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Summary: Product quality very often depends on organoleptic characters that are difficult to measure. As
examples, let us look at the visual aspect of a vehicle dashboard, the flavour of a product... During the process
optimization, it’s very difficult to use such responses to analyse an experimental design, because of the lack of
information contained in this type of response and the problems of repeatability and reproducibility inherent in
these characters. However, if it is not possible for an appraiser to provide a measure in a continuous scale, it is
easier to compare various objects. In this article, we propose to use this classification to calculate a rank variable
(Mann-Whitney statistic) which will be used as a numeric variable in order to exploit the results of an experimental
design. Several strategies will be presented and illustrated with industrial examples
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1 Introduction

1.1 Context

Customer perception of product quality is not only related to the functional aspect of the product but also to sensory
characteristics. This is particularly true for luxury products, and industrialists from all branches of industry pay
attention to organoleptic characteristics.

Today, quality improvement problems in sensory perception defects cases are a problem in many companies. The
majority of sensory perceptions are very difficult to characterize using sensors and companies must trust the
controllers’ perception to evaluate the quality of the products. Methods of sensory analysis well described in
[11[2][31[4115] propose several approaches allowing the quantification of this type of characteristic particularly in
the food industry.

However, in spite of the relevance of this type of description, human perception does not provide a continuous
measurement. The lack of measurement is a true difficulty for quality improvement since the majority of statistical
tools are inapplicable if there are not numerical results. In particular we think of design of experiments which are
tools that cannot be ignored to improve quality.

If the expert is not able to produce a measurement, he/she is nevertheless often able to rank various products
according to his/her perception. On the basis of such ranking, we propose in this article to transform this ranking
into a numeric variable by using the Mann-Whitney statistic.

1.2 Suggested method

The suggested method can be divided up into three stages:

e Stage 1: Validation of the assumption "Aptitude to be classified"
The objective is to check that the appraiser (or appraisers) is able to classify the products with repeatability and
reproducibility. We will determine a numeric variable characterizing the quality of the product.

e Stage 2: Realization of trials and classification of results
We build an experiment matrix according to the selected strategy and we carry out the experiments. The results
of each test are then classified compared to a reference sample.

e Stage 3: Analysis of the design of experiments

From the experimental results and the classification carried out, we build a numeric variable allowing the
exploitation of the experimental design in a traditional way.



2 Aptitude to qualify the defect

2.1 Principle

The objective of this stage is to check that criterion we seek to evaluate can be qualified or compared in a precise
way. The principle of defect evaluation is based on the visual comparison of samples. This comparison is carried
out by ranking products from the slightest defect to the most marked. The test consists in validating the
reproducibility of the evaluation (or repeatability if carried out by the same appraiser) by presenting a sample of
five products to two appraisers (Table 1).

Classification 1 Prod. No.2 Prod. No.5 Prod. No.3 Prod. No.4 Prod. No.1

Classification 2 Prod. No.5 Prod. No.2 Prod. No.3 Prod. No.4 Prod. No.1

Table 1 - Classification of the same sample by two appraisers (from the slightest defected product to the most
marked one)
We validate the qualification of the defect by asking one or more people to compare a batch of products several
times and classify them according to their perception of quality. If the criterion is perfectly appraisable, the several
evaluations would have to give the same result.
To characterize the equivalence of classifications, we calculate a numeric variable representing the quality of this
equivalence. We chose Kendall’s tau statistic [6].

2.2 Rank correlation Test [7][8]

We are interested in non-parametric correlation tests as we are working with ranks. The aim is to measure the
association between two variables (in our case two classifications) and to test their dependence. The theory of ranks
performs two well-known correlation tests when two variables are tested: Spearman’s Rho (p) [9] and Kendall’s
Tau () [6] [10]. Rho and Tau are defined in [-1;1]: they are equal to 1 when the two rankings are identical, they are
equal to -1 when the two rankings are completely inverted. The rank correlation coefficient is null when the two
variables are independent.
Spearman’s Rho is calculated using the rank difference. Kendall’s Tau attempts to look at how many times the
second ranking is in the same order as the first ranking. Among studies comparing t and p, no obvious differences
were found but one can say that “t approaches normality more rapidly than p does” [11] [12] and t is more
interpretable [13]. Moreover t provides a simple interpretation of the strength of the relationship between two
variables. Kendall’s Tau also allows to calculate partial correlation based on ranks.
For these reasons we chose Kendall’s tau to evaluate the repeatability and reproducibility of several classifications
(by the same controller or by two different controllers).
We now briefly detail how to compute 7 and test it. We disposed of two observations (Xi,Xz,...,Xn) and  (Y1,Y2,...Yn)
corresponding to the rankings of objects by two appraisers X and Y as we wish to qualify the dependence between X
and Y.
After ordering the first ranking, Kendall’s Tau attempts to look at how many times the second ranking is in the
same order, i.e. in direct order. Each pair of objects of the second ranking is studied. For each pair of compared
objects, a score of +1 is given if they are in the direct order and a score of -1 is given if they are in the inverse
order. The total of positive scores (also called concordant pairs) and negative scores (also called discordant pairs) is
S and = is calculated with the formula [6]:

2S 4P

7= = -1 [Eq.1]
n(n-1) n(n-1)
where n is the total number of observed objects and P is the number of concordances that is the number of pairs
(xi,x;) and (yi,y;) satisfying either x; < xj and y; <Vj;, or x; > xj and y; > y;. P could be computed by:
P= Zl{(xi_xj)(yi _y]')>0} [Eq 2]
i<j
Hence Kendall’s Tau measures the dependence in a very intuitive way as the sign of the product (x-x;)(yi-y;) is a
characteristic of the correlation between both variables.
In example shown in Table 1,S=8,P =9 and r=0.8.
The null hypothesis of independence Hy: 7= 0 could then be tested with the appropriate p-value:




e When n < 10 the exact p-value is given by Kendall’s tables referencing p-values according to the values of n
and S.
e When n < 10 the standard normal test statistic is:
T

LT -y [Fq.3]
9n(n-1)

Note that when n < 30, the z approximation is not very accurate and is generally not recommended [10]. Kendall’s
tables also give significance points of p-value for 10 < n < 30.

In the case of m rankings several papers among which [14] propose to compute the average of t values. Kendall
also proposes a coefficient of concordance W when more than two rankings are observed [10]. In the case of m
rankings, Kendall’s coefficient of concordance W is defined by:
w =# [Eq. 4]
m2(n° —n)
Where Sy is the sum of the squares of the deviations:

nm(n +1)2

n
Sy == R? - and R; is the sum of the ranks of the i" ranking.
i=1

The coefficient of concordance W is equal to 1 when all the classifications are concordant.

To test the significance of an observed value of W, Kendall gives tables forn=3andm=2to 10,n=4and m=2
to 6, n =5 and m = 3. For other values, an approximation based on Fisher’s z-distribution [15] could be used and
for n > 7 one can utilize an approximation based on 2 (cf. [6]).

3 Use of the Mann-Whitney variable to obtain a numerical response in the case of an experimental design

3.1 Construction of a numeric variable starting from a classification

In the case of experimental design with a qualitative response, we carried out N repetitions for each run in order to
constitute an ordered sample according to quality criteria. We suppose a reference sample made up of m products.
We will discuss the various strategies to constitute this reference sample in paragraph 4. We thus have two samples
that it is possible to order according to quality.

We propose to calculate the Mann-Whitney variable traditionally used to test for independence between two sets of
variables from these two samples (or also the Wilcoxon variable [6]). It is a non-parametric rank test.

This variable is built in the following way. Considering (X¢,X2,...,Xn) and ( (y1,Y2,...Ym) two ranking samples
supposed to come from the same population, with n < m; the independence is measured by counting the number of
couples (x;, y;) such that x; > y;. The total is noted U. The U variable can vary between 0 to n-m. Then:

e U =0 corresponds to the case y; < VY, <...< Ym < X1 < Xp <...< Xy

e U=n-mcorresponds to the case X; < X; <...< X, <Y1 < VY7 <...< ¥n.

If both samples result from the same population, then the variable U has the following characteristics:

EL)="7 [Eq. 5]
Var(U ):w [Eq. 6]

The variable distribution U can be approximated by the normal distribution when n and m are higher than 8 with
relatively good accuracy.

The construction of the U variable supposes that all the products are different. In the event of equality (or
indecision by the experts), we choose the order of the products randomly. This action is taken into account in the
random part of the U variable distribution.



3.2 Example

We consider the classification by an appraiser of 5 defects products (tested products) by comparison to 5 products
of reference (Figure 1).

Reference ’ ' . ’ .
Tested products o OO O O

Figure 1 - Classification of the various runs and reference sample

For this classification we calculate the U variable (Table 2).

Rows of the reference
1 5 8 9 10
Rows 2 1 0 0 0 0
of 3 1 0 0 0 0
the 4 1 0 0 0 0
test 6 1 1 0 0 0
7 1 1 0 0 0

u=7

Table 2 - Calculation of the Mann-Whitney variable

The U variable, being calculated for each experiment, allows us to transform a classification into a numeric
variable distributed according a roughly normal law when factors studied in the design experiments do not have
significant effects. This variable can be seen as a measure of the relative quality of the results of each test compared
to the reference sample. We can thus calculate their effects and interactions to determine the contributions of each
one of the factors.

3.3  Ztest starting from the Mann-Whitney variable

Concerning the U variable, the convergence towards a normal law is fast [16], and it is easy to calculate a priori the
variance of distribution [Eq 6].

This property of the U variables is very interesting because it allows carrying out in a relatively rigorous way a Z
test to determine the significant factors by comparing the effect of each factor with the null hypothesis.

4  Examples

4.1  Strategy 1 — Creation of a reference sample

This application is about the thermoforming of an automobile dashboard element. The main critical criteria are
aspect criteria. According to the adjustments process, we note the appearance of recurring defects for which
descriptors are: burnt folds, cracks. We describe the case of the burnt folds. The same procedure can be use for the
second descriptor. An evaluation procedure was defined and validated by a Kendall test on 10 products which gave
a p-value = 0.002213.
The objective of the company is to find the correct process adjustments which minimize the defects. The process
analysis leads to retain three factors:

e Preheating Time [TP]

e Heating Temperature [T]

e Heating Time [TC]
The matrix selected is a complete design 2% in order to estimate some interactions. The design of experiments is
given in Table 3 and the illustration of the products ranking in Figure 2. For each run, we process 5 products. The
appraisers (enterprise experts of control) have to rank all the 40 products coming from the design of experiments
and the 5 products of the reference sample.



Ne [ TP T TC Test rows Reference rows U
1 1 1 1 2,3,4,6,7 1,5,8,9,10 7
2 1 1 2 2,45,6,8 1,3,7,9,10 10
3 1 2 1 1,2,3,4,6 5,7,8,9,10 1
4 1 2 2 1,2,35,6 4,7,8,9,10 2
5 2 1 1 3,5,8,9,10 1,2,4,6,7 20
6 2 1 2 4,7,8,9,10 1,2,35,6 23
7 2 2 1 4,5,6,8,10 1,2,3,79 18
8 2 2 2 3,5,6,8,9 1,2,4,7,10 16

Table 3 — Design of experiments
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Figure 2 - Classification of the various runs and reference sample

Reference sample choice

The best results will be obtained with a reference sample covering a large scale of the visual evaluation. Indeed, if
we choose a sample reference better than all of the design of experiments results, these results will have a high U
variable. Thus, it will be difficult to determine the effects of each factor. The reference sample can be chosen after
the realization of the design of experiments.

Results analysis

The analysis of the experimental design is immediate from the Mann-Whitney variable. Figure 3 shows the effects
plot for the factors and interactions.

Cz2 C3 4 Cs CE c7
T TR*T TC TP*TLC T*TC
18.250
Mean
SR T IR N DU W, SR N ‘m.‘,\ .......... ___,_...n-" ..... S R
; \\
5000 113 0125 0875 0375 0125

Figure 3 — Effects plot
Z Test on the coefficients
The calculation of the theoretical residual variance is (n=m=5):



_n-m(n+m+1)

Var(U)= — 5 22.91 [Eq. 7]
Starting with this variance; we can realize the z test (Table 4).
Term effect Coeft SE coeft Z P
TP 13.25 6.625 3.39 3.91 4.5E-05
T 4.75 -2.375 3.39 1.40 0.080
TC 0.25 0.125 3.39 0.07 0.471
TP*T 2.25 1.125 3.39 0.66 0.253
TP*TC 1.75 -0.875 3.39 0.52 0.303
T*TC 0.75 -0.375 3.39 0.22 0.412
T*TP*TC 0.25 0.125 3.39 0.07 0.471

Table 4 — Z Test

Only the first term is really significant, the second term is more critical. The model found with the main effect is:
Y =11.63+6.63*TP —2.38*T [Eq. 8]

The effects of the other factors or interaction are not significant.

4.2  Strategy 2 - fictitious reference sample

In strategy 1, the U variable is calculated using a comparative evaluation between two samples. In the case of an
experimental design with n results, it would have led to carrying out C’comparisons (to make 2 by 2

comparisons). However, with a reference sample, it becomes possible to place the products on a relative scale
which is fixed for all the comparisons. If all the results of the experimental design can be evaluated in only one
sequence, the problem of the fixed relative scale disappears. We just need to calculate the U variable by supposing
a random classification. Instead of seeking a uniform reference sample on the range of product variation, we
impose a fictitious reference sample which makes it possible "to graduate” the relative position of the products. In
the absence of significant effects of the variables in the experimental design, the U variables will be randomly
distributed, and no factors will be significant.

This strategy was applied to a situation concerning an undesirable noise in a micro engine. At first sight, this noise
can easily be measured; however no correlation could be made between various noise measurements and the
unpleasant feeling for the ear. The expert has not the capability to evaluate a product on a continuous scale, but is
able to rank different products. The factors shows in Table 5 are studied to improve the product quality.

Factors Name Level 1 Level 2
grease Gra little With batch
setting RS No Yes
shock on screw Ccv No Yes
lapping Gal Min Max
ring stuck Bag No Yes
cleanliness Pro No Yes
shock on wheel CR No Yes

Table 5 - Studied Factors

A resolution 1V design of experiments was carried out with 16 runs (Table 6) with a response evaluated by an
expert. Two micro engines were realized for each configuration of the experimental design.



GRA | RS | CV | Gal | Bag | Pro | Cr P1 P2 U Variable
1 | Little | Not | Not [ Min | Live | Not | Not 3 4 0
2 | Little [ Not | Not | Max | Boit | Yes | Yes 14 8 4
3 | Little | Yes | Yes | Min | Live | Yes | Yes 23 30 12
4 | Little | Yes | Yes | Max | Boit | Not | Not 17 9 6
5 | Much | Not | Yes | Min | Boit | Not | Yes 26 31 13
6 | Much | Not | Yes | Max | Live | Yes | Not 19 18 8
7 | Much | Yes | Not | Min | Boit | Yes | Not 13 15 6
8 | Much | Yes | Not | Max | Live | Not | Yes 10 16 5
9 | Much | Yes | Yes | Max | Boit | Yes | Yes 24 27 11
10 [ Much | Yes | Yes | Min | Live | Not | Not 11 21 7
11 | Much | Not | Not | Max | Boit | Not | Not 7 22 6
12 | Much | Not | Not | Min | Live | Yes | Yes 20 25 10
13 | Little | Yes | Not | Max | Live | Yes | Not 1 5 1
14 | Little | Yes | Not | Min | Boit | Not | Yes 2 6 1
15 | Little | Not | Yes | Max | Live | Not | Yes 12 28 8
16 | Little | Not | Yes | Min | Boit | Yes | Not 29 32 14

Table 6 - Stamp test with 2 repetitions

The strategy here was not to use a reference sample as in the preceding example, but to classify the 32 micro-
engines according to the noise. Starting from this classification, we created a fictitious reference sample uniformly
distributed on the whole field covered by the tests. The ranks of the 32 micro-engines are shown in Table 7. In this
example, the reference sample contains 7 fictitious engines.

The U variable is then calculated by comparing the new ranks of engines of each test to the rank of the fictitious
sample reference. In this case, the residual variance is (n=2;m=7):
_n-m(n+m+1)

Var(U)= =11.67 [Eq. 9]
This variance makes it possible to test the level of significance of each factor with a Z test (Table 8).

Row Rank Row Rank Row Rank Row Rank
1 13-1 11 4-2 21 4-1 31 12-2
2 14-1 12 8-1 22 6-2 32 5-1
3 1-1 13 10-1 23 6-1 33 9-2
4 1-2 14 15-1 24 12-1 34 15-2
5 Ref 1 15 Ref. 3 25 Ref. 5 35 Ref. 7
6 13-2 16 7-1 26 10-2 36 16-1
7 14-2 17 2-1 27 11-2 37 3-2
8 11-1 18 7-2 28 3-1 38 5-2
9 2-2 19 8-2 29 9-1 39 16-2
10 Ref. 2 20 Ref. 4 30 Ref. 6

Table 7 - Insertion of one fictitious reference

Notation in Table 7: Row 1 — Rank 13-1 means that the best result (1) is found in the trial 13, product of the P1
column.
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Figure 4 - Result of the plan
Term effect Coeft SE coeft Z p
1 0.5 0.25 1.71 0.29 0.385
2 0 0 1.71 0.00 0.500
Gra 2.5 1.25 1.71 1.46 0.072
Gra*CV 2.76 1.38 1.71 1.62 0.053
RS 1.76 0.88 1.71 1.03 0.151
6 0.26 -0.130 1.71 0.15 0.439
CV 5.76 2.880 1.71 3.37 0.000
8 0.26 0.130 1.71 0.15 0.439
Gal 1.76 0.880 1.71 1.03 0.151
10 0.26 0.130 1.71 0.15 0.439
Bag 1.26 -0.630 1.71 0.74 0.230
12 1 0.500 1.71 0.59 0.279
Pro 2.5 -1.250 1.71 1.46 0.072
CV*Gal 1.5 -0.750 1.71 0.88 0.190
CR 2 1.000 1.71 1.17 0.121

Table 8 - Test Z on coefficients

The Z test reveals a very significant factor (CV) and two factors whose level of significance is lower (Gra and Pro).
One interaction slightly appears significant. It is easy to identify the active interaction by applying the heredity
principle starting from the active factors.

5 Discussion of the method

The aim of this section is to discuss the sampling technique and its effect on the Mann-Whitney variable and on the
accuracy of the results of the design of experiments. The Mann-Whitney variable is influenced by:

e Sample size.
e Position of reference sample compared to the position of the experimental results.
e Range of the reference sample compared to the range of the experimental results.
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In the calculation of the Mann-Whitney variable, the reference sample transforms a relative position of an
individual into a graduation. Ideally, individuals constituting the reference sample must cover all the range of
experimental results uniformly.

The larger the reference sample size is, the more the graduation will be accurate due to the largest range of U.
However, it is known that U variable is biased when sample sizes are unequal [17] [18]. It is thus recommended to
have samples of equivalent size.

Sample Size

52

The position of the reference sample compared to the range of experimental results can skew the values of U.
Indeed, if the reference sample is positioned in the extremum ranks, then U will be close to 0 or close to m.n.

Position of the reference sample



The bias introduced by the reference sample position is partly removed in the effects calculation, since the mean of
experimental results (U) is subtracted. Thus, the calculations are relatively robust in spite of a bad centering.
However, the best practice is to choose reference sample centered on the range of the experimental results to limit
bias and increase the resolution of the results.

5.3  Range of the reference sample

It is often assumed that heterogeneous variances do not affect nonparametric tests, like the Mann-Whitney test,
when sample sizes are equal. In fact, non parametric variables are sensitive to any difference in the shape of
distributions, not just in differences of location [8], [19].

We present two extreme situations where U is affected by the homogeneity of the reference sample:

o If the elements of the reference sample are similar (small variance for continued variables), the results of the
U variable tend towards O or m.n because experimental results are either higher ranked or lower ranked
(there is no covering between the individual samples), as the effects of the result are very discretized (few
possible values).

e Conversely if the reference sample covers a large range of experimental results (large variance for continued

variables), the U values tend towards the average U = m.m/2 and then the effects tend towards 0.
These situations are voluntarily extreme in order to show the importance of choosing a reference sample covering
the range of experimental results while avoiding retaining the extreme elements.

6 Conclusion

In this article, we showed that it is possible to use an experimental design on non measurable responses by using a
rank classification.

Among the interests of the method, we can note the following arguments:

e Possibility of using experimental designs with an organoleptic response.

e Simple method exploiting the standard statistical tools, which allows an implementation without using
specific software and simple interpretation of the results.

e Possibility of using the Z test to determine the significant factors.

However, to use this technique, it is necessary to meet the following three conditions:

e The criteria can be classified in order of quality or of criticality. It is recommended to clearly define the
classification criteria: defect intensity, numbers, localization or semantic scale of classification.

e The choice of the factor levels must generate variations interpretable or discernible by appraisers. If not, U

) m-n . -

values will be close to U = - and all effects will be null or negligible.

e The reference sample must be chosen with a uniform distribution on the whole field covered by the tests.
The size of the reference sample should be close to the size of the experimental sample. It is possibly to
choice a fictitious reference sample.
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