
HAL Id: hal-00547891
https://hal.science/hal-00547891

Submitted on 17 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating Grafcet specifications into Mealy machines
for conformance test purposes

Julien Provost, Jean-Marc Roussel, Jean-Marc Faure

To cite this version:
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure. Translating Grafcet specifications into
Mealy machines for conformance test purposes. Control Engineering Practice, 2010, pp.00.
�10.1016/j.conengprac.2010.10.001�. �hal-00547891�

https://hal.science/hal-00547891
https://hal.archives-ouvertes.fr

Translating Grafcet specifications into Mealy machines
for conformance test purposes

Julien Provost, Jean-Marc Roussel, Jean-Marc Faure∗

LURPA, ENS Cachan, 61, av du Président Wilson, Cachan, F-94230

Abstract

Conformance test is a black-box test technique aiming at checking whether an implementation conforms to its speci-
fication. Numerous results have been already obtained in this field for specifications expressed in a formal language.
However, these results cannot be applied for conformance test of industrial logic controllers whose specifications are
given in standardized specification languages. To contribute to solve this issue, this paper proposes a method to obtain,
from a Grafcet specification, an equivalent Mealy machine, without semantics loss. This method permits to describe
explicitly and formally all the states and transitions that are implicitly represented in a Grafcet model.

Keywords: Conformance test, Model-based test, Grafcet, Mealy machine, Logic controllers

1. Introduction

Logic controllers are increasingly used in critical sys-
tems, like power production and distribution systems or
transport systems, even for safety-related functions. To
ensure dependability of these systems, it really matters
to check, before operation, whether each controller be-
haves correctly with respect to its specification. This
is the aim of conformance test. Conformance test is
a black-box test and is experimentally performed (Fig-
ure 1) by sending to the controller an input sequence and
comparing the observed output sequence, controller’s
response to the input sequence, to the expected output
sequence so as to build a test verdict (the implemented
controller is conform or not). The set of the input se-
quence and expected output sequence is termed test se-
quence or test case.

Numerous theoretical results have been published in
the domain of conformance test, assuming that the spec-
ification is formally described, for instance in the form
of a finite state machine (Lee and Yannakakis (1996);
da Silva Simão et al. (2009)), a transition system (Tret-
mans (2008)) or, more recently, a particular class of

∗Corresponding author. Fax: +33 147402220
Email address: julien.provost@lurpa.ens-cachan.fr,

jean-marc.roussel@lurpa.ens-cachan.fr,

jean-marc.faure@lurpa.ens-cachan.fr (Julien Provost,
Jean-Marc Roussel, Jean-Marc Faure)

Figure 1: Conformance test principle

Petri net (von Bochmann and Jourdan (2009)). Gen-
erally speaking, these results provide a way to build au-
tomatically the test sequence from the formal specifica-
tion model and to deliver a verdict from the observed
output sequence.

In industrial practice, the specification of the behavior
of logic controllers is not given in such formal models,
however, but in tailor-made, (officially or de facto) stan-
dardized specification languages, like Grafcet or state-
charts. Test cases are then built manually, what is a very
tedious, time-consuming and error-prone task. To take
benefit of previous works on conformance test based
on formal models, it matters to endow the specification
languages that are used in industry with a formal se-
mantics and to develop translation methods of models

Preprint submitted to CEP special issue from DCDS09 December 17, 2010

in these languages into formal ones. Several results on
model-based conformance test from UML state-charts
have been already published (Massink et al. (2006) for
instance) but, as far as we know, the issue of confor-
mance test when the specification is given in the form
of a Grafcet, a powerful specification language for logic
controllers, has never been addressed. The aim of this
paper is to fill this gap.

More precisely, this paper proposes a method to
translate a Grafcet specification model into an equiva-
lent Mealy machine, without semantics loss (Figure 2).
Mealy machines have been chosen as the formal tar-
get model because conformance test of Mealy machines
is a mature technique that previously yielded numer-
ous sound results, as surveyed in Lee and Yannakakis
(1996). However, this choice implies that only non-
timed systems are considered; then, the Grafcet speci-
fication model shall not contain any time-dependent el-
ement. This limitation is not too strong because the first
concern of engineers during conformance test is func-
tional correctness; only the correctness of the non-timed
behavior of the controller with regard to the specifica-
tion is checked. Conformance test for checking time
correctness is a second concern, once functional correct-
ness is ensured.

Figure 2: Objective of the work

Conformance test is a black-box test: the implemen-
tation is seen as a black-box with inputs/outputs. In the
case of a logic controller, this means that its internal
structure is unknown and its behavior can only be deter-
mined by observing its response to an input sequence.
Moreover, to provide reliable results for controllers of

highly critical systems, this test must be:

• Non-invasive. No probe or piece of code can be
introduced within the controller. It is therefore im-
possible to obtain the values of its internal vari-
ables.

• Exhaustive. The whole state space of the specifi-
cation model, a Grafcet model in this work, must
be explored. In the rest of this paper, it will be
supposed that the size of this state space is small
enough to avoid combinatorial explosion. This
assumption is quite reasonable for safety/security
functions of critical systems. Indeed, since these
functions must be very reactive (the response time
to any change of their inputs must be very short),
they do not perform complex treatments and the
state space of the specification of such a function
is tractable. For this reason, scalability of the test
method will be not more addressed in what fol-
lows.

The model obtained by the translation method shall
permit to satisfy these two test constraints.

The outline of the paper is the following. The back-
ground of this work - Grafcet syntax and standardized
evolution rules as well as conformance test of Mealy
machines - is reminded in the next section. An overview
of the translation method is given in section 3. The
two phases of this method are then detailed and illus-
trated on a small but non-trivial example, respectively
in section 4 and 5. Then, section 6 focuses on test se-
quence generation from the final formal model, while
perspectives for future works to extend this contribution
are given in the conclusion.

2. Background

2.1. Grafcet specification language
Grafcet is a standardized graphical specification lan-

guage (IEC 60848 (2002)) to describe the behavior
of logic sequential systems. This language is widely
used in several industrial domains, like railway trans-
port, electrical power production, manufacturing indus-
try, environment, to specify the expected behavior of a
logic control system which is connected to a physical
system (plant) that sends logic signals to the control
system and receives the logic signals which are gen-
erated in response. Grafcet was first standardized in
France at the beginning of the 1980s, and at the inter-
national level in 1988. Since this date, several exten-
sions have been proposed to enhance the modeling pos-
sibilities; they are included in the last version of the

2

A1

F1

A3

ILR

ILG

X1

ILO

on

on

X1

t1

t2

t3

1

M20 M30

M40

CS · a · b · z · up · dw · XF1

v

1

t4

t5

t6

E20

21

22

S20

VA

VB

VC

a

b

z

a · b · z

a · b · z

a · b · z

t20

t21

t22

E30

31

32

S30

BM:=1

BM:=0

T D

T D

T D

t30

t31

t32

E40

41

42

S40

MR

TM+ MR

TM-

v

up · dw

up · dw

t40

t41

t42

Notation: · means AND, + means OR, ¯ means NOT and 1 means “always True”. For example, up · dw means “up
is False AND dw is True”.

Inputs Outputs
CS Cycle Start up Mixer up BM Belt Motor VB Opening Valve B
TD Transit Detector dw Mixer down MR Mixer Rotation motor VC Opening Valve C
a Fluid weight A reached on Production is on TM+ Tipping Motor (down) ILG Indicator Light Green
b Fluid weight A + B reached v Viscosity reached TM- Tipping Motor (up) ILO Indicator Light Orange
z Empty weighing unit VA Opening Valve A ILR Indicator Light Red

Figure 3: Grafcet specification used to illustrate the proposed approach

standard (IEC 60848 (2002)). A good scientific pre-
sentation of the main features of the previous and cur-
rent versions of the Grafcet standard can be found re-
spectively in David (1996) and Guéguen and Bouteille
(2001). Last, the reader is warned that the specification
language described in the IEC 60848 standard differs
from the SFC (Sequential Function Chart) proposed by
the IEC 61131-3 standard (IEC 61131-3 (2003)), even
if both are often named SFC in English and if models in
these two languages may look similar; the differences
stand both in syntax and semantics. The main differ-
ences between those two languages will be discussed in
subsection ‘Differences between Grafcet and SFC’. To
avoid misunderstandings, only the term Grafcet will be
kept in the sequel of this paper for the specification lan-
guage.

Grafcet has been developed from the results of the
Petri nets community and in particular from those on
Interpreted Petri Nets. A specific syntax and semantics
have been defined however, to take into account the spe-
cific needs of engineers when specifying complex se-
quential systems. The key features of Grafcet syntax
and semantics are briefly recalled as follows.

Grafcet syntax

A Grafcet model describes the expected behavior of
a logic controller which receives logic input signals and
generates logic output signals; then, the input and out-
put variables of a Grafcet are both logic variables. A
Grafcet (Figure 3) comprises steps, graphically repre-
sented by squares, and transitions, represented by hori-
zontal lines; a step can only be linked to transitions and
a transition only linked to steps. The links from steps
to transitions and from transitions to steps are oriented
links. The default orientation is from top to bottom and
it is not necessary in this case to put an arrow on the link.
An arrow must be put on a link if this link goes from bot-
tom to top or may be put on any link to ease understand-
ing. A step defines a partial state of the system and can
be active or inactive; hence, a Boolean variable, named
step activity variable can be defined for each step. Ac-
tions may be associated to a step; an action associated
to a step is performed only when this step is active and
then acts upon an output variable. A transition condition
must be associated to each transition; this condition is a
Boolean expression which may include input variables,
steps activity variables and conditions on time. As only
non-timed systems are considered in this work, only the
Grafcets whose transition conditions are built from in-
put variables and steps activity variables are dealt with.

3

Moreover, macro-steps may be introduced in a
Grafcet, to ease modeling. A macro-step, represented
graphically by a square with double-lines on top and
at the bottom, is a synthetic view of a part of the
specification. The detailed description of this part is
termed macro-step expansion chart and is a set of con-
nected steps and transitions that starts and ends by only
one step, called macro-step expansion input and out-
put steps. Then, a Grafcet model may be composed of
several charts: classical charts, that include (normal or
macro) steps and transitions, and macro-step expansion
charts.

Figure 3 depicts a Grafcet that comprises a part of
an example given in the standard. This model is com-
posed of two classical charts (on the left side) and three
macro-step expansions (on the right side); these latter
charts are the expansions of macro-steps ‘M20’, ‘M30’
and ‘M40’.

Evolution rules
The detailed behavior of any Grafcet model can be

obtained by applying five evolution rules that can be
stated as follows:

1. At the initial time, all the initial steps, defined by
the model designer and double-squared, are active;
all the other steps are inactive.

2. A transition is enabled when all the steps that im-
mediately precede this transition (upstream steps
of the transition) are active. A transition is fireable
when it is enabled and when the associated transi-
tion condition is true. A fireable transition must be
immediately fired.

3. Firing a transition provokes simultaneously the ac-
tivation of all the immediately succeeding steps
and the deactivation of all the immediately preced-
ing steps.

4. When several transitions are simultaneously fire-
able, they are simultaneously fired.

5. When a step shall be both activated and deacti-
vated, by applying the above previous evolution
rules, it is activated if it was inactive, or remains
active if it was previously active.

This textual description of the evolution rules comes
from the standard and is obviously not sufficient to
translate a Grafcet into a formal model; a formal defi-
nition will be given in section 4.1. However, these rules
show that the global state of a Grafcet, called situation,
is defined by the set of all the simultaneously active

steps; the initial situation of the model of figure 3, for
instance, is {A1,1}. An evolution from the current situa-
tion to a new one corresponds to the firing of simultane-
ously fireable transitions, according to rules 2 (fireable
transitions are compulsory fired) and 4 (simultaneously
fireable transitions are simultaneously fired). This new
situation may be transient or stable; a situation is tran-
sient if at least one transition of the Grafcet can be fired
from this situation without change of the inputs values,
and stable if no enabled transition is fireable from this
situation for the current values of inputs. Then, the state
of a Grafcet evolves from stable situation to stable situ-
ation, possibly by crossing transient situations; an evo-
lution between two stable situations corresponds, in the
Grafcet, to a sequence (may be reduced to one) of fir-
ings of sets of fireable transitions and is instantaneous.
Examples of evolutions will be given in section 4, once
the formal semantics of Grafcet defined.

Actions
Two kinds of actions can be used in a Grafcet to spec-

ify the values of outputs: continuous actions and stored
actions. An action is graphically represented by a rect-
angle linked to the step symbol. A continuous action
specifies the current value of an output according to the
current values of steps activity variables and inputs. For
figure 3, for instance, output ‘MR’ is true if and only
if step ‘E40’ or step ‘41’ is active; output ‘VA’ is true
if and only if step ‘E20’ is active and input ‘a’ is false.
A stored action describes how an output variable is allo-
cated to a Boolean value, according to an allocation rule.
A rising arrow associated to the action symbol means
that the output variable is allocated when the step be-
comes active. On the other hand, a falling arrow means
that the output variable is allocated when the step is de-
activated. For the example, output ‘BM’ is allocated to
true (Set) when step ‘E30’ becomes active and allocated
to false (Reset) when step ‘32’ is deactivated. It matters
to underline that continuous actions are executed only if
the current situation is stable whereas stored actions are
executed whatever the situation.

This set of evolution rules and actions definitions
ensures that Grafcet models are deterministic, what is
mandatory for controllers’ specifications.

Differences between Grafcet and SFC
This comparison is based on the two normative texts

that define Grafcet and SFC, respectively IEC 60848
(2002) and IEC 61131-3 (2003). In what follows, the
extracts from these documents will be written in italics.

Grafcet is a specification language for the functional
description of the behavior of the sequential part of a

4

control system. On the opposite, SFC is an element to
structure the internal organization of a program organi-
zation unit (derived from Grafcet) and written with one
of the four IEC 61131-3 languages (LD, ST, IL, FBD).
Then, a Grafcet model is used to specify a behavior (ex-
ternal view of the control system), while an SFC model
describes (part of) the structure of a software running on
a programmable controller that implements this behav-
ior (internal view of the control system).

The semantics of Grafcet and SFC are different. For
instance, in case of selection of sequence, exclusive acti-
vation of a selected sequence is not guaranteed from the
structure, in Grafcet; the designer should ensure that
[...] the transition conditions are mutually exclusive.
On the contrary in SFC, any sequence selection is ex-
clusive, [...] it cannot have crossing simultaneous tran-
sitions in a sequence selection; to do this, the user can
define priorities between branches at the divergence of
sequence selection.

But the main semantic difference is that the evolu-
tions of a Grafcet model are caused by the changes of its
inputs values whereas the evolutions of an SFC model
are controlled by the input scanning cycle of the con-
troller that executes this model. When the value of an
input of a Grafcet model changes, this model evolves
to a new stable situation; this evolution is instantaneous
to avoid inputs values changes be missed, even if tran-
sient situations are crossed. On the opposite, in an SFC
model, the clearing time1 of a transition may theoreti-
cally be considered as short as one may wish, but it can
never be zero; in practice, this time is equal to the in-
put scanning cycle time of the controller on which the
SFC runs. The consequence is that only one set of si-
multaneous fireable transitions (may be reduced to one
transition) is fired at every scanning cycle. Hence, the
concepts of transient and stable situations do not make
sense in SFC; a situation lasts at least one cycle time.

To conclude and focus on the context of this work,
in conformance test (validation of an implementation
with respect to a specification), Grafcet is to be used to
describe the specification; SFC is only a possible so-
lution to implement this specification. From a given
Grafcet, a test sequence will be constructed for testing
an implementation which may be a PLC programmed
in SFC (and, often, other IEC 61131-3 languages) or an
ECU programmed in C, according to the implementa-
tion choices. The same Grafcet model can be the refer-
ence for different kinds of implementation.

1clearing time = firing time

2.2. Mealy machines testing
Many researches about conformance test of Mealy

machines have been achieved in the past. A good syn-
thesis of these works is proposed by Lee and Yan-
nakakis (1996). A brief description of their main re-
sults, based on the previous reference and on Broy et al.
(2005) is given below.

Formally, a Mealy machine M is a 6-tuple
(IM ,OM ,S M ,sInitM ,δM ,λM) where:

• IM and OM are nonempty sets of symbols, respec-
tively, of inputs and outputs.

• S M is a nonempty set of states.

• sInitM ∈ S M is the initial state.

• δM: S M × IM −→ S M is the transition function.

• λM: S M × IM −→ OM is the output function.

By definition, Mealy machines are deterministic
since δM and λM are defined by functions. It is gen-
erally assumed that these machines are complete, which
means that the functions δM and λM are defined for each
2-tuple (s, i) ∈ S M × IM .

Within a Mealy machine, two states si and s j are
equivalent if for any inputs sequence2 (σ ∈ IM

∗), the
Mealy machine produces the same outputs sequence
from si or s j:

∀σ ∈ IM
∗

[
λM(si, σ) = λM(s j, σ)

]
(1)

A Mealy machine is minimal if it does not include any
pair of different equivalent states. Two machines M1
and M2 which have the same alphabet are said equiva-
lent if for any state in M1 there is an equivalent state in
M2 and vice versa.

Given these definitions, the problem of conformance
test based on Mealy machines can be described as fol-
lows: Let S be a known machine (the specification) and
I an unknown machine (the implementation under test)
which can be only observed through its inputs and out-
puts, determine by a test that includes a finite sequence
of inputs and expected outputs whether I is equivalent
to S or not.

In order to solve this problem, it is generally assumed
that the specification is minimal (there is no equivalent
states) and strongly connected (each state is reachable
from any other state). Then, the equivalence between an
implementation I and a specification S consists in ver-
ifying that none of the following errors happens during
the test of I (Figure 4):

2IM
∗ represents IM power any strictly positive integer.

5

• Output error: s being the active state, when the in-
put i occurs, I produces the output o′ instead of the
expected output o.

• Transfer error: s being the active state, when the
input i occurs, the transition labeled i/o is fired but
the arrival state is s′′ instead of s′.

The test sequence is constructed from S and must per-
mit to detect these two kinds of errors, for each state
and each transition. Hence, each elementary test corre-

sponds to a transition s
i/o
−→ s′ of S and is defined as

follows:

1. Go to s (synchronization).

2. Apply input i and check whether the emitted output
is o.

3. Check whether the arrival state is s′ (identifica-
tion).

Figure 4: Example of transfer and output errors in a Mealy machine

3. Method overview

The translation method of a Grafcet into an equivalent
Mealy machine, without semantics loss, comprises two
phases (Figure 5):

• Construction of the automaton, termed stable loca-
tion automaton (SLA), that represents formally all
the stable states of the logic system described by
the Grafcet as well as all the evolutions between
these states.

• Translation of this automaton into an equivalent
Mealy machine.

The state of the logic system that underlies a Grafcet
model, called location, is featured by the set of simul-
taneously active steps (situation) and the set of emitted
outputs; it is reminded indeed that different sets of out-
puts may be emitted for the same situation, when the

Figure 5: Method overview

Grafcet contains stored actions or continuous actions
that depend on inputs values. As a situation may be
transient or stable, a location may be transient or stable,
too. Continuous actions are executed only when the sit-
uation of the Grafcet is stable; hence, the outputs that
are controlled by continuous actions are emitted only for
stable locations. To observe all outputs, whatever the
kind (continuous/stored) of action they are controlled
by, only the stable locations are to be kept. A stabil-
ity condition, Boolean expression on the inputs values,
is associated to each stable location; when a location is
active3 and its stability condition true, the SLA remains
in this location, otherwise it evolves to a new location.
Each evolution from a stable location to another stable
location is caused by a change of the inputs values; an
evolution condition, Boolean expression on the inputs
values, will then be associated to each evolution. All
these definitions will be formalized in section 4; a con-
sistency rule on stability and evolution conditions will
then be stated.

Once the SLA built, the aim of the second phase is to
define the transition and output functions of the equiv-
alent Mealy machine from the evolution condition, as
formally detailed in section 5.

3By definition, only one location is active in an SLA at any mo-
ment.

6

4. Construction of the Stable Location Automaton
of a given Grafcet model

To construct automatically the SLA of a given
Grafcet, both semantics of Grafcet and SLA must be
first defined; this is the objective of sections 4.1 and 4.2
respectively. It must be pointed out that formalization
of Grafcet has been already addressed in Lhoste et al.
(1993) and Bierel et al. (1997), by using static meta-
modeling techniques and an algorithmic interpretation
of the evolution rules, on the basis of the previous ver-
sion of the standard which was issued in 1988. This
work considers the 2002 version and is based on an al-
gebraic approach to increase genericity. Equations to
determine the locations and evolutions of the SLA are
then stated in section 4.3.

4.1. Formal definition of a Grafcet model

Formally, a Grafcet g is a 4-tuple (IG,OG,CG, S InitG)
where:

• IG is the nonempty set of logic inputs, (Cardinality
of IG: |IG |).

• OG is the nonempty set of logic outputs.

• CG is the set of Grafcet charts.

• S InitG is the set of initial steps.

The charts set CG is partitioned into the set CC of clas-
sical charts and the set CE of macro-steps expansions
charts. {

CC ∪CE = CG

CC ∩CE = ∅ (2)

A classical chart c ∈ CC is defined by a 3-tuple
(S ,T, A) where:

• S is the nonempty set of steps s of c.

• T is the set of transitions t of c.

• A is the set of actions a of c.

A macro-step expansion chart c ∈ CE is defined by a
5-tuple (m, sI , sO, S oth,T, A) where:

• m is the macro-step name.

• sI is the input step of the expansion.

• sO is the output step of the expansion.

• S oth is the set of the other steps s of the expansion.

• T is the set of transitions t of the expansion.

• A is the set of actions a associated to the steps of
the expansion.

For all macro-step expansion chart c ∈ CE , S (c) is the
set of all steps of c.

S (c) = {sI(c), sO(c)} ∪ S oth(c) (3)

The set of all steps s of the Grafcet will be denoted
S G.

S G =
⋃
c∈CG

S (c) (4)

A step activity variable X(s) is associated to each
step s. The set of initial steps S InitG is a subset of S G.

A transition t ∈ T of a given chart c ∈ CG is
defined by a 3-tuple (S U , S D, ECond(IG ,S G)) where:

• S U is the set of the immediately upstream steps of
the transition, S U ⊂ S (c).

• S D is the set of the immediately downstream steps
of the transition, S D ⊂ S (c).

• ECond(IG ,S G) is the transition condition, Boolean ex-
pression on inputs and steps activity variables.

The set of all transitions t of the Grafcet will be de-
noted TG.

TG =
⋃
c∈CG

T (c) (5)

The set of actions A is partitioned into the set AS

of stored actions and the set AC of continuous actions.
Similarly, the outputs set OG is partitioned into the set
OS of stored outputs (controlled by stored actions) and
the set OC of continuous outputs (controlled by contin-
uous actions). {

AS ∪ AC = A
AS ∩ AC = ∅ (6)

{
OS ∪ OC = OG

OS ∩ OC = ∅ (7)

A continuous action ac ∈ AC of a given chart c is
defined by a 3-tuple (s, o, ECond(IG ,S G)) where:

• s is the step which the action is associated with,
s ∈ S (c).

• o is the output which is assigned by the action, o ∈
OG.

• ECond(IG ,S G) the continuous action condition,
Boolean expression on inputs and steps activity
variables.

7

The value of each continuous output is then defined
by a Boolean expression on inputs and steps activity
variables, as follows:

EEmit(IG ,S G)(o) =
∑
a∈AC

o(a)=o

(
X(s(a)) · ECond(IG ,S G)(a)

)
(8)

A stored action as ∈ AS of a given chart c is defined
by a 4-tuple (s,o,op,inst) where:

• s is the step which the action is associated with,
s ∈ S (c).

• o is the output which is allocated by the action, o ∈
OG.

• op is the kind of allocation, op ∈ {S et,Reset} .

• inst is the instant when the allocation is done,
inst ∈ {Act,Deact}, where Act is the step activation
instant and Deact the step deactivation instant.

Then, the values of stored outputs are computed dy-
namically during the construction of the SLA (see sub-
section 4.3).

4.2. Formal definition of the Stable Location Automa-
ton (SLA) of a given Grafcet model

Formally, a stable location automaton S LA is a
5-tuple (IS LA,OS LA, L, lInit, Evol) where:

• IS LA is the set of inputs of the Grafcet model g:
IS LA = IG(g).

• OS LA is the set of outputs of g: OS LA = OG(g).

• L is a set of stable locations l.

• lInit is the initial location, lInit ∈ L.

• Evol is a set of evolutions e.

It is reminded that a stable location is characterized
by a set of simultaneously active steps, a set of emitted
outputs and a stability condition, Boolean expression on
the inputs values. Then, a stable location is defined by
the 3-tuple: (S Act,OEm, ES tab(IG)) where:

• S Act is a subset of steps of g, (S Act ⊂ S G(g)).

• OEm is a subset of emitted outputs of g, (OEm ⊂

OG(g)).

• ES tab(IG) is a Boolean expression on inputs of g.
This expression is true only for the combinations
of inputs values for which the location l is stable.

An evolution e of Evol is defined to represent an
evolution between two stable locations. Each one of
these evolutions can be formally defined by the 3-tuple:
(lU , lD, EEvol(IG)), where:

• lU is the upstream location, lU ∈ L.

• lD is the downstream location, lD ∈ L.

• EEvol(IG) is the evolution condition, Boolean ex-
pression on inputs of g. This expression is true
only for the combinations of inputs values for
which the SLA evolves from location lU to loca-
tion lD.

A SLA is well-defined if the following seven proper-
ties are satisfied:

• Distinguishability of locations:

∀(l1, l2) ∈ L2

S Act(l1) , S Act(l2) OR OEm(l1) , OEm(l2) (9)

• Distinguishability of evolutions:

∀(e1, e2) ∈ Evol2

lU(e1) , lU(e2) OR lD(e1) , lD(e2) (10)

• The upstream and downstream locations of each
evolution are different. All evolutions represent
changes of locations; there is no self-loop:

∀(e) ∈ Evol lU(e) , lD(e) (11)

• Determinism of evolution4:

∀(e1, e2) ∈ Evol2

if lU(e1) = lU(e2)
then EEvol(IG)(e1) · EEvol(IG)(e2) = 0

(12)

• For each location, there is no combination of inputs
values which satisfy both the stability condition of
this location and an evolution condition from this
location:

∀l ∈ L

ES tab(IG)(l) ·


∑

e∈Evol
lU (e)=l

EEvol(IG)(e)
 = 0 (13)

• For each location and for each combination of in-
puts values, the behavior is completely defined (ei-
ther the location is stable, or there exists an evolu-
tion from this location):

4In the Boolean equations, 0 means False and 1 True.

8

∀l ∈ L

ES tab(IG)(l) +


∑

e∈Evol
lU (e)=l

EEvol(IG)(e)
 = 1 (14)

• There is no transient location:

∀(e1, e2) ∈ Evol2

if lD(e1) = lU(e2)
then EEvol(IG)(e1) · EEvol(IG)(e2) = 0

(15)

Last, the definition of the stable location must be con-
sistent with the Grafcet evolution rules and actions def-
initions, i.e.:

• When the stability condition is true, no transition
that is enabled for the corresponding situation of g
can be fired (16).

• An output controlled by a continuous action in g
belongs to the set of emitted outputs iff this con-
tinuous action is associated to an active step of the
corresponding situation of g and the combinations
of inputs values that satisfy the stability condition
of the stable location satisfy the action condition
too (17).

∀l ∈ L(∏
s∈S Act(l)

X(s)
)
·


∏

s∈S G(g)
s<S Act(l)

X(s)
 · ES tab(IG)(l)

·


∑

t∈TG(g)
S U (t)⊂S Act(l)

ECond(IG ,S G)(t)
 = 0

(16)

∀l ∈ L(∏
s∈S Act(l)

X(s)
)
·


∏

s∈S G(g)
s<S Act(l)

X(s)
 · ES tab(IG)(l)

·


∑

o∈OEm(l)
o∈OC

EEmit(IG ,S G)(o)

+

∑
o<OEm(l)

o∈OG

EEmit(IG ,S G)(o)
 = 0

(17)

4.3. Construction of the SLA of a given Grafcet model

As previously pinpointed, all evolutions of an SLA
come from a change of inputs values. However, two
kinds of evolutions may occur in an SLA:

• Evolutions that correspond to the firing of a se-
quence of sets of simultaneously fired transitions
in the Grafcet.

• Evolutions that do not correspond to the firing of
Grafcet transitions but only to the change of the
emitted outputs.

In the first case, the set of active steps S Act(l) is changed;
this is not true in the second one where only OEm and
ES tab(IG) are modified. The SLA of a given Grafcet
model g is then built from the initial stable location by
determining all these evolutions.

From a stable location l = (S Act,OEm, ES tab(IG)), com-
putation of evolutions conditions is performed by sym-
bolic calculus on Boolean expressions on inputs and
steps activity variables; if two sets S 1 and S 2 of inputs
values combinations are defined by expressions Exp1
and Exp2, then sets S 1∩S 2, S 1∪S 2, and S 1 \S 2 are re-
spectively represented by (Exp1 ·Exp2), (Exp1 + Exp2)
and (Exp1 ·Exp2). Locations stability and outputs emis-
sion conditions will be computed in a similar manner.
This solution avoids combinatorial explosion and is well
suited to Grafcet models where transitions and actions
conditions are Boolean expressions.

SLA evolutions due to the firing of a sequence of sets of
simultaneously fired Grafcet transitions

These evolutions are determined from a stable loca-
tion l = (S Act,OEm, ES tab(IG)), by:

1. Looking for the set of fireable Grafcet transitions
and all subsets of simultaneously fireable transi-
tions, from the situation S Act.

2. Determining the situations that are reached when
all subsets of simultaneously fireable transitions
are fired; if the new situation is transient, then 1
and 2 are to be reiterated until a stable situation is
found5.

3. Finding the set of emitted outputs for the stable sit-
uation reached by the sequence of firings.

These three computations are detailed as follows.

1. A Grafcet transition is fireable when it is enabled and
its associated condition true. Hence, the set of en-
abled situations t from situation S Act(l) of a location
l is first computed:

TEnab(S Act(l)) = {t ∈ T (g) | S U(t) ⊂ S Act(l)} (18)

5When the sequence of firings is infinite, e.g. a cycle of evolutions
from transient situation to transient situation, the Grafcet is said ‘not
sound’ and is to be redesigned; no SLA is generated.

9

The set of fireable transitions from situation S Act(l)
is the subset of TEnab(S Act(l)) for which inputs and step
activity variables values satisfy the transition condition
of a transition t. This set TFire(S Act(l)) is defined as fol-
lows:

TFire(S Act(l)) =

{
t ∈ TEnab(S Act(l)) |(∏

s∈S Act(l)

X(s)
)
·


∏
s∈S G

s<S Act(l)

X(s)
 · (ECond(IG ,S G)(t)

)
, 0


(19)

For simplicity reasons, in what follows:

• ES Act(l)
Fire(IG)(t) denotes the Boolean expression on in-

puts that represents the combinations of inputs
for which transition t can be fired from situation
S Act(l). This Boolean expression is easily obtained
from the transition condition of t by substituting
all steps activity variables by their corresponding
value (True/False) according to S Act(l).

ES Act(l)
Fire(IG)(t) =

∑
c∈CG

S Act(l)=S U (t)

ECond(IG ,S G)(t)

where
{
∀s ∈ S Act(l) X(s) = True
∀s < S Act(l) X(s) = False

(20)

• The term IG is suppressed in all expressions de-
noted E... because they only depend on inputs.

With these notations, the set of fireable Grafcet transi-
tions from situation S Act(l), TFire(S Act(l)) is defined by:

TFire(S Act(l)) =
{
t ∈ TEnab(S Act(l)) | ES Act(l)

Fire (t) , 0
}

(21)
S S FT (S Act(l)) denotes the set of all subsets S FT of

simultaneously fireable transitions from S Act(l). This set
is defined by:

S S FT (S Act(l)) = {S FT ⊂ TFire(S Act(l)) |

EEvol(S FT) , 0}
where:

EEvol(S FT) =

(∏
t∈S FT

ES Act(l)
Fire (t)

)
·


∏

t∈TFire(l)
t<S FT

ES Act(l)
Fire (t)


(22)

2. The set of situations reached when these subsets are
fired from S Act(l) is defined by:

S S Act(l)
S FT =


(
S Act(l) \

⋃
t∈S FT

S U(t)
)
∪

⋃
t∈S FT

S D(t)
 (23)

Among the set of situations S S Act(l)
S FT , the stable ones

are situations sit such that expression (24) is satisfied
(a given situation sit is reached from S Act(l) by firing
a subset S FT and there is no enabled transition that is
fireable from sit).

ES tab = EEvol(S FT) ·
∑

t∈TFire(sit)

E sit
Fire(t) (24)

The other elements of S S Act(l)
S FT are transient situations

which satisfy (25) (a given situation sit is reached from
S Act(l) by firing an element of S S FT and there is at least
one enabled transition that is fireable from sit). Compu-
tation of the next sets of simultaneously fireable Grafcet
transitions and reachable situations from sit is to be re-
iterated.

T EEvol
Fire (sit) =

{
t ∈ TEnab(sit)|E sit

Fire(t) · EEvol , 0
}

(25)

3. For each stable situation, it is necessary to determine
the emitted outputs. A continuous output oC is emit-
ted for a stable situation (sit, ES tab) if and only if the
emission condition of this output EEmit(o) satisfies:

EEmit(o) ·
∏
s∈sit

X(s) ·
∏
s∈S G
s<sit

X(s) · ES tab , 0 (26)

As it was made for the firing conditions of transi-
tions, E(sit,ES tab)

Emit (o) represents the combinations of inputs
for which output o is emitted in the situation sit. This
Boolean expression is obtained from EEmit(o) by substi-
tuting all the step activity variables by the correspond-
ing value according to sit. The set S S EO of all simul-
taneously emitted continuous outputs can be defined as
follows:

S S EO(sit, ES tab) = {S EO ⊂ OC |

E(sit,ES tab)
Emit (S EO) , 0

}
where E(sit,ES tab)

Emit (S EO) = ∏
o∈S EO

E sit
Emit(o)

 ·


∏
o∈OC

o<S EO

E sit
Emit(o)

 · ES tab

(27)

10

The set of emitted outputs that are controlled by
stored actions is determined by analyzing the sequence
of firings between two successive stable situations.
When a stored action is associated to a step that belongs
to a (stable or transient) situation crossed by this se-
quence, the corresponding output is set or reset, accord-
ing to the action type; when several stored actions on
the same output are sequentially executed during a se-
quence, only the consequence of the latter one remains.

SLA evolutions without firing transitions
These evolutions correspond to changes of the set

of emitted outputs while staying in the same situation.
They are determined by finding the sets of simulta-
neously emitted continuous outputs obtained from the
combinations of inputs that satisfy (28) (no transition
enabled for S Act(l) can be fired).

ES tab =
∏

t∈TFire(S Act(l))

ES Act(l)
Fire (t) (28)

4.4. Illustration on the example
A software tool, named Teloco (TEst of LOgic COn-

trollers), has been developed during this work and is
available at http://www.lurpa.ens-cachan.fr/isa/teloco/.
This tool constructs automatically the SLA of a given
Grafcet by using the above-presented definitions; it is
also able to translate an SLA into an equivalent Mealy
machine and to generate a test sequence from this ma-
chine, as it will be explained in the following two sec-
tions. This tool has been used for the example presented
on figure 3; the SLA of this Grafcet contains 64 loca-
tions and 389 evolutions. The construction of this SLA
lasts approximately 800 ms, what is quite reasonable.

Within this model, location
({F1,22,32},{ILG,VC,BM},[T D · on · z]) is reach-
able from the initial location; 13 evolutions are then
possible from this particular location. Table 1 presents
these evolutions, line by line. The first column gives the
location that is reached when the evolution occurs, the
second column contains the evolution condition (when
the source location is active and this condition true,
the evolution occurs), the third column the sequence of
sets of simultaneously fired transitions from the source
to the target location and the last one the continuous
actions that are executed in the location (the suffix gives
the name of the active step associated with this action
and the name of the emitted output). It can be noted that
the last line corresponds to an evolution without transi-
tion firing; only the set of emitted outputs is changed
(output ‘VC’ is no more present). The other lines
describe evolutions with sequences of firings. For the

tenth evolution, for instance, two sets of transitions are
successively fired; from the source location, transitions
t22 and t32 are first simultaneously fired, leading to a
transient situation, then transition t5 is fired and leads
to the stable location ({F1,E40},{ILG,MR},[on · v]).

5. Translation of the SLA into an equivalent Mealy
machine

This section aims to define the translation rules of
an SLA constructed from a Grafcet into an equivalent
Mealy machine. It is important to remind that a Boolean
condition is associated with each evolution of an SLA
(Table 1). In contrast, a Mealy machine is an event-
based model, i.e. a transition of the machine is fired if
an input event occurs and not if a Boolean condition is
true. Therefore, the scientific issue to solve can be stated
as follows: “how to translate a state machine whose
evolution conditions are defined by Boolean expressions
into an event-based state machine, without any seman-
tics loss ?”. The answer to this concern is given below.

A Mealy machine M: (IM ,OM , S M , sInitM , δM , λM)
can be constructed from any stable location automaton
S LA: (IS LA,OS LA, L, lInit, Evol). This Mealy machine
behaves strictly as the SLA and is defined as follows:

• IM: input alphabet. This alphabet contains 2|IS LA |

elements. Each element ii of this alphabet repre-
sents a different combination of logic variables of
IS LA. Each element ii is associated with a distinct
minterm6 built on the variables of IS LA. Let mI(ii)
be the minterm associated with the input event ii.
By construction, minterms are different and verify
the following property:

∀(ii, i j) ∈ I2
M

[
mI(ii) · mI(i j) = 0

]
(29)

For example, in the case of figure 3:
mI(i128) = CS · T D · a · b · dw · on · up · v · z
mI(i401) = CS · T D · a · b · dw · on · up · v · z

• OM: output alphabet. Similarly to IM , this alpha-
bet contains 2|OS LA | elements. Each element oi of
this alphabet represents a different combination of
logic variables of OS LA. Each element oi is associ-
ated with a distinct minterm built on the variables
of OS LA. Let mO(oi) be the minterm associated
with the output event oi.

6A minterm is an expression on Boolean variables that uses only
the conjunction operator AND (·) and the complement operator (¯).

11

Reachable location Evolution condition Sequence of SFT Continuous actions(
{A3,22,32},{ILO,VC,BM},[T D · z]

)
T D · on · z 〈{t2}〉 {aA3−ILO, a22−VC}(

{A3,22,32},{ILO,BM},[T D · (a + b) · z]
)

T D · (a + b) · on · z 〈{t2}〉 {aA3−ILO}(
{F1,S20,32},{ILG,BM},[T D · on]

)
T D · a · b · on · z 〈{t22}〉 {aF1−ILG}(

{F1,22,S30},{ILG,VC},[on · z]
)

T D · on · z 〈{t32}〉 {aF1−ILG, a22−VC}(
{F1,22,S30},{ILG},[(a + b) · on · z]

)
T D · (a + b) · on · z 〈{t32}〉 {aF1−ILG}(

{A3,S20,32},{ILO,BM},[T D]
)

T D · a · b · on · z 〈{t2,t22}〉 {aA3−ILO}(
{A3,22,S30},{ILO,VC},[z]

)
T D · on · z 〈{t2,t32}〉 {aA3−ILO, a22−VC}(

{A3,22,S30},{ILO},[(a + b) · z]
)

T D · (a + b) · on · z 〈{t2,t32}〉 {aA3−ILO}(
{F1,S20,S30},{ILG},[on · v]

)
T D · a · b · on · v · z 〈{t22,t32}〉 {aF1−ILG}(

{F1,E40},{ILG,MR},[on · v]
)

T D · a · b · on · v · z 〈{t22,t32},{t5}〉 {aF1−ILG, aE40−MR}(
{A3,S20,S30},{ILO},[v]

)
T D · a · b · on · v · z 〈{t2,t22,t32}〉 {aA3−ILO}(

{A3,E40},{ILO,MR},[v]
)

T D · a · b · on · v · z 〈{t2,t22,t32},{t5}〉 {aA3−ILO, aE40−MR}(
{F1,22,32},{ILG,BM},[T D · (a + b) · on · z]

)
T D · (a + b) · on · z ∅ {aF1−ILG}

Table 1: Set of evolutions from location ({F1,22,32},{ILG,VC,BM},[T D · on · z]) for the Grafcet model presented figure 3

• S M: set of states. A state of the Mealy machine M
is associated with each location of the stable loca-
tion automaton S LA. To make the translation eas-
ier to understand, the state of M and the associated
location of S LA will be denoted in the same way.
Thus, the set S M is identical to the set L of S LA.

S M ≡ L (30)

• sInitM: initial state. This state is associated with the
initial location of S LA.

sInitM ≡ lInit (31)

• The transition function δM and output function λM

are defined on the basis sets IS LA, OS LA, L, Evol
and IM , OM , S M . They must be defined so that
the obtained Mealy machine is deterministic and
completely specified, i.e.: 7

∀(s, i) ∈ S M × IM

[{
∃!δM(s, i) ∈ S M

∃!λM(s, i) ∈ OM

]
(32)

The transition function δM of the machine M is de-
fined as follows:

∀s ∈ S M ,∀i ∈ IM
if ∃e ∈ Evol

[{
lU(e) = s
EEvol(IG)(e) · mI(i) = mI(i)

]
[δM(s, i) = lD(e)]

else
[δM(s, i) = s]


(33)

7∃!: There exists exactly one.

The transition function δM is completely specified
since a value is defined for each 2-tuple (s, i) ∈ S M ×

IM . This value is unique because the evolutions which
follow a location l are mutually exclusive (see equa-
tion 12).

Construction of the output function λM relies on the
property that outputs values only depend on the active
location of the SLA. Then, the output function λM is
defined as follows:

∀s ∈ S M ,∀i ∈ IM [λM(s, i) = o j]
where o j ∈ OM such that: ∀v ∈ OEm(δM(s, i))

[
mO(o j) · v = mO(o j)

]
∀v ∈ {OS LA − OEm(δM(s, i))}

[
mO(o j) · v̄ = mO(o j)

]
(34)

The proposed definitions of δM and λM ensure deter-
minism of evolution and determinism of output events
emission. The Mealy machine obtained is therefore de-
terministic and completely specified. Moreover, each
state of this Mealy machine is reachable from the initial
state since this property holds for each situation of the
SLA by construction.

According to the definitions of functions δM(s, i) and
λM(s, i), each 2-tuple (s, i) ∈ S M × IM verifies:

∀((s, i), (s′, i′)) ∈ (S M × IM)2

[δM(s, i) = δM(s′, i′)⇒ λM(s, i) = λM(s′, i′)] (35)

This result ensures minimality of the obtained Mealy
machine. The translation rules that are detailed above
have been implemented during this research in a soft-
ware tool based on algorithm 1.

Last, the size of the machine is easily computable.
The constructed Mealy machine contains indeed as

12

many states as there are locations in the SLA. The num-
ber of transitions only depends on the number of loca-
tions and input variables of the SLA (see relations (36)).
It must be noted that the number of evolutions of the
SLA has no influence on the size of the obtained Mealy
machine. {

|states| = |L|
|transitions| = |L| · 2|IG |

(36)

Thus, the Mealy machine that describes the behavior
of the Grafcet depicted on figure 3 contains 64 states
and 32,768 transitions, because the corresponding SLA
includes 64 locations and owns 9 inputs. The transla-
tion of this SLA into its equivalent Mealy machine lasts
approximately 300 ms, by using the tool Teloco. Fig-
ure 6 presents a part of the SLA and a part of the Mealy
machine obtained from this example.

Algorithm 1 The Mealy machine construction algo-
rithm
Input data: S LA: (IS LA,OS LA,L,lInit,Evol)
Output data: M: (IM ,OM ,S M ,sInitM ,δM ,λM)

for all j = 0 to 2|IS LA | do
Build minterm mI(i j) and add i j to IM

end for
for all k = 0 to 2|OS LA | do

Build minterm mO(ok) and add ok to OM

end for
for all l ∈ L do

if l = lInit then
Associate sInitM to l and add sInitM to S M

else
Associate s to l and add s to S M

end if
end for
for all s ∈ S M do

for all j ∈ IM do
Set the default value of δM(s, j): δM(s, j) := s
for all e ∈ Evol do

if s = lU(e) then
if EEvol(IG)(e) · mI(i j) = mI(i j) then
δM(s, j) := lD(e)
break

end if
end if

end for
λM(s, j) := ok where mO(ok) satisfies and only
satisfies the emitted outputs condition for loca-
tion l associated to s

end for
end for

6. Test sequence generation

The Mealy machine which is constructed from an
SLA represents all evolutions of the initial Grafcet. It
is then possible to build, from this machine, a test se-
quence which can be used for conformance test of a
logic controller which is supposed to implement the
Grafcet specification. Several solutions are possible
(Lee and Yannakakis (1996)). The method to obtain
the minimum-length, while exhaustive, test sequence
is called transition tour method (Naito and Tsunoyama
(1981)). This method is a particular solution, for a graph
which represents the structure of a Mealy machine, of a
well-known problem in graph theory: the Chinese post-
man problem (Mei-Ko (1962), Edmonds and Johnson
(1973) and Thimbleby (2003) for instance). The gen-
eral formulation of this problem is the following: “Find
a minimum length closed path that visits each edge in
the graph at least once”. As the graph which describes
the structure (states and transitions between states) of a
Mealy machine is directed, but not weighted, the opti-
mization problem is simplified.

The test sequence of the Mealy machine of the exam-
ple (64 nodes and 32,768 arcs) contains 73,528 steps.
This test sequence is obtained in approximately 1 s with
the tool Teloco. If a step of this sequence is done every
20 ms during conformance test, the whole test execution
will last approximately 25 minutes, what is reasonable.

7. Conclusions and prospects

This paper has shown that it is possible to construct
automatically a test sequence for exhaustive confor-
mance test of logic controllers from a non-timed Grafcet
specification; this result can contribute undoubtedly to
improve dependability of industrial logic controllers.
The main contributions of this work are:

• the formal definition of Grafcet and the state model
(SLA) that represents all stable states and evolu-
tions of a Grafcet;

• a seamless test case generation method from
Grafcet specification to test sequence. This method
can be integrated in an industrial context since the
computation time is not too long.

On-going works focus on improvement of the test se-
quence generation. As explained in section 6, the cur-
rent approach is based on the transition tour method
and provides a minimum-length, while exhaustive, se-
quence. This sequence is, in most cases, a MIC (Mul-
tiple Input Change) sequence, i.e. the values of sev-
eral logic inputs may change from one test step to the

13

Reachable location Evolution condition Sequence of SFT Continuous actions(
{A1,1},{ILR},[on]

)
dw · on · up 〈{t42},{t6},{t3}〉 {aA1−ILR}(

{F1,1},{},[(CS + a + b + z + dw + up) · on]
)

(CS + a + b + z) · dw · up · on 〈{t42},{t6},{t3},{t1}〉 ∅(
{F1,E20,E30},{ILG,VA,BM},[T D · a · on]

)
CS · T D · a · b · dw · on · up · z 〈{t42},{t6},{t3},{t1},{t4}〉 {aF1−ILG , aE20−VC}(

{F1,E20,31},{ILG,VA,BM},[T D · a · on]
)

CS · T D · a · b · dw · on · up · z 〈{t42},{t6},{t3},{t1},{t4},{t30}〉 {aF1−ILG , aE20−VC}

…

…

…

…

…s64

s1 s5

s3s2

i…/o772

2 transitions

i…/o144

512-64-60-2-2
= 384 transitions

i…/o772

2 transitions
i…/o0

60 transitions

i…/o64

64 transitions

Mealy machine representationStable Location Automaton representation

{A3,42},
{ILO,TM-},

[dw+up]

{A1,1},
{ILR},
[on]

EEvol1 EEvol2 EEvol3
EEvol4

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

…

…

…

…

…s64

s1 s5

s3s2

i…/o772

2 transitions

i…/o144

512-64-60-2-2
= 384 transitions

i…/o772

2 transitions
i…/o0

60 transitions

i…/o64

64 transitions

Mealy machine representationStable Location Automaton representation

{A3,42},
{ILO,TM-},

[dw+up]

{A1,1},
{ILR},
[on]

EEvol1 EEvol2 EEvol3
EEvol4

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

…

…

…

…

…s64

s1 s5

s3s2

i…/o772

2 transitions

i…/o144

512-64-60-2-2
= 384 transitions

i…/o772

2 transitions
i…/o0

60 transitions

i…/o64

64 transitions

Mealy machine representation

…

…

…

…

…s64

s1 s5

s3s2

i…/o772

2 transitions

i…/o144

512-64-60-2-2
= 384 transitions

i…/o772

2 transitions
i…/o0

60 transitions

i…/o64

64 transitions

…

…

…

…

…s64

s1 s5

s3s2

…

…

…

…

…

…

…

…

…

…

…

…

…

……s64

s1 s5

s3s2

s64s64

s1s1 s5s5

s3s3s2s2

i…/o772

2 transitions

i…/o144

512-64-60-2-2
= 384 transitions

i…/o772

2 transitions
i…/o0

60 transitions

i…/o64

64 transitions

Mealy machine representationStable Location Automaton representation

{A3,42},
{ILO,TM-},

[dw+up]

{A1,1},
{ILR},
[on]

EEvol1 EEvol2 EEvol3
EEvol4

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

Stable Location Automaton representation

{A3,42},
{ILO,TM-},

[dw+up]

{A1,1},
{ILR},
[on]

EEvol1 EEvol2 EEvol3
EEvol4

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

{A3,42},
{ILO,TM-},

[dw+up]

{A3,42},
{ILO,TM-},

[dw+up]

{A1,1},
{ILR},
[on]

{A1,1},
{ILR},
[on]

{A1,1},
{ILR},
[on]

EEvol1 EEvol2 EEvol3
EEvol4

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,E30},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,E20,31},
{ILG,VA,BM},

[TD • a • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

{F1,1},
{},

[(CS+a+b+z+dw+up) • on]

Figure 6: Representation of evolutions from location ({A3,42},{ILR},[dw + up]) using the SLA and the Mealy machine representations for the
example given figure 3

other one. However, experiments have shown that it is
better to use SIC (Single Input Change) sequences dur-
ing test execution, to avoid synchronous inputs changes
generated by the test-bench be seen as asynchronous by
the implementation under test. Then, construction of a
SIC, while exhaustive, test sequence deserves to be in-
vestigated. This sequence can be built from any speci-
fication that verifies the SIC-testability property defined
in (Provost et al. (2010)). When this property does not
hold, it matters to build a MIC test sequence which in-
cludes as few MIC test steps as possible; this is the aim
of the current research.

References

Bierel, E., Douchin, O., Lhoste, P., 1997. Grafcet: from theory to im-
plementation. Journal Européen des Systèmes Automatisés 31 (3),
543–559.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.
(Eds.), 2005. Model-based testing of reactive systems, Advanced
lectures. Vol. 3472 of Lecture Notes in Computer Science.

da Silva Simão, A., Petrenko, A., Yevtushenko, N., 2009. Generating
reduced tests for FSMs with extra states. Lecture Notes in Com-
puter Science 5826, 129–145.

David, R., 1996. Grafcet: a powerful tool for specification of logic
controllers. IEEE Transaction on Control Systems Technology
3 (3), 253–268.

Edmonds, J., Johnson, E. L., 1973. Matching, Euler tours and the
Chinese postman. Mathematical Programming 5, 88–124.

Guéguen, H., Bouteille, N., 2001. Extensions of Grafcet to structure
behavioural specifications. Control Engineering Practice 9 (7), 743
– 756.

IEC 60848, 2002. GRAFCET specification language for sequential

function charts, 2nd Edition. International Electrotechnical Com-
mission.

IEC 61131-3, 2003. Programmable controllers - Part 3: Program-
ming languages, 2nd Edition. International Electrotechnical Com-
mission.

Lee, D., Yannakakis, M., 1996. Principles and methods of testing fi-
nite state machines - a survey. In: Proceedings of the IEEE. Vol. 84.
pp. 1090–1123.

Lhoste, P., Panetto, H., Roesch, M., 1993. Grafcet: from syntax
to semantics. Automatique Productique Informatique Industrielle
27 (1), 127–141.

Massink, M., Latella, D., Gnesi, S., 2006. On testing UML statecharts.
Journal of Logic and Algebraic Programming 69 (1-2), 1–74.

Mei-Ko, K., 1962. Graphic programming using odd or even points.
Chinese Mathematics 1, 273–277.

Naito, S., Tsunoyama, M., 1981. Fault detection for sequential ma-
chines by transitions tours. In: Proceedings of the IEEE Fault Tol-
erant Computer Symposium. pp. 238–243.

Provost, J., Roussel, J.-M., Faure, J.-M., August 2010. SIC-testability
of sequential logic controllers. In: Proceedings of 10th Interna-
tional Workshop on Discrete Event Systems (WODES 2010). pp.
203–208.
URL http://hal.archives-ouvertes.fr/hal-00512767

Thimbleby, H., 2003. The directed Chinese postman problem. Soft-
ware – Practice & Experience 33 (11), 1081–1096.

Tretmans, J., 2008. Model based testing with labelled transition sys-
tems. Lecture Notes in Computer Science 4949, 1–38.

von Bochmann, G., Jourdan, G.-V., 2009. Testing k-safe Petri nets.
In: Núñez, M., Baker, P., Merayo, M. G. (Eds.), TestCom/FATES
- Testing of Software and Communication Systems. Vol. 5826 of
Lecture Notes in Computer Science. Springer, pp. 33–48.

14

