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The parameterization of baroclinic instability
in a simple model

by A. Wirth!

ABSTRACT

Baroclinic instability of zonally forced flow in a two mode quasi-geostrophic numerical model
with periodic boundary conditions is considered. Only the largest scale of the baroclinic mode is
forced and the scale dependence of a diffusive parameterization of baroclinic layer thickness is
determined. It is shown that the effect of baroclinic instability is a decreasing function of scale with
an exponent of about half of that corresponding to the commonly used Laplace operator. We
furthermore show that there is no linear relation between the time averaged amplitude of the large
scale streamfunction (or quasi-geostrophicpotential vorticity) and the bolus velocity.

1. Introduction

One of the major challenges in ocean modeling is the parameterization of small-scale
processes not explicitly resolved in the models themselves. Many attempts have been made
in this direction. The difficulty arises from the nonlinear interaction of processes on a wide
range of length and time scales.

Recently, interest has focused on the parameterization of a specific process, that is
baroclinic instability. This process, of paramount importance in atmosphere and ocean
dynamics, dominantly occurs at a small range of length and time scales. The typical length
scale for the ocean is of a few times the baroclinic Rossby radius of deformation (=50 km),
while the typical time scale is of the order of tenth of days. This rather strong localization
of baroclinic instability in wavenumber and frequency space might permit a successful
parameterization.

More precisely, when using Global Circulation Models to determine the climate
variability over several hundreds of years the grid resolution of the ocean models currently
used is a few hundreds to several hundreds of kilometers. Such resolution is by far too poor
to explicitly represent the effects of baroclinic instability on the large-scale motion and
they have thus to be parameterized.

It is too ambitious to ask for a parameterization that exactly mimics the effects of the
small scales on the larger ones. Two necessary conditions of such a parameterization would
be: (i) that the dynamics of the small scales are completely slaved to the large scales, and
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(i1) that the dimension of the chaotic attractor of the full problem is smaller than the number
of degrees of freedom of our numerical model. Both conditions are unlikely to be satisfied.
The parameterization should, however, approach the effects of the parameterized scales in
a statistical sense.

A new way of parameterizing baroclinic instability was proposed by Gent and McWil-
liams (1990), based on diffusion of isopycnal thickness. Another, but not new, feature of
the same parameterization is the down-gradient diffusion along isopycnals (see e.g. Redi,
1982). An interesting feature of this parameterization is that it can be interpreted as a
quasi-adiabatic advection as explained in Gent et al. (1995). We like to refer the reader to
this paper for a detailed discussion on the parameterization proposed by Gent and
McWilliams.

There are different ways of analyzing such parameterization. A pragmatic approach is to
implement such parameterization in a large-scale ocean model (Danabasoglu and McWil-
liams, 1995) and evaluate its performance. Another way is to verify the foundations of the
theory in numerical experiments (Treguier, 1999).

The approach adapted here as in a variety of other experiments (see e.g. Killworth, 2000
and references therein) is to estimate the influence of the small scales on the larger onesin a
fine resolution model, that is, a model resolving the Rossby radius of deformation. We like
to emphasize here that for resolving a length scale /; it is not enough to have the grid-size d,,
of the order or slightly smaller than /. It is rather necessary that the length scale /; is in the
inertial range of the nonlinear dynamics (see e.g. Frisch, 1996). This usually means that the
grid size d, has to be chosen at least an order of magnitude smaller than the length scale /.
It is indeed true that the dynamics on scales only a few times greater than the grid scale is
dominated by linear dissipation being very different to the dynamics in the inertial range,
which is dominated by nonlinear advection. The recent awareness of this problem in the
ocean modeling community is apparent by the fact that models previously referred to as
“eddy resolving” are now referred to as “‘eddy permitting.”

The second point we like to dwell on is statistical significance. Our numerical results
(see Section 4) show that even for the estimation of mean values and variances, that is the
lowest order moments, averaging times of about a hundred years are necessary. When such
long times are necessary for a parameterized quantity to relax to their mean value the
results using such parameterization have to be handled with care. An immediate conse-
quence is that parameterized models can only be interpreted in an ensemble sense.

The points mentioned in the previous two paragraphs put severe constraints on the
feasibility of analyzing such parameterization. The experiment has thus to be set up very
carefully, containing only the absolutely necessary ingredients. We thus consider the
problem of “parameterizing baroclinic instability” in its numerically most feasible way.
That is, we used a quasi-geostrophic two-mode model, which is periodic, both in the
latitudinal and longitudinal direction. This is a simple model to test a parameterization of
baroclinic instability.

Another important choice is the implementation of periodic boundary conditions. In
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previously published idealized experiments the dynamics far from the boundary appear to
be completely slaved to the boundary conditions. Important quantities vary almost linearly
between their extremal values at or near the boundary. Using periodic boundary conditions
eliminates this problem completely.

A novelty of the present work is that a variety of experiments are performed with varying
box-size, strength of forcing and viscous dissipation (model parameters) to estimate their
(non-) influence on large-scale quantities like the diagnosed parameters for large-scale
parameterization. It is indeed a crucial point of a large-scale parameterization that it should
not, or only very weakly, depend on the above mentioned model parameters and this should
be checked whenever a parameterization is proposed.

An advantage of testing parameterizations of baroclinic instability in a quasi-
geostrophic experiment is that in this simplified frame work the parameterization of layer
thickness as proposed by Gent and McWilliams (1990) is identical to the parameterization
of vertical mixing, as favored by Greatbatch and Lamb (1990). This means that the results
presented here apply to the same extent to a whole class of parameterizations but also
means that the results presented here can give us no hint to which parameterization in this
class is better.

A disadvantage of the simplicity is that some of the important questions related to the
parameterization of baroclinic instability cannot be addressed in this simplified frame
work. One is the important effect on the long-term tracer dynamics (see e.g. Lee et al.,
1997). The determination of the vertical dependence of a parameterization would require
more baroclinic modes. We also neglect in our discussion the important point of the effect
of baroclinic instability on the barotropic mode and the related question of how to
implement vertical boundary conditions. For more details on this important point we refer
the reader to Killworth (2000) and Treguier et al. (1997). The latter paper also contains a
detailed discussion on eddy parameterization in quasi-geostrophic models. All the experi-
ments presented here are restricted to the special case of purely zonal forcing. Thus, we
could not consider the question of anisotropy of the diagnosed large-scale parameters as
found by Rix and Willebrand (1996).

The next short section is devoted to the question of the compatibility between the
B-plane approximation and periodic boundary conditions in both horizontal directions. In
Section 3 we present the theoretical description of our numerical experiment which is
introduced in Section 4. The results are then discussed in Section 5.

2. The periodic 3-plane

This section may be skipped by people familiar with simulations on the doubly-periodic
[-plane. We use spatially periodic boundary conditions in both horizontal directions. This
is mathematically consistent with the P-plane approximation, for all evolution and
diagnostic equations (see e.g. Hua et al., 1998, for a detailed discussion of this point).

A more subtle point, however, is the validity of the -plane approximation in a domain
having infinite extension in the meridional direction. The quasi-geostrophic potential
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vorticity is conserved along stream-lines of the quasi-geostrophically evolving geostrophic
velocity field. When meridional boundaries are present at distance L,, it is clear that the
B-plane approximation is valid if L,3 < f;,. When no such boundaries are present, the
condition for the B-plane approximation to be valid is that the distance a fluid parcel
transported in the meridional direction, L,, during a time-interval, T, by the geostrophic
velocity field is small, L3 < fy. Where 7, is the time length of the specific process under
consideration, that is baroclinic instability in our case. This condition is usually verified as
the B-term inhibits meridional-transport over large distances.

We are aware of the fact that the doubly periodic B-plane imposes some constraints on
the dynamics. These constraints are somewhat of a different nature than those imposed by
lateral walls, used in all other tests of baroclinic instability. Repeating the presented
experiments in a channel geometry and comparing both would be very fruitful.

3. The governing equations

The equations governing the dynamics of this two-mode quasi-geostrophic model are,

atql +JW, q) I, q) + Bax‘l’l
+ b,b,\ VA, + b,b, V2, = —VVOU, + w, ey

0,q + Iy, q2) + Ty, q) + EJ(V,, q3) + BON,

2
+ byb VA, + byb, V2, = =V, + wy,

where g, represents the quasi-geostrophic potential vorticity of the i-th mode,

q;= (V2 = M)V, 3)

\; is the corresponding streamfunction and A; the inverse Rossby radius of deformation.
The first mode, i = 1, representing the depth-averaged velocity will be called barotropic
and the second, i = 2, baroclinic. The forcing is represented by the variables w;, the bottom
friction by b; and § = 1/H fH F,(z)? dz is the triple auto-interaction coefficient for the
baroclinic mode, where F,(z) gives the vertical structure of the baroclinic mode. For
further details the reader is referred to Flierl (1978) and Hua and Haidvogel (1986).

The (unphysical) parameter v represents the dissipation at the smallest scales; its value is
connected to the resolution of the numerical model and large-scale quantities such as the
diagnosed parameters should be independent of v when chosen in a sensible range.

We are now interested in the dynamics of the largest scale, L, of the model which is
forced by w, = Wj sin (kyy), where ky = 27t/L. For that purpose we define the projection on
this horizontal sine mode,

A=2 fDA sin (kyy) dx dy. “4)

It immediately follows from (3) that ; = —g;/(k% + A7). We choose w; = 0, as in most of
the previously performed numerical experiments (Killworth 2000; Lee et al., 1997,



2000] Wirth: Parameterization of baroclinic instability 575

1.00 1

0.99 —

bolusvelxk /w2

0.97 —

0.96

I T I
0.40 0.50 0.60 0.70 0.80
k

Figure 1. The quantity 6y<(6x\|1 D) 15 %, is plotted as a function of wavenumber for the six sets of
experiments; experiments 1, 2, 3, 4, 5, 6 (see Table 1) as labeled, differences between the graphs
are within statistical errors.

Treguier, 1999). This corresponds to thermal forcing as commonly used in atmospheric
dynamics. Furthermore, we focus our attention on Eq. (2) as the perturbation of layer
thickness is proportional to perturbations of |, when assuming a rigid lid at the surface.
Applying (4) onto (2) we obtain,

—(kg + A0V, = babikg\y — byboki W
+ J(\lll’ qZ) + J(\l]27 ql) + %J(\l]z, qz) = ng\ll_z + WZ'

We suppose that the system is in a statistically stationary state, and that in the nonlinear
terms the relative vorticity can be neglected which is a good approximation for scales
larger than the baroclinic radius of deformation A, '. Averaging over time and keeping only
the dominant terms we obtain:

®)

W, g~ =23 T, W) =~ W, ©)

The subdominance of the two last nonlinear terms on the left-hand side of Eq. (5) and the
above relation follows from simple scaling arguments when k, — 0, and is also verified
numerically (see Section 4 and Fig. 1). The behavior of the baroclinic streamfunction at
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scales larger than the first baroclinic radius of deformation is to leading order identical to
the behavior of a passive scalar advected by the barotropic velocity field and subject to a
source w,. This was already mentioned by Salmon (1980).

Using the mathematical identity,

(T, ) = a}'<(6x\l]l)\l]2>’ (7
we then suppose that the following parameterization holds:
=1y 5w, ~ 0,0 )Vy) = KO(—kg) ). ®)

When o = 0 the last equality represents the classical Gent-McWilliams parameterization
as the perturbation of layer thickness is linearly related to the amplitude of the baroclinic
mode in quasi-geostrophic theory.

In the above averaged equations the B-term has completely disappeared as the forcing
and the averaged large-scale flow is zonal. The whole dynamics, however, depend on the
[-term and so do the parameter values. An extreme example of this is to consider the case
with B = 0, where the dynamics are dominated by stable eddies that survive for very long
times. This leads to a strongly intermittent behavior and no parameterization is reasonable
in this case as time-averaged quantities relax too slowly to their mean value.

It is now easy to numerically measure the parameter o by determining the scale
dependence of

%)

kg0

)20 —
K( )kO =

€))

The problem is thus reduced to determining the scaling law of the streamfunction average
in the forced mode, sin (k,y), as a function of the meridional wave number k,,

) ~ ko (10)
where o = —1 + v/2.

4. The numerical experiment

When setting up the numerical experiment different constraints have to be considered:
(1) the results should be statistically significant,
(i1) the baroclinically most unstable modes should be in the inertial range,

(iii) the results should be compared for a variety of parameters.

The first constraint asks for long integration times, while the second requires high
horizontal resolution. To satisfy all three points the experiment has to be carefully chosen.
The results presented here are obtained by using Fourier series in the longitudinal and
meridional direction. The nonlinear terms were treated using a pseudo spectral method (see
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Table 1. Overview of the parameters varied in the experiments performed.

Physical parameters Numerical parameters
Exp. W, Aotk \Y Horizontal resolution
1 3.6e —3 9,9.5,10,10.5,11, 12,13, 14 le—4 1282
2 38¢—3 10,11, 13,14 le—4 1282
3 38¢—3 9,9.5,10.5,11,12,13, 14 12¢ — 4 1282
4 4.0e — 3 9,9.5,10,10.5,11, 12,13, 14 le—4 1282
5 4.0e — 3 9,9.5,10.5,11,12,13, 14 12¢ — 4 1282
6 4.4e — 3 8,9,9.5,10,10.5,11, 12 le—4 1282

e.g. Gottlieb and Orszag, 1977) and the resolution was 128 points in each horizontal
direction.

In the vertical two modes, a barotropic and a first baroclinic, were used. The correspond-
ing parameters for the nondimensionalized equations (1) and (2) are: A, = 27t/ V1000, Ay =
2M,E=154,b,=4. - 1073, b, = —1. - 10 2and B =4.5-1072

In dimensional parameters the baroclinic Rossby radius of deformation is 50 km while
the average velocity in the forced large-scale baroclinic mode is about 6 cm/s. Velocities in
eddies near the surface reach up to 100 cm/s. The value of [ corresponds to a latitude of
about 39°. Each run covers at least 50,000 days of integration to insure statistical
significance.

The largest scale L which is also the forcing scale is chosen to be between 8 and 14 times
the baroclinic Rossby radius of deformation. The ‘“‘thermal” forcing is varied from w, =
3.6- 1073 to 4.4 - 1073. The hyper-viscosity parameter v = 1.- 107* and 1.2 - 10™* was
varied to check that the results are independent from this unphysical parameter (being a
function of the numerical resolution). An overview of the model parameters varied in the
numerical experiments can be found in Table 1.

In Figure 1 it can be clearly seen that the approximationin the left part of Eq. (7) is very
well verified for the scales chosen here, and that it deteriorates with decreasing scale
separation, when the forcing scale becomes comparable to the Rossby radius of deforma-
tion. In Figure 2 the scaling behavior of () versus the forcing scale can be seen showing
that for scales of about 10-times the baroclinic Rossby radius of deformation the scaling is
close to k™! and clearly not equal to k~2. This can be seen more clearly in Figure 3 where
the parameter K© is plotted versus wavenumber suggesting that Y = 13/,. This leads to a
value of o & —14,. This value is only a good fit to the numerical data but it shows that we
clearly do not have normal diffusion (Y = 2) and also that the transport is close to, but
different from, ballistic transport (Y = 1).

In the different sets of numerical experiments we also varied the forcing by +10% and
found about the same variation in K (see Fig. 1), while \ll_2 showed no variation (see Fig. 2).
The reason is that for increased forcing (see Fig. 1) baroclinic instability occurs more often
(Fig. 4), leading to a linear increase in the bolus velocity while the average streamfunction
amplitude of the forced mode () stays almost constant. This behavior can be verified in
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Figure 2. Scale dependence of (r,) for the six sets of experiments as labeled, differencesbetween the
graphs are within statistical errors.

Figure 4 where the strongly smoothed temporal energy spectrum of V,(7) is plotted for
three experiments having the largest scale that is 11-times the baroclinic Rossby radius of
deformation and differing only in the forcing amplitude w,. It can be clearly seen that
although the mean value (/) is unchanged by the forcing (Fig. 2), the temporal energy
spectrum is larger and peaked at higher frequencies when forcing increases. These findings
are not astonishing and explained by the fact that baroclinic instability occurs at a critical
shear. When applying a stronger forcing this critical shear is reached in a shorter time.
Similar conclusions are obtained in other publications on slightly different subjects (see
e.g. Straub, 1993).

We also increased the (nonphysical) lateral friction coefficient v by 20% and found a
decrease of k% by about 3% (see Fig. 3). This slight dependence should disappear when
using even higher spatial resolutions and lower lateral friction coefficients v.

5. Discussion

The above results force us to rethink some concepts of parameterizing baroclinic
instability, as they demonstrate that: (i) the effect of baroclinic instability on larger and
larger scales decreases slower than predicted by a Laplace operator and furthermore, (ii)
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Figure 3. Scale dependence of k' (obtained using Eq. (9)) for the experiments 6, 4, 5, 2, 3, 1 from
top to bottom.

the bolus velocity grows linearly with the amplitude of the forcing, while the amplitude of
the baroclinic streamfunction does not vary.

The latter findings seem to contradict the results of Rix and Willebrand (1996) who
found a reasonable fit for linear relation of “layer-thickness” versus bolus velocity in a
primitive equation North Atlantic model, when averaging results over 4° X 4° boxes.
However this is entirely due to the fact that we show results as a function of the ratio
scale/(baroclinic Rossby radius of deformation). In the calculations by Rix and Willebrand
(1996) a primitive equation model is used having many levels and a variety of baroclinic
Rossby radii, unlike our simple model possessing only one. They also performed averages
over different areas and seasons having different baroclinic Rossby radii of deformation.
We produced a similar plot with our data. In Figure 5 we show the bolus velocity plotted
against the amplitude of the forced mode weighted by the appropriate power of the
streamfunction, that is: ()12, To summarize this point we can say that although there is
no linear relation between the bolus velocity and the baroclinic large-scale streamfunction
when all other model parameters are kept constant, this relation can be found in a statistical
sense when averaging over data from regions with different and a variety of baroclinic
Rossby radii of deformation.
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Figure 4. Temporal energy spectrum ofv2 for k = 27 - 11 in three experiments 1, 2 and 4 (from top
to bottom) after a 35-point-wide boxcar smother was applied. The peaks correspond to the time
scale of about 200 days.

The first point, (i), saying that the effect of baroclinic instability on the baroclinic
large-scale gradient is super diffusive seems to contradict intuition. The intuitive picture is
indeed that the dynamics at the (small) scale of the baroclinically most unstable mode has a
diffusive effect on the large-scale gradient. The point, however, is that energy injected in
the barotropic mode does not stay at such small scales but cascades to the large scales, as
explained by the two-dimensional inverse energy cascade (Kraichnan, 1967). The effect of
this barotropic large-scale dynamics, caused by baroclinic instability, on the baroclinic
large-scale gradient has to be parameterized as a super diffusive behavior. It is indeed well
known that a lack of scale separation between the ‘“‘large” scale and the parameterized
scales lead to super diffusive behavior (Avellaneda and Majda, 1992). The inverse cascade
is, however, halted by the P-effect at the Rhines scale; that is, the scale at which the
meridional change of the Coriolis parameter balances nonlinearity (see e.g., Rhines, 1975,
and Held and Larichev, 1996). This indicates that a normal diffusive parameterization
might be adapted for scales much larger than the Rhines scale, that is for scales on the order
of thousands of kilometers. Calculations of much higher resolution would be needed to
determine such behavior. This also shows that for the practical use of parameterizing
baroclinic instability in non-eddy-permitting ocean models and climate models, a super
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Figure 5. Bolus velocity versus ([, k"2,

diffusive parameterization should be more adaptable as their small scales range from
roughly 100 km to 1000 km. These are the scales where parameterization acts strongest
and these are the scales considered in this paper.

The lack of scale separation is only one possible source for super diffusive behavior;
spatio-temporal correlations between the barotropic and baroclinic dynamics might be
another one.

For the case of the f-plane it was recently shown by Gryanik et al. (2000), that
vortex-dominated transport is indeed ballistic. The situation on the B-plane considered here
is somehow different as no such coherent structures exist.

To conclude we have to address the question of how good do the previously used
parameterizations do and what is a better parameterization in view of the above presented
results? In non-eddy-resolving ocean models one should include some kind of sink for
layer thickness or baroclinic potential vorticity and most parameterizations can be seen as a
first-order approach. Using a linear relation between the large-scale layer thickness and the
bolus velocity is a simple and reasonable approach at least in a statistical sense. A more
serious point is the commonly used diffusive law for layer thickness or potential vorticity
which is here shown to be wrong. Implementing a dissipation scheme that represents a
fractional power of the Laplacian is, however, cumbersome in the framework of finite
differences. Please note that this is different from using a coefficient that depends on the
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local deformation rate as introduced into ocean modeling by Smagorinsky (1963). The
former represents a linear operation, while the latter is not.

We emphasize once more that the experiments presented here are done with a simple
model and generalizations to ocean general circulation models should be taken with care.
In this sense this paper does not propose a new parameterization based on the above
findings nor does it indicate which previously introduced parameterization does best.
Rather, the purpose of this paper is to point out major difficulties in the parameterization of
baroclinic instability that were not mentioned in previous discussions.

Acknowledgments. 1 am grateful to J. C. McWilliams and J. Willebrand for extensive discussions
and to an anonymous referee for remarks that helped to improve the paper.
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