the details of the mechanical func-
tioning of the model at different time scales by looking
more closely at the case of isotonic contraction against a
fixed load.

To interpret correctly the behavior of the individual
mechanical units we first fix the parameter z = 0 and
write the total energy of an attached cross-bridge as a

Fig. 4. Force-velocity curve generated by the model (triangles)
compared to the experimental points (dots). The triangles are
obtained from the trajectories z(t) corresponding to different
values of f (see the insert). The velocity of shortening is com-
puted as (z(tf ) − z(ti))/(tf − ti) and normalized to V0. The
experimental points are obtained from [48].

function of two remaining mechanical variables y and x:

Et(x, y) = Em(x) + Ec(y − x) + Ee(−y). (7)

The corresponding energy landscape is shown in fig. 5.
Here the upper two local minima A and B indicate the pre-
power-stroke and the post-power-stroke configurations of
an attached motor, respectively. The two lower local min-
ima A′ and B′ correspond to the pre-power-stroke and
the post-power-stroke configurations of a motor that has
shifted to a new attached position on actin potential. We
associate the detached state with an unstable position
around the maximum separating the minima (A,B) and
(A′, B′). One can see that the system cannot remain in a
detached position without an appropriate stimulation.

Using fig. 5 we can visualize the combined working of
the power stroke and the attachment-detachment mech-
anism. Suppose that the upper right minimum A corre-
sponds to the initial pre-power-stroke configuration with
the attached portion of the head fixed in the first pre-
ferred site on the actin filament. In this state the system
can lower the energy by rotating the lever arm and reach-
ing the post-power-stroke configuration B. This process
does not require the energy supply from outside and can
be viewed as a purely mechanical relaxation.

Suppose next that external stimulation, representing
the ATP activity, can shift variable x towards smaller val-
ues (transition B → B′). If the corresponding ratchet is
sufficiently strong it can simultaneously advance the repre-
sentative point on fig. 5 further into the pre-power-stroke
position corresponding to the point A′. The new transi-
tion B → A′ would then mean mechanical recharging of
the power stroke mechanism in the course of transition to
the next preferred actin site. If in the meanwhile the mus-
cle shortens, making the power stroke again energetically
preferable, the process can be potentially repeated again
starting with a mechanical relaxation A′ → B′. In fig. 6 we
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Fig. 5. Contour plot of the effective energy Et(x, y; z0) at z0 = 0. Inserts illustrate the states of various mechanical subunits.

show that this scenario indeed takes place in our numeri-
cal simulations when we reproduce load clamp experiment
at f = 0.5 T0.

From fig. 6 one can see that the CD of an individu-
al head, x, goes through three different attachment po-
sitions (see fig. 6a). In fig. 6b we show the time history
of the variable x − y characterizing the internal config-
uration of a given head (SS) during the cycle. The first
vertical line shows the moment in which the power stroke
A → B takes place. The second vertical line shows the
motion of the attached portion from the active site i on
the actin filament to the next site i′ = i+1 corresponding
to the transition B → A′. This motion induces a change
of state in the bi-stable element which brings the lever
arm into the pre-power-stroke position. Due to the evolu-
tion of the variable z (isotonic contraction, see fig. 6d) the
elastic element whose configuration can be read in fig. 6c,
relaxes and the post-power-stroke minimum B′ becomes
preferable. The third vertical line shows the moment in
which the new power stroke A′ → B′ takes place. Then
the cross-bridge cycle starts again.

Observe that the position of the backbone can be
considered constant during the recharging of the power
stroke. In this situation, the key factor for the possibility
of recharging (after the variable x has overcome the barrier
in the periodic potential) is that the total energy Et(x, y)
has a minimum when SS is in the pre-power-stroke state.
This is true providing (Q/(kBθ))/(λL) > d/a which places
an important constraint on the choice of parameters.

One can see that the model is able to qualitatively
reproduce some of the elementary steps of the basic cross-
bridge cycle. Thus, the fast power stroke of the head

stretches the elastic element which in turn pulls the
myosin backbone and causes contraction. In the meantime
a slower process allows the myosin head to come back to
the pre-power-stroke state (recharge), leaving the tension
in elastic element almost constant. Finally, due to the mo-
tion of the myosin backbone, the head becomes capable of
producing another power stroke and the cycle repeats it-
self. We observe that the power stroke recharges at exactly
the same times when the main force producing motor is
detached. This suggests that the important role of the
power stroke in this cycle is to smoothen the functioning
of the force-generating mechanism.

A direct comparison of the simulated mechanical cy-
cle with the conventional Lymn-Taylor cycle shows that
while the two attached configurations are represented by
the model rather faithfully, the detached configurations
appear only as transients. In fact, one can see that our
(slow) transition B → A′ represents a combined descrip-
tion of the detachment, of the power stroke recharge and
then of another attachment. In the biochemical cycle such
a transition would be described by at least two distinct
chemical states. To achieve such splitting in the framework
of our model one would need to have a more adequate rep-
resentation for the detached state. More specifically, an
assumed simple passing through a single energy barrier
may be in reality a complex series of events which include
different stages along the way towards the final change
in the attachment position and the recovery of the power
stroke. This suggests the necessity of an additional fine
structure of the areas near maxima of the actin potential.

The reasons for the observed discrepancies between
mechanical and chemical cycles may also lay deeper.
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Fig. 6. The numerical simulation of the time histories for dif-
ferent mechanical units in a load clamp simulation at zero ex-
ternal force: (a) the behavior of the CD; (b) the behavior of
the SS; (c) the behavior of the elastic element; (d) the total
displacement of the thick backbone.

Recall, for instance, the implicit assumption in all chemo-
mechanical models that the ATP energy can be decom-
posed into two parts. One part drives the attachment-
detachment process by sustaining the out-of-equilibrium
transition rates (e.g. [32]). The remaining part ensures the
recovery of the power stroke and our model provides a sim-
ple mechanism of how it may be working: the power stroke
is mechanically recharged in the course of the change of the
attached position of the CD. It is clear, however, that the
effect of the ATP hydrolysis may not be fully reducible to
the periodic rocking of the actin potential. For instance,
the ATP-induced mechanical signal may also affect the
bi-stable potential and this will considerably change the
structure of the effective cycle.

6 Concluding remarks

In this paper we argue that a mechanical approach to mus-
cle contraction, initiated by the theory of Brownian ratch-
ets, offers certain important advantages comparing to the
purely biochemical approach. First, it allows one to deal
in a consistent manner with distributed chemical states,

each characterized by several continuous degrees of free-
dom. Second, it lets one insert the essential information
about the energy barriers in an explicit and coherent way.
Third, it offers the possibility to include into the study
the states that are only minimally stable in the sense that
they are surrounded by arbitrarily small barriers.

Despite its rather elaborate mechanical nature, our
model remains mostly schematic and can be considered
only as prototypical. A particularly serious simplification
consists in the decoupling of the chemical and mechani-
cal pictures in relation to the power stroke. In this way
we neglect the fact that ADP has to be released during
the discharge and that ATP has to be hydrolyzed during
the recharge of the power stroke mechanism. Instead, the
power stroke is recharged and discharged due to the me-
chanical stretch assisted by thermal fluctuations. Another
simplification is that we associate the detachment with
the state of the weakest interaction between the cross-
bridge and the actin filament without trying to distinguish
the sub-states (M-ATP, A-M-ADP-P) and match the ob-
served duty ratio [5]. Finally, the non-equilibrium chemi-
cal reservoir enters the picture only through the correlated
external noise imitating simultaneously both binding and
hydrolysis.

The reported numerical experiments raise important
questions regarding mechanical interdependency between
different biochemical states involved in muscle contrac-
tion. Thus, in the framework of chemo-mechanical models
the force generation is usually linked exclusively to the
power stroke. The power stroke, indeed, plays a major
role in the fast recovery of tension, however, at slower
time scales the attachment-detachment mechanism also
contributes to force generation by effectively recharging
the power stroke mechanism. Since the ATP activity is
required for such recharging, one can say that the hydrol-
ysis of ATP plays an essential role in the working of the
power stroke despite its apparently “mechanical nature”.
This idea is supported by the fact that even the fast ten-
sion recovery in rigor is much smaller than in tetanus [49].
Here it is appropriate to mention that already Eisenberg
and Hill [39] associated the difference in the level of the
minima in the energy of the bi-stable element with the
free energy liberated by the ATP hydrolysis.

The recharging mechanism proposed in the present pa-
per could be made compatible with other choices of Brow-
nian ratchets provided that certain conditions on Et(x, y)
detailed in the previous section are satisfied. For instance,
rocking ratchet used in this paper could be replaced by the
flashing ratchet (e.g. [21,35]) generating correct duty ratio
and producing interesting cooperative effects [50]. Flash-
ing ratchet models, however, introduce a jump switching
process which is not easy to interpret in purely mechanical
terms.

Due to the minimal nature of the present model many
other important features of the phenomenon of muscle
contraction, including the possibility of additional con-
formational states [12], the double-head structure of the
myosin head [26], the elasticity of the filaments [51], the
elastic interaction among many sarcomeres in series [20],
the contractional instabilities and waves [52] and the
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strong temperature dependence of the entropic elasticity
of the elements [53], have been left outside the scope of the
analysis. Despite these limitations our mechanical model
offers a consistent description of the ATP-driven motor
undergoing periodic attachment detachment which is con-
current with a mechanically driven configurational change.
The use of the mechanical framework allows one to resolve
the long standing controversy regarding the load depen-
dence of the magnitude of the power stroke and provides
the first non-chemical description for the main stages of
the biochemical Lymn-Taylor cycle. Most importantly, the
mechanical perspective opens the way to recreate the in-
tricate machinery behind muscle contraction artificially
and to potentially build larger devices exhibiting active
elasticity.
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