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Abstract. We obtain solvability conditions for some elliptic equations involving non Fredholm

operators, which are sums of second order differential operators with the methods of spectral theory

and scattering theory for Schrödinger type operators.
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1. Introduction

Fredholm type solvability conditions, which affirm that an operator equation is solvable if and

only if its right-hand side is orthogonal to solutions of the homogeneous adjoint equation, are used

directly or indirectly in the most methods of linear and nonlinear analysis. If the operator does not

satisfy the Fredholm property, applicability of these solvability conditions is not established. In

this work we study solvability conditions for some class of non Fredholm operators. We consider

the equation

Hu ≡ −∆u + W (x)u − au = f (1.1)

with a non-negative constant a and with some conditions on the potential W (x) which will be

specified below. If W (x) → 0 as |x| → ∞, the case studied in our previous work [23], then the

essential spectrum of the operator H consists of the half-axis [−a,∞) [15, 16, 21, 9]. Since it

contains the origin, the operator does not satisfy the Fredholm property, and the usual solvability

conditions for equation (1.1) are not applicable.
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There are two distinct cases, a = 0 and a > 0. Let us first discuss the case a = 0. It is known

that homogeneous elliptic operators with constant coefficients satisfy the Fredholm property if

considered in some specially chosen polynomial weighted spaces. For the operator H given by

(1.1) this is the case if a = 0 and W (x) ≡ 0, that is for the Laplace operator. Lower order terms

with the coefficients decaying at infinity represent compact operators if the decay rate is sufficiently

high. Therefore the operator H in the weighted spaces remains Fredholm under some conditions on

the potential. This allows one to make some conclusions about its index and solvability conditions.

This approach is based on a priori estimates of solutions obtained in [17]. The Fredholm property

of this class of operators in Sobolev spaces is studied in [13], [14]. Similar problems for elliptic

operators in Hölder spaces are investigated in [3], [4]. Exterior problems for the Laplace operator

in weighted Sobolev spaces are considered in [1], [2], and for more general operators in Hölder

spaces in [5]. The dimension of the kernel and the Fredholm property of elliptic operators of the

first order are studied in [24], [25].

The case of positive a is qualitatively different. The method described above is not applicable.

In the 1D case we can introduce exponential weighted spaces where the operator will satisfy the

Fredholm property [21]. However, in R
n with n ≥ 2 this method is not applicable neither. The

reason for this can be already seen for the case W (x) ≡ 0. If the equation is solvable, then the

right-hand side is orthogonal to all functions eipx1eiqx2 , where p2 + q2 = a, x = (x1, x2) ∈ R
2.

Hence there is a continuous family of solvability conditions while the Fredholm property implies

only a finite number of them.

The method developed in our previous work is based on the spectral theory of self-adjoint

operators [23]. Similar to the case W (x) ≡ 0 where we can use the Fourier transform and explicitly

find the solution, in the case of nonzero potential we use spectral decomposition with respect to the

functions of the continuous spectrum of the operator H0u = −∆u + Wu. This allows us to obtain

solvability conditions as orthogonality to the functions of the continuous spectrum. To the best

of our knowledge, this is the first result on solvability conditions for this class of operators. This

method is applicable both for a = 0 and a > 0. Though these solvability conditions are similar to

the usual ones, we should not forget that the operator does not satisfy the Fredholm property which

limits their application to nonlinear problems.

In this work we continue the investigation of equation (1.1) under different assumptions on

the potential. We will assume that it can be represented as W (x) = W1(x
′) + W2(x

′′), where

x = (x1, ..., xn), x′ = (x1, ..., xk), x′′ = (xk+1, ..., xn). Though the potential does not converge to

zero as |x| → ∞, we can apply the method of [23] using separation of variables. A particular case

of such equations with W1(x
′) ≡ 0 arises in reaction-diffusion problems [22].

2. Formulation of the results

For the sake of convenience we will denote independent variables by x and y and put W (x, y) =
V (x) + U(y). We begin with the operator Ha on L2(R6), such that

Hau = −∆xu + V (x)u − ∆yu + U(y)u − au
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with the Laplace operators ∆x and ∆y in x = (x1, x2, x3) and y = (y1, y2, y3), a ≥ 0 is a parameter,

the potentials V (x) and U(y) decay to zero as x, y → ∞. We investigate the conditions on the

function f(x, y) ∈ L2(R6) under which the equations

Hau = f (2.1)

and

H0u = f, (2.2)

the second one is the limiting case of the first one as a → 0, have the unique solution in L2(R6).
Thus the case of a single Schrödinger operator studied in [23] is being generalized to the case of

the sum of two such operators. We will use the spectral decomposition of self-adjoint operators.

For a function ψ(x) belonging to a Lp(Rd) space with 1 ≤ p ≤ ∞, d ∈ N its norm is being

denoted as ‖ψ‖Lp(Rd). As technical tools for estimating the appropriate norms of functions we will

be using, in particular Young’s inequality

‖f1 ∗ f2‖L∞(R3) ≤ ‖f1‖L4(R3)‖f2‖
L

4
3 (R3)

, f1 ∈ L4(R3), f2 ∈ L
4

3 (R3) ,

where * stands for the convolution. The inner product of functions on L2(Rd), d ∈ N is being

denoted as

(f1(x), f2(x))L2(Rd) :=

∫

Rd

f1(x)f̄2(x)dx;

for a vector function A(x) = (A1(x), A2(x), A3(x)), x ∈ R
3 the inner product (f1(x), A(x))L2(R3)

is the vector with the coordinates
∫

R3 f1(x)Āi(x)dx, i = 1, 2, 3. Note that with a slight abuse we

use the same notation even when functions may not be square integrable, for instance the functions

ϕk(x) and ηq(y) of the continuous spectrum of the operators −∆x + V (x) and −∆y + U(y)
respectively are normalized to Dirac delta-functions (see (3.1) and (3.2) in Section 3).

We make the following technical assumptions on the potential functions involved in the equa-

tions (2.1) and (2.2) and on the right sides of these equations.

Assumption 1. The potential functions V (x), U(y) : R
3 → R satisfy the bounds |V (x)| ≤

C

1 + |x|3.5+ε
and |U(y)| ≤ C

1 + |y|3.5+ε
with some ε > 0 and x, y ∈ R

3 a.e. such that

4
1

9

9

8
(4π)

−2

3 ‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1, 4
1

9

9

8
(4π)

−2

3 ‖U‖
1

9

L∞(R3)‖U‖
8

9

L
4
3 (R3)

< 1

√
cHLS‖V ‖

L
3
2 (R3)

< 4π,
√

cHLS‖U‖
L

3
2 (R3)

< 4π

Here cHLS is the constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x − y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3) (2.3)

and given on p.98 of [12].
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Assumption 2. The function f(x, y) ∈ L2(R6) and |x|f(x, y) ∈ L1(R6), |y|f(x, y) ∈ L1(R6).

Here and further down C denotes a finite positive constant. Due to our assumptions on the po-

tentials the essential spectrum σess(Ha) of the Schrödinger type operator Ha = H0 − a fills the

interval [−a, ∞) (see e.g. [9] ), the Fredholm alternative theorem does not work. The problem

can be trivially handled by the method of the Fourier transform when the potential terms V (x) and

U(y) vanish. We prove that the method can be generalized in the presence of shallow, short-range

V (x) and U(y) replacing the standard Fourier harmonics by the functions ϕk(x)ηq(y), k, q ∈ R
3

of the continuous spectrum of the operator H0. These functions satisfy the Lippmann-Schwinger

equations (see (3.1), (3.2)) in Section 3 and the explicit formulas (3.3).

While the wave vectors k, q attain all the possible values in R
3, the functions ϕ0(x) and η0(y)

correspond to k, q = 0 in the formulas (3.1), (3.2) and (3.3). The sphere of radius r in R
d, d ∈ N

centered at the origin is being designated as Sd
r , the unit one as Sd and |Sd| denotes its Lebesgue

measure. Our first main theorem is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then

a) Problem (2.1) admits a unique solution u(x, y) ∈ L2(R6) if and only if

(f(x, y), ϕk(x)ηq(y))L2(R6) = 0 for (k, q) ∈ S6√
a a.e.

b) Problem (2.2) has a unique solution u(x, y) ∈ L2(R6).

Remark 4. Note that as distinct from the single Schrödinger operator case studied in [23], part

b) of Theorem 3 does not require any orthogonality conditions at all.

In the second part of the article we study the operator La on L2(Rn+3), n ∈ N, such that

Lau = −∆xu − ∆yu + U(y)u − au

with x = (x1, x2, ..., xn) ∈ R
n, y = (y1, y2, y3) ∈ R

3, a ≥ 0 and the potential U(y) satisfy-

ing the same assumptions as before. We establish the solvability conditions in L2(Rn+3) for the

inhomogeneous elliptic problems

Lau = φ (2.4)

and

L0u = φ , (2.5)

where L0 is the limiting case of the operator La when a → 0 and φ(x, y) ∈ L2(Rn+3). We impose

the following technical conditions on the right side of the equations (2.4) and (2.5).

Assumption 5. We have φ(x, y) ∈ L2(Rn+3), |x|φ(x, y) ∈ L1(Rn+3) and |y|φ(x, y) ∈ L1(Rn+3).

As for the potential term U(y) involved in the left sides of the equations (2.4) and (2.5), we assume

the same technical conditions to hold as in the first Theorem. Thus for the operator La the essential

spectrum coincides with the semi-axis [−a, ∞) and the Fredholm alternative theorem fails to work.
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Theorem 6. Let Assumption 5 hold and the function U(y) satisfy Assumption 1. Then

a) Equation (2.4) possesses a unique solution u(x, y) ∈ L2(Rn+3), n ∈ N if and only if

(φ(x, y),
eikx

(2π)
n
2

ηq(y))L2(Rn+3) = 0 for (k, q) ∈ Sn+3√
a

a.e.

b) When n = 1 equation (2.5) admits a unique solution u(x, y) ∈ L2(R4) if and only if

(φ(x, y), η0(y))L2(R4) = 0

c) When n ≥ 2 equation (2.5) admits a unique solution u(x, y) ∈ L2(Rn+3).

Remark 7. Note that the solvability conditions for equation (2.5) depend on the dimensions of the

problem, such that we have the explicit one in case b) and no orthogonality conditions are required

at all in higher dimensions as stated in case c).

In the third part of the article we consider the operator L = −∆x+V (x)−∆y +V(y) on L2(R3+m)
with the Laplacian operators ∆x and ∆y such that x = (x1, x2, x3) ∈ R

3, y = (y1, y2, ..., ym) ∈
R

m, m ∈ N and prove the necessary and sufficient conditions for the solvability in L2(R3+m) of

the following inhomogeneous problem

Lu = g(x, y), (2.6)

where g(x, y) ∈ L2(R3+m). Note that problem (2.6) is the extension of the elliptic equation studied

in the second part of [23] to the case of the potential function V (x) explicitly present in it, which

is assumed to satisfy the same assumptions as in the first part of our article and x ∈ R
3. The

assumptions on the second potential function V(y) are analogous to those in [23].

Assumption 8. The function V(y) : R
m → R is continuous and limy→∞V(y) = V+ > 0.

Thus for the operator h := −∆y + V(y) on L2(Rm) the essential spectrum σess(h) = [V+,∞).
Let us denote the eigenvalues of the operator h located below V+ as ej, ej < ej+1, j ≥ 1 and the

corresponding elements of the orthonormal set of eigenfunctions as ψl
j , such that hψl

j = ejψ
l
j, 1 ≤

l ≤ mj, (ψl
i, ψ

s
j )L2(Rm) = δi,jδl,s, where mj stands for the eigenvalue multiplicity, which is finite

since the essential spectrum starts only at V+ and δi,j denotes the Kronecker symbol. We make the

following key assumption on the discrete spectrum of the operator h relevant to the problem (2.6).

Assumption 9. The eigenvalues ej < 0 for all 1 ≤ j ≤ N − 1, N ≥ 1 and eN = 0.

Hence under our assumptions the operator L is not Fredholm. The bottom of the essential spectrum

of the operator −∆x + V (x), which is unitarily equivalent to the free Laplacian in our problem

(see Section 3) is zero and h has the square integrable zero modes. Furthermore, the operator

h has the negative eigenvalues ej, j = 1, ..., N − 1 and −∆x + V (x) has the functions of the

continuous spectrum ϕk(x), such that k ∈ S3√
−ej

. However, equation (2.6) can be solved on the

proper subspace with the orthogonality conditions stated precisely below. Our third main result is

as follows.
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Theorem 10. Let the potential function V (x) satisfy Assumption 1, Assumptions 8 and 9 hold,

g(x, y) ∈ L2(R3+m) and |x|α
2 g(x, y) ∈ L2(R3+m) with some α > 5. Then equation (2.6) admits a

unique solution u(x, y) ∈ L2(R3+m) if and only if:

(g(x, y), ϕ0(x)ψl
N(y))L2(R3+m) = 0, 1 ≤ l ≤ mN and

(g(x, y), ϕk(x)ψl
j(y))L2(R3+m) = 0, 1 ≤ l ≤ mj, k ∈ S3√

−ej
a.e., 1 ≤ j ≤ N − 1

Establishing solvability conditions for linear elliptic problems involving non Fredholm operators

plays the significant role in various applications including the existence of travelling wave solutions

of reaction-diffusion systems (see e.g. [22]).

3. Properties of the operator H0 and proof of Theorem 3

The functions of the continuous spectrum of the operator −∆x + V (x) are solutions to the Lipp-

mann-Schwinger equation (see e.g. [18] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x − y| (V ϕk)(y)dy (3.1)

with the orthogonality conditions (ϕk(x), ϕk1
(x))L2(R3) = δ(k − k1), k, k1 ∈ R

3. Let us define

the integral operator

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x − y| (V ϕ)(y)dy, ϕ ∈ L∞(R3)

Similarly the functions of the continuous spectrum of the operator −∆y + U(y) satisfy

ηq(y) =
eiqy

(2π)
3

2

− 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uηq)(z)dz (3.2)

and the orthogonality relations (ηq(y), ηq1
(y))L2(R3) = δ(q−q1), q, q1 ∈ R

3. Therefore, it makes

sense to define the integral operator

(Pη)(y) := − 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uη)(z)dz, η ∈ L∞(R3)

For the potentials V (x) and U(y) satisfying Assumption 1 we have the estimates for the operator

norms of Q : L∞(R3) → L∞(R3) and P : L∞(R3) → L∞(R3) denoted as ‖Q‖∞ and ‖P‖∞
respectively. These k and q independent bounds are proven in Lemma 2.1 of [23], namely

‖Q‖∞ ≤ 4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1

6



and

‖P‖∞ ≤ 4
1

9

9

8
(4π)−

2

3‖U‖
1

9

L∞(R3)‖U‖
8

9

L
4
3 (R3)

< 1 ,

via Assumption 1 which enables us to express the functions of the continuous spectrum as

ϕk(x) = (I − Q)−1 eikx

(2π)
3

2

, ηq(y) = (I − P )−1 eiqy

(2π)
3

2

, k, q ∈ R
3 (3.3)

and obtain the trivial estimates on their norms (see Corollary 2.2 of [23])

‖ϕk(x)‖L∞(R3) ≤
1

1 − ‖Q‖∞
1

(2π)
3

2

, ‖ηq(y)‖L∞(R3) ≤
1

1 − ‖P‖∞
1

(2π)
3

2

We revise the argument of Lemma 2.3 of [23]. By means of inequality (2.3) and Assumption 1

the Rollnik norms for both potentials V (x) and U(y) (see e.g. [20]) given by

‖V ‖2
R :=

∫

R3

∫

R3

|V (x)||V (y)|
|x − y|2 dxdy, ‖U‖2

R :=

∫

R3

∫

R3

|U(x)||U(y)|
|x − y|2 dxdy

are bounded above, such that

‖V ‖R < 4π, ‖U‖R < 4π

which yields the self-adjointness of the operators −∆x+V (x) and −∆y+U(y) on L2(R3) and their

unitary equivalence to −∆x and −∆y respectively (see [10], also [19]) via the wave operators

Ω±
V := s − limt→∓∞eit(−∆+V )eit∆, Ω±

U := s − limt→∓∞eit(−∆+U)eit∆

with the limits understood in the strong L2 sense (see e.g. [18] p.34, [6] p.90). The spectral

theorem implies that any function in L2(R6) can be expanded through the products of the functions

of the continuous spectrum ϕk(x)ηq(y), k, q ∈ R
3 which form the complete system in L2(R6).

Let
˜̃
f(k, q) denote the generalized Fourier transform of the function f(x, y) with respect to these

functions , namely
˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R

3

We have the following auxiliary statement.

Lemma 11. Let Assumptions 1 and 2 hold. Then

(∇k + ∇q)
˜̃
f(k, q) ∈ L∞(R6)

Proof. Clearly we need to estimate the sum

(f(x, y),∇kϕk(x)ηq(y))L2(R6) + (f(x, y), ϕk(x)∇qηq(y))L2(R6) (3.4)

From the Lippmann-Schwinger equations (3.1) and (3.2) we easily obtain

∇kϕk(x) =
eikx

(2π)
3

2

ix + (I − Q)−1Q
eikx

(2π)
3

2

ix + (I − Q)−1(∇kQ)(I − Q)−1 eikx

(2π)
3

2

(3.5)
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and

∇qηq(y) =
eiqy

(2π)
3

2

iy + (I − P )−1P
eiqy

(2π)
3

2

iy + (I − P )−1(∇qP )(I − P )−1 eiqy

(2π)
3

2

(3.6)

with the operators ∇kQ : L∞(R3) → L∞(R3; C3) and ∇qP : L∞(R3) → L∞(R3; C3) having the

integral kernels

∇kQ(x, y, k) = − 1

4π
ei|k||x−y|i

k

|k|V (y)

and

∇qP (y, z, q) = − 1

4π
ei|q||y−z|i

q

|q|U(z)

respectively. A trivial computation gives the upper bounds for their norms

‖∇kQ‖∞ ≤ 1

4π
‖V ‖L1(R3) < ∞ and ‖∇qP‖∞ ≤ 1

4π
‖U‖L1(R3) < ∞

by means of the rate of decay of the potentials V (x) and U(y) stated explicitly in Assumption 1

By means of representation (3.5) the first term in (3.4) can be written as the sum of the three terms

T1(k, q) + T2(k, q) + T3(k, q), where the first one is

T1(k, q) := (f(x, y),
eikx

(2π)
3

2

ixηq(y))L2(R6)

Clearly we have the bound

|T1(k, q)| ≤ 1

(2π)3

1

1 − ‖P‖∞

∫

R3

dx

∫

R3

dy|x||f(x, y)| < ∞

due to Assumption 2. The second term

T2(k, q) := (f(x, y), (I − Q)−1Q
eikx

(2π)
3

2

ixηq(y))L2(R6)

can be estimated as

|T2(k, q)| ≤ 1

(2π)3

1

1 − ‖P‖∞
1

1 − ‖Q‖∞
‖f‖L1(R6)‖Qeikxx‖L∞(R3)

We obtain the upper bound using the definition of the operator Q and Young’s inequality

|Qeikxx| ≤ 1

4π

∫

R3

|V (y)||y|
|x − y| dy =

1

4π
{
( 1

|x|χ{|x|≤1}

)
∗ |V (x)||x| +

( 1

|x|χ{|x|>1}

)
∗ |V (x)||x|} ≤

≤ 1

4π
{‖V (y)y‖L∞(R3)

∫ 1

0

4πrdr + ‖χ{|x|>1}
1

|x|‖L4(R3)‖V (x)x‖
L

4
3 (R3)

} < ∞
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and k-independent since V (x)x ∈ L∞(R3)∩L
4

3 (R3) by means of the rate of decay of the potential

function V (x) given in Assumption 1. Here and further down χA stands for the characteristic

function of a set A. By means of Assumption 2 and Fact 2 of the Appendix f(x, y) ∈ L1(R6).
Hence T2(k, q) ∈ L∞(R6). The third term is given by

T3(k, q) := (f(x, y), (I − Q)−1(∇kQ)(I − Q)−1 eikx

(2π)
3

2

ηq(y))L2(R6)

We estimate from above

|T3(k, q)| ≤ 1

4π(2π)3
‖f‖L1(R6)‖V ‖L1(R3)

1

(1 − ‖Q‖∞)2

1

1 − ‖P‖∞
< ∞

uniformly for all k, q ∈ R
3. Thus T3(k, q) ∈ L∞(R6). Similarly we express the second term in

(3.4) as the sum of the terms R1(k, q) + R2(k, q) + R3(k, q) with

R1(k, q) := (f(x, y), ϕk(x)
eiqy

(2π)
3

2

iy)L2(R6)

Obviously

|R1(k, q)| ≤ 1

(2π)3

1

1 − ‖Q‖∞

∫

R3

dx

∫

R3

dy|y||f(x, y)| < ∞

The next term is given by

R2(k, q) := (f(x, y), ϕk(x)(I − P )−1P
eiqy

(2π)
3

2

iy)L2(R6) ,

such that

|R2(k, q)| ≤ 1

(2π)3

1

1 − ‖Q‖∞
1

1 − ‖P‖∞
‖f‖L1(R6)‖Peiqyy‖L∞(R3)

The definition of the integral operator P along with Young’s inequality yield

|Peiqyy| ≤ 1

4π

∫

R3

|U(z)|
|y − z| |z|dz =

1

4π
{
(
χ{|y|≤1}

1

|y|
)
∗ |U(y)||y| +

(
χ{|y|>1}

1

|y|
)
∗ |U(y)||y|} ≤

≤ 1

4π
{‖U(y)y‖L∞(R3)

∫ 1

0

4πrdr + ‖χ{|y|>1}
1

|y|‖L4(R3)‖U(y)y‖
L

4
3 (R3)

} < ∞

and q-independent since U(y)y ∈ L∞(R3) ∩ L
4

3 (R3) due to the rate of decay of the potential

function U(y) stated explicitly in Assumption 1. Thus R2(k, q) ∈ L∞(R6). Therefore, it remains

to estimate the term

R3(k, q) := (f(x, y), ϕk(x)(I − P )−1(∇qP )(I − P )−1 eiqy

(2π)
3

2

)L2(R6)

for which we easily obtain the bound uniform in k, q ∈ R
3

|R3(k, q)| ≤ 1

4π(2π)3
‖f‖L1(R6)‖U‖L1(R3)

1

(1 − ‖P‖∞)2

1

1 − ‖Q‖∞
< ∞

9



Armed with the technical lemma above we proceed to prove Theorem 3.

Proof of Theorem 3. Assume first that equation (2.1) admits two solutions u1, u2 ∈ L2(R6). Then

their difference w(x, y) := u1(x, y) − u2(x, y) ∈ L2(R6) satisfies the homogeneous equation

Haw = 0

Since the operator Ha on L2(R6) is unitarily equivalent to −∆x−∆y−a, it has no nontrivial square

integrable zero modes, and therefore w(x, y) vanishes a.e. The analogous uniqueness argument

works for the square integrable solutions of equation (2.2). By applying the generalized Fourier

transform with respect to the functions of the continuous spectrum ϕk(x) and ηq(y) to equation

(2.1) we easily obtain

˜̃u(k, q) =
˜̃
f(k, q)

k2 + q2 − a

For technical purposes we will be using the spherical layer in the space of six dimensions

Aσ := {(k, q) ∈ R
6 :

√
a − σ ≤

√
k2 + q2 ≤

√
a + σ}, 0 < σ <

√
a ,

such that χAσ
and χAσ

c denote the characteristic functions of the layer and its complement respec-

tively. Thus we arrive at

˜̃u(k, q) =
˜̃
f(k, q)

k2 + q2 − a
χAσ

+
˜̃
f(k, q)

k2 + q2 − a
χAσ

c (3.7)

For the second term in the right side of the identity above we have the estimate

∣∣∣
˜̃
f(k, q)

k2 + q2 − a
χAσ

c

∣∣∣ ≤ | ˜̃f(k, q)|
σ
√

a
∈ L2(R6)

Clearly, we have the representation
˜̃
f(k, q) = ˜̃

f(
√

a, ω) +

∫ √
k2+q2

√
a

∂
˜̃
f(|s|, ω)

∂|s| d|s|. Here and fur-

ther down ω stands for the angle variables on the sphere and dω denotes integration with respect

to these variables. This enables us to split the first term in the right side of (3.7) into the sum
˜̃u1(k, q) + ˜̃u2(k, q) with

˜̃u1(k, q) =
˜̃
f(
√

a, ω)

k2 + q2 − a
χAσ

, ˜̃u2(k, q) =

∫√k2+q2

√
a

∂
˜̃
f(|s|,ω)
∂|s| d|s|

k2 + q2 − a
χAσ

By means of Lemma 11

|˜̃u2(k, q)| ≤ C
χAσ√

a
∈ L2(R6)

Therefore, it remains to estimate the norm ‖˜̃u1(k, q)‖2
L2(R6) equal to

∫ √
a+σ

√
a−σ

d(
√

k2 + q2)
(
√

k2 + q2)5

(
√

k2 + q2 −√
a)2(

√
k2 + q2 +

√
a)2

∫

S6

dω| ˜̃f(
√

a, ω)|2 ,

10



which is finite if and only if (f(x, y), ϕk(x)ηq(y))L2(R6) = 0 for (k, q) ∈ S6√
a

a.e, which completes

the proof of Part a) of the Theorem. Similarly for equation (2.2)

˜̃u(k, q) =
˜̃
f(k, q)

k2 + q2

Again we split the expression into the nonsingular and the singular parts, such that

˜̃u(k, q) =
˜̃
f(k, q)

k2 + q2
χ{k2+q2>1} +

˜̃
f(k, q)

k2 + q2
χ{k2+q2≤1}

Obviously
∣∣∣

˜̃
f(k, q)

k2 + q2
χ{k2+q2>1}

∣∣∣ ≤ | ˜̃f(k, q)| ∈ L2(R6)

The remaining expression will be estimated with the help of the identity

˜̃
f(k, q) = ˜̃

f(0) +

∫ √
k2+q2

0

∂
˜̃
f(|s|, ω)

∂|s| d|s|

Lemma 11 yields

∣∣∣∣∣

∫√k2+q2

0
∂

˜̃
f(|s|,ω)
∂|s| d|s|

k2 + q2
χ{k2+q2≤1}

∣∣∣∣∣ ≤
C√

k2 + q2
χ{k2+q2≤1} ∈ L2(R6)

Thus it remains to estimate

∥∥∥
˜̃
f(0)

k2 + q2
χ{k2+q2≤1}

∥∥∥
2

L2(R6)
= | ˜̃f(0)|2

∫ 1

0

rdr|S6| < ∞

since | ˜̃f(k, q)| ≤ ‖f‖L1(R6)‖ϕk‖L∞(R3)‖ηq‖L∞(R3) < ∞, k, q ∈ R
3 which means that no orthog-

onality conditions are required for Part b) of the theorem.

✷

4. Properties of the operator L0 and proof of Theorem 6

The operator L0 is the sum of two operators. The first one is −∆x acting on L2(Rn), n ∈ N

and the functions of its continuous spectrum are the Fourier harmonics
eikx

(2π)
n
2

, k ∈ R
n. The sec-

ond one is the Schrödinger operator −∆y + U(y) on L2(R3) unitarily equivalent to −∆y via the

wave operators which is discussed in Section 3 and the functions of its continuous spectrum are

ηq(y), q ∈ R
3. Let

˜̂
φ(k, q) denote the generalized Fourier transform with respect to the products of

11



the functions of the continuous spectrum
eikx

(2π)
n
2

ηq(y) forming the complete system in L2(Rn+3),

namely

˜̂
φ(k, q) := (φ(x, y),

eikx

(2π)
n
2

ηq(y))L2(Rn+3), k ∈ R
n, q ∈ R

3

We establish the following auxiliary statement.

Lemma 12. Let Assumptions 1 and 5 hold. Then

(∇k + ∇q)
˜̂
φ(k, q) ∈ L∞(Rn+3), n ∈ N

Proof. Obviously we need to take care of the following sum

(φ(x, y),∇k

eikx

(2π)
n
2

ηq(y))L2(Rn+3) + (φ(x, y),
eikx

(2π)
n
2

∇qηq(y))L2(Rn+3) (4.1)

For the first term by means of Assumption 5 we have the finite and k, q independent upper bound

∣∣∣(φ(x, y),
eikxix

(2π)
n
2

ηq(y))L2(Rn+3)

∣∣∣ ≤ 1

(2π)
n+3

2

1

1 − ‖P‖∞
‖xφ‖L1(Rn+3)

The second term in (4.1) can be written as the sum of three expressions S1(k, q) + S2(k, q) +
S3(k, q), such that the first one

S1(k, q) := (φ(x, y),
eikx

(2π)
n
2

eiqy

(2π)
3

2

iy)L2(Rn+3)

can be easily estimated as |S1(k, q)| ≤ 1

(2π)
n+3

2

‖yφ‖L1(Rn+3) < ∞ for all k ∈ R
n, q ∈ R

3 due

to Assumption 5. For the second expression

S2(k, q) := (φ(x, y),
eikx

(2π)
n
2

(I − P )−1P
eiqy

(2π)
3

2

iy)L2(Rn+3)

we obtain the upper bound

|S2(k, q)| ≤ 1

(2π)
n+3

2

‖φ‖L1(Rn+3)

1

1 − ‖P‖∞
‖Peiqyy‖L∞(R3)

The function φ(x, y) ∈ L1(Rn+3) via Assumption 5 and Fact 2 of the Appendix. The estimate on

the term ‖Peiqyy‖L∞(R3) established in the proof of Lemma 11 yields S2(k, q) ∈ L∞(Rn+3). We

complete the proof of the Lemma with the estimate on the third expression

S3(k, q) := (φ(x, y),
eikx

(2π)
n
2

(I − P )−1(∇qP )(I − P )−1 eiqy

(2π)
3

2

)L2(Rn+3)

such that

|S3(k, q)| ≤ 1

4π

1

(2π)
n+3

2

‖U‖L1(R3)

1

(1 − ‖P‖∞)2
‖φ‖L1(Rn+3)

Hence S3(k, q) ∈ L∞(Rn+3).

12



Establishing Lemma 12 enables us to prove Theorem 6.

Proof of Theorem 6. Assume that equation (2.4) admits two solutions u1, u2 ∈ L2(Rn+3) such

that their difference w(x, y) := u1(x, y) − u2(x, y) ∈ L2(Rn+3) is a solution to the homogeneous

equation

Law = 0

Since the operator La on L2(Rn+3) is unitarily equivalent to −∆x − ∆y − a, it possesses no

nontrivial zero modes w ∈ L2(Rn+3), we arrive at w(x, y) = 0 a.e. Analogously the uniqueness

argument works for the square integrable solutions of problem (2.5). We apply the generalized

Fourier transform with respect to the functions of the continuous spectrum
eikx

(2π)
n
2

, k ∈ R
n and

ηq(y), q ∈ R
3 to equation (2.4) and obtain

˜̂u(k, q) =
˜̂
φ(k, q)

k2 + q2 − a

Let us introduce the auxiliary spherical layer in the space of n + 3 dimensions

Bσ = {(k, q) ∈ R
n+3 :

√
a − σ ≤

√
k2 + q2 ≤

√
a + σ}, 0 < σ <

√
a

such that χBσ
and χBc

σ
denote the characteristic functions of the layer and of its complement

respectively. This enables us to split the right side of the equality above into the singular and the

regular parts, such that

˜̂u(k, q) =
˜̂
φ(k, q)

k2 + q2 − a
χBσ

+
˜̂
φ(k, q)

k2 + q2 − a
χBc

σ
(4.2)

Obviously
∣∣∣

˜̂
φ(k, q)

k2 + q2 − a
χBc

σ

∣∣∣ ≤ |˜̂φ(k, q)|√
aσ

∈ L2(Rn+3)

We will make use of the representation
˜̂
φ(k, q) =

˜̂
φ(
√

a, ω) +

∫ √
k2+q2

√
a

∂
˜̂
φ(|s|, ω)

∂|s| d|s|. Thus the

first term in the right side of (4.2) can be written as ˜̂u1(k, q) + ˜̂u2(k, q) with

˜̂u1(k, q) :=
˜̂
φ(
√

a, ω)

k2 + q2 − a
χBσ

, ˜̂u2(k, q) :=

∫√k2+q2

√
a

∂ b̃φ(|s|,ω)
∂|s| d|s|

k2 + q2 − a
χBσ

By means of Lemma 12 | ˜̂u2(k, q)| ≤ C
χBσ√

a
∈ L2(Rn+3). Finally we estimate

‖ ˜̂u1(k, q)‖2
L2(Rn+3) =

∫ √
a+σ

√
a−σ

dr
rn+2

(r −√
a)2(r +

√
a)2

∫

Sn+3

dω|˜̂φ(
√

a, ω)|2 < ∞
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if and only if
˜̂
φ(
√

a, ω) = 0 a.e. on Sn+3√
a

which is equivalent to the orthogonality condition

(φ(x, y),
eikx

(2π)
n
2

ηq(y))L2(Rn+3) = 0 for (k, q) ∈ Sn+3√
a

a.e., n ∈ N as stated in part a) of the

theorem.

Then we analogously apply the generalized Fourier transform with respect to the functions
eikx

(2π)
n
2

, k ∈ R
n and ηq(y), q ∈ R

3 to equation (2.5) which yields

˜̂u(k, q) =
˜̂
φ(k, q)

k2 + q2
χ{k2+q2>1} +

˜̂
φ(k, q)

k2 + q2
χ{k2+q2≤1}

The first term in the right side of the identity above is nonsingular and can be easily estimated as

∣∣∣
˜̂
φ(k, q)

k2 + q2
χ{k2+q2>1}

∣∣∣ ≤ |˜̂φ(k, q)| ∈ L2(Rn+3)

We write
˜̂
φ(k, q) =

˜̂
φ(0) +

∫ √
k2+q2

0

∂
˜̂
φ(|s|, ω)

∂|s| d|s|. Hence it remains to study the square integra-

bility of the sum of two terms ˜̂u3(k, q) + ˜̂u4(k, q) such that

˜̂u3(k, q) :=
˜̂
φ(0)

k2 + q2
χ{k2+q2≤1} , ˜̂u4(k, q) :=

∫√k2+q2

0
∂ b̃φ(|s|,ω)

∂|s| d|s|
k2 + q2

χ{k2+q2≤1}

Using Lemma 12 we arrive at |˜̂u4(k, q)| ≤ C√
k2 + q2

χ{k2+q2≤1} ∈ L2(Rn+3). Finally we compute

‖˜̂u3‖2
L2(Rn+3) = |˜̂φ(0)|2|Sn+3|

∫ 1

0

rn−2dr

Note that |˜̂φ(k, q)| ≤ 1

(2π)
n
2

‖ηq‖L∞(R3)‖φ‖L1(Rn+3) < ∞, k ∈ R
n, q ∈ R

3. The L2 norm above is

finite in all dimensions n ≥ 2. When dimension n = 1 this norm is finite if and only if
˜̂
φ(0) = 0

which is equivalent to the orthogonality condition (φ(x, y), η0(y))L2(R4) = 0.

✷

5. Properties of the operator L and proof of Theorem 10

By means of the spectral theorem the identity operator on L2(Rm) can be written as I = P+ +
P0 + P−, where P± and P0 denote the orthogonal projections onto the positive, negative and zero

14



subspaces of the operator h. Then problem (2.6) can be easily related to the equivalent system of

three equations

L+u+ = g+ (5.1)

L−u− = g− (5.2)

L0u0 = g0 (5.3)

with the operators L± = P±LP± and L0 = P0LP0 applied to the functions u± = P±u and

u0 = P0u respectively and the right sides of these equations g± = P±g and g0 = P0g. For the first

of the equations above we have the following statement.

Lemma 13. Let assumptions of Theorem 10 hold. Then equation (5.1) admits a solution u+ ∈
L2(R3+m), m ∈ N.

Proof. The orthogonal decomposition g = g+ + g0 + g− yields ‖g+‖L2(R3+m) ≤ ‖g‖L2(R3+m). For

the operator L+ on L2(R3)⊗Ran(P+) we have the following lower bound in the sense of quadratic

forms

L+ ≥ P+hP+ ≥ eN+1 > 0

where eN+1 stands for either the smallest positive eigenvalue of the operator h or the bottom of its

essential spectrum, whichever is smaller. Ran(P+) denotes the range of the projection operator P+.

Hence the self-adjoint operator L+ has the inverse L−1
+ : L2(R3)⊗Ran(P+) → L2(R3+m) with the

norm estimated from above by
1

eN+1

. Therefore, equation (5.1) admits the solution u+ = L−1
+ g+

such that

‖u+‖L2(R3+m) ≤
1

eN+1

‖g‖L2(R3+m) < ∞

Next we turn our attention to equation (5.3). Without loss of generality it is being assumed that

g0(x, y) = v0(x)ψ1
N(y) = (g(x, y), ψ1

N(y))L2(Rm)ψ
1
N(y).

Lemma 14. Let assumptions of Theorem 10 hold. Then equation (5.3) possesses a solution u0 ∈
L2(R3+m), m ∈ N if and only if

(g(x, y), ϕ0(x)ψk
N(y))L2(R3+m) = 0, 1 ≤ k ≤ mN

Proof. Since the operator −∆x+V (x) has no nontrivial square integrable zero modes (see Section

3), we have u0(x, y) = ξ(x)ψ1
N(y). This allows us to relate equation (5.3) to the problem

(−∆x + V (x))ξ(x) = v0(x) (5.4)

For its right side using Schwarz inequality we establish the square integrability

‖v0‖2
L2(R3) =

∫

R3

|(g(x, y), ψ1
N(y))L2(Rm)|2dx ≤ ‖g‖2

L2(R3+m) < ∞
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To show the finiteness of another norm Schwarz inequality is being used as well

‖xv0‖L1(R3) =

∫

R3

|x||(g(x, y), ψ1
N(y))L2(Rm)|dx ≤

≤
∫

R3

dx
|x|√

1 + |x|α
√

1 + |x|α
√∫

Rm

dy|g(x, y)|2

with some α > 5 such that |x|α
2 g(x, y) ∈ L2(R3+m). By means of Schwarz inequality this can be

estimated from above as

√∫ ∞

0

4πr4

1 + rα
dr

√
‖g‖2

L2(R3+m) + ‖|x|α
2 g‖2

L2(R3+m) < ∞

Hence Assumption 1.1 of [23] holds for equation ( 5.4) and therefore by means of Theorem 1

of [23] we obtain the necessary and sufficient solvability conditions in L2(R3) for it, namely

(v0(x), ϕ0(x))L2(R3) = 0, which yields the statement of the lemma.

Lemma 15. Let assumptions of Theorem 10 hold. Then equation ( 5.2) possesses a solution u− ∈
L2(R3+m), m ∈ N if and only if

(g(x, y), ϕk(x)ψl
j(y))L2(R3+m) = 0, 1 ≤ l ≤ mj, k ∈ S3√

−ej
a.e., 1 ≤ j ≤ N − 1

Proof. We denote the orthogonal projections onto the eigenspaces correspondent to the negative

eigenvalues {ej}N−1
j=1 of the operator h as {P−,j}N−1

j=1 , such that

P− =
N−1∑

j=1

P−,j, P−,jP−,m = P−,jδj,m, 1 ≤ j, m ≤ N − 1

Application of these projections to equation ( 5.2) easily yields the system of equations equivalent

to it

(−∆x + V (x) + h)u−,j = g−,j, 1 ≤ j ≤ N − 1 (5.5)

with P−,ju− = u−,j and P−,jg− = g−,j such that u− =
∑N−1

j=1 u−,j and g− =
∑N−1

j=1 g−,j . We

assume that g−,j(x, y) = vj(x)ψ1
j (y) = (g(x, y), ψ1

j (y))L2(Rm)ψ
1
j (y), 1 ≤ j ≤ N − 1. Then

equation (5.5) becomes

(−∆x + V (x) + ej)u−,j = vj(x)ψ1
j (y), 1 ≤ j ≤ N − 1

We write u−,j(x, y) = ξj(x)ψ1
j (y) since the operator −∆x +V (x) has no positive eigenvalues with

corresponding eigenfunctions in L2(R3) (see Section 3), which yields

(−∆x + V (x) + ej)ξj(x) = vj(x), 1 ≤ j ≤ N − 1 (5.6)
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For the right side of the equation above by means of Schwarz inequality

‖vj‖2
L2(R3) =

∫

R3

|(g(x, y), ψ1
j (y))L2(Rm)|2dx ≤ ‖g‖2

L2(R3+m) < ∞

To estimate the norm below Schwarz inequality is being used as well

‖xvj(x)‖L1(R3) =

∫

R3

dx|x||(g(x, y), ψ1
j (y))L2(Rm)| ≤

≤
∫

R3

dx
|x|√

1 + |x|α
√

1 + |x|α
√∫

Rm

|g(x, y)|2dy

with some α > 5 such that |x|α
2 g(x, y) ∈ L2(R3+m). Schwarz inequality yields the following

upper bound for the expression above

√∫ ∞

0

4πr4

1 + rα
dr

√
‖g‖2

L2(R3+m) + ‖|x|α
2 g‖2

L2(R3+m) < ∞

Therefore, Assumption 1.1 of [23] is satisfied for equation (5.6) and Theorem 1 of [23] yields the

necessary and sufficient solvability condition in L2(R3) for it, namely

(vj(x), ϕk(x))L2(R3) = 0 for k ∈ S3√
−ej

a.e. which implies the statement of the lemma.

Proof of Theorem 10. The solution of equation (2.6) is being constructed as u := u+ + u0 + u−,

such that the existence of u+, u0, u− ∈ L2(R3+m) is proven in Lemmas 13, 14 and 15 respectively.

Suppose problem (2.6) possesses two solutions u1, u2 ∈ L2(R3+m). Then the function v :=
u1 − u2 ∈ L2(R3+m) is a solution of the homogeneous problem with separation of variables

Lv = 0

which solutions are linear combinations of functions cl
j(x)ψl

j(y), 1 ≤ l ≤ mj, 1 ≤ j ≤ N

since equation ( 5.1) with vanishing right side admits only the trivial solution in L2(R3+m) (see

Lemma 13). But cl
j(x), 1 ≤ l ≤ mj, 1 ≤ j ≤ N vanish a.e. since the operator −∆x + V (x)

does not have nonnegative eigenvalues with corresponding eigenfunctions in L2(R3) (see Section

3).

✷
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Appendix

Fact 1 Let f(x) ∈ L2(Rn) and |x|f(x) ∈ L1(Rn), n ∈ N. Then f(x) ∈ L1(Rn).

Proof. We estimate the norm ‖f‖L1(Rn) from above using Schwarz inequality by

√∫

|x|≤1

|f(x)|2dx

√∫

|x|≤1

dx +

∫

|x|>1

|x||f(x)|dx ≤ ‖f‖L2(Rn)

√
|Bn| + ‖xf‖L1(Rn) < ∞

where |Bn| denotes the Lebesgue measure of a unit ball in the space of n dimensions.

✷

Fact 2 Let f(x, y) ∈ L2(Rn+m), |x|f(x, y) ∈ L1(Rn+m) and |y|f(x, y) ∈ L1(Rn+m) with

x ∈ R
n and y ∈ R

m, n, m ∈ N. Then f(x, y) ∈ L1(Rn+m).

Proof. It can be easily estimated that

∫

Rn+m

√
|x|2 + |y|2|f(x, y)|dxdy ≤

∫

Rn+m

|x||f(x, y)|dxdy +

∫

Rn+m

|y||f(x, y)|dxdy < ∞

Therefore, f(x, y) ∈ L1(Rn+m) by means of Fact 1.

✷
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