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Existence of Waves for a Nonlocal Reaction-Diffusion Equation

I. Demin ∗ and V. Volpert

Institut Camille Jordan, University Lyon 1, UMR 5208 CNRS

69622 Villeurbanne, France

Abstract. In this work we study a nonlocal reaction-diffusion equation arising in population dy-

namics. The integral term in the nonlinearity describes nonlocal stimulation of reproduction. We

prove existence of travelling wave solutions by the Leray-Schauder method using topological de-

gree for Fredholm and proper operators and special a priori estimates of solutions in weighted

Hölder spaces.
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1. Introduction

In this work we study the integro-differential equation

∂u

∂t
=

∂2u

∂x2
+ J(u) u(1 − u) − αu, (1.1)

where

J(u) =

∫ ∞

−∞

φ(x − y)u(y, t)dy,

φ(x) is a non-negative function with a bounded support and
∫ ∞

−∞
φ(x)dx = 1. If we replace φ by a

δ-function, then instead of (1.1) we obtain the reaction-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ u2(1 − u) − αu. (1.2)
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In population dynamics it describes evolution of a population density. The reproduction term

u2(1 − u) is proportional to the square of the density (sexual reproduction) and to available re-

sources (1 − u). The last term in the right-hand side describes mortality of the population. In

some cases the interaction of the individuals in the population can be nonlocal. Some biological

examples are considered in [11], [17], [18]. This can be for example plants that can distribute their

pollen in some area around their location or biological cells which can send signalling molecules.

This nonlocal interaction can influence the reproduction term resulting in the appearance of the

factor J(u). In this case, instead of the reaction-diffusion equation we should consider the integro-

differential equation (1.1).

Reaction-diffusion waves described by equation (1.2) are studied by Kanel [10], Fife and

McLeod [6], and by other authors (see [13] and the references therein). If 0 < α < 1/4, then

the nonlinearity

F (u) = u2(1 − u) − αu

has three zeros:

w+ = 0, w0 =
1

2
−

√
1

4
− α, w− =

1

2
+

√
1

4
− α .

In this case equation (1.2) has a travelling wave solution, that is a solution of the form u(x, t) =
w(x − ct), with the limits w(±∞) = w± at infinity. It is unique up to translation in space, and

globally stable.

In this work we study the existence of waves for equation (1.1). In the other words, we look

for solutions of the problem

w′′ + cw′ + J(w)w(1 − w) − αw = 0. (1.3)

lim
x→±∞

w(x) = w±. (1.4)

This particular equation represents, for example, cell communitation during the process of hema-

topoiesis (production of red blood cells). The main result of this work is stated in the following

theorem.

Theorem 1. There exists a monotone travelling wave, that is a constant c and a twice continuously

differentiable monotone function w(x) satisfying (1.3), (1.4).

In the case of the scalar reaction-diffusion equation, the proof of the wave existence is simple.

It is sufficient to reduce the equation

w′′ + cw′ + F (w) = 0

to a system of first order equations and to prove the existence of a heteroclinic trajectory. For

obvious reasons, this method is not applicable for the integro-differential equation. The proof

becomes much more involved and requires a rather sophisticated mathematical construction. It is
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based on the Leray-Schauder method which implies the existence of a topological degree for the

corresponding operators and a priori estimates of solutions.

Topological degree for elliptic operators in unbounded domains is constructed using the prop-

erties of Fredholm and proper operators with the zero index [13, 14, 15]. The same construction

can be used for the nonlocal reaction-diffusion operators. We discuss this question in Section 2.

We need to use here weighted spaces. Otherwise the degree may not be defined.

The method to obtain a priori estimates of solutions is similar to the method developed for

monotone reaction-diffusion systems [15]. It is based on the maximum principle which is applica-

ble for the equations under consideration.

We note that if the integral enters the nonlinearity in a different way, for example u(1 − J), as

it is the case for the nonlocal Fisher equation [9], then the maximum principle is not applicable. In

this case, the properties of the equation become quite different. It possesses an interesting nonlinear

dynamics [4, 8] but the wave existence can be proved only in the case of functions φ with a small

support where the perturbation methods are applicable [1, 2, 3, 5]. In this work we do not assume

that the support is small. A priori estimates of solutions are proved in Section 3.

2. Operators, spaces, topological degree

2.1. Operators and spaces

We recall that the Leray-Schauder method, which is used here to prove the existence of waves,

requires that the topological degree for the corresponding operators is defined. If this is the case,

a homotopy of a given operator to some model operator with known properties should be con-

structed, and a priori estimates of solutions in the process of this deformation of the operator

should be obtained.

When we consider unbounded domains, we should use some specially chosen weighted spaces.

Otherwise, the degree with the usual properties may not exist. In this work we use weighted Hölder

spaces Ck+α
µ (R) with the norm

‖u‖Ck+α
µ (R) = ‖uµ‖Ck+α(R),

where k is a non-negative integer, 0 < α < 1, Ck+α(R) is the usual Hölder space. Parameter α here

is different from the constant α introduced in (1.1). The weight function µ(x) has a polynomial

growth at infinity. We take µ(x) = 1 + x2.
Obviously, any function u ∈ Ck+α

µ (R) tends to zero at infinity. On the other hand, we look for

solutions of equation (1.3) with the limits (1.4). Therefore, we introduce an infinitely differentiable

function ψ(x) such that ψ(x) = w+ for x > 1 and ψ(x) = w− for x 6 −1 and put w = u + ψ.

Hence we can write equation (1.3) in the form

(u + ψ)′′ + c(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) = 0. (2.1)

Consider the operator A(u) corresponding to the left-hand side of the previous equation,

A(u) = (u + ψ)′′ + c(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) (2.2)
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and acting in weighted Hölder spaces, A : C2+α
µ (R) → Cα

µ (R).

2.2. Homotopy

In [2] the authors have proved the existence of solutions in the form of monotone travelling waves

for a class of integro-differential equations where the function φ has a small support [−ε0, ε0]. This

result uses the bistability of the nonlinearity. It is applicable for the equation studied in this work.

In this section we construct a homotopy that relates equation (1.3) to the equation with function φ
having a small support. Let us introduce a family of operators Aτ : C2+α

µ (R) × [0, 1] → Cα
µ (R) :

Aτ (u) = (u + ψ)′′ + c(u + ψ)′ + Jτ (u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) (2.3)

with

Jτ (u) =

∫ ∞

−∞

φτ (x − y)u(y)dy, (2.4)

where

φτ (x) =
(ε0 − 1)τ + 1

ε0

φ

(
((ε0 − 1)τ + 1)x

ε0

)
. (2.5)

We study the following equation,

w′′ + cw′ + Jτ (w)w(1 − w) − αw = 0 (2.6)

If τ = 0 then we obtain operator A0 with function φ(x), which has a small support, and,

thus, the existence of a solution of equation A0(u) = 0 is known [3]. When τ = 1 we obtain

equation (1.3).

Linearization of the operator Aτ , introduced in (2.3), about the function u1(x) gives

Lτu = lim
t→0

Aτ (u1 + tu) − Aτu1

t
= u′′ + cu′ +Jτ (w1)(1−2w1)u+w1(1−w1)Jτ (u)−αu, (2.7)

where w1 = u1 + ψ. Let us introduce limiting operators of operator L,

Lτ±u = u′′ + cu′ + w±(1 − 2w±)u + w±(1 − w±)Jτ (u) − αu. (2.8)

Let us recall the definition of a proper operator and of Condition NS.

Definition 1 (Properness). Operator A(u) : E0 → E is proper if the intersection of the inverse

image of a compact set with any bounded closed ball B ∈ E0 is compact.

Definition 2 (Condition NS). We say that the operator L satisfies Condition NS if the limiting

equations L±u = 0 do not have nonzero solutions in C2+α(R).

Lemma 1 (Schauder estimate). For any solution u of equation Lτu = f ∈ Cα(R), the following

estimate holds:

‖u‖C2+α(R) 6 K(‖Lτu‖Cα(R) + ‖u‖C(R)) (2.9)

where K is a constant.

Proof. The proof of this lemma for a similar integro-differential operator can be found in [3].

✷
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2.3. Fredholm operator with zero index

We recall that an operator satisfies the Fredholm property if it is normally solvable, its kernel has

a finite dimension and the codimension of its image is also finite. Elliptic operators in unbounded

domains are normally solvable with a finite dimensional kernel if the Condition NS is satisfied [16].

Invertibility of limiting operators provides the Fredholm property.

The operator Lτ acting from C2+α(R) into Cα(R) satisfies the Fredholm property and has zero

index. The proof of this assertion follows the same lines as for elliptic operators (cf. [3]). We

should verify that the Fredholm property remains valid in the weighted spaces, Lτ : C2+α
µ (R) →

Cα
µ (R), and the index equals zero. From Lemma 2.24 in [15] it follows that it is sufficient to verify

that the operator

Ku = µLτu − Lτ (µu), K : C2+α
µ (R) → Cα(R)

is compact. Consider a sequence {ui} such that ‖ui‖C2+α
µ (R) 6 M. We should prove that from

the sequence {Kui} we can find a convergent in Cα(R) subsequence. Put vi = uiµ. Then

‖vi‖C2+α(R) 6 M. From the sequence {vi} we can find a subsequence, denoted again by {vi},

convergent locally in C2 to some function v0. Denote zi = vi − v0, then

‖Kui − Ku0‖Cα(R) = ‖K
zi

µ
‖Cα(R),

where ‖zi‖C2+α(R) 6 M1, zi → 0 in C2 locally. Denote yi = K(zi/µ). We should prove that

‖yi‖Cα → 0. The definition of the operator K gives

yi = µLτ (zi/µ) − Lτzi =(
−zi

µ′′

µ
− 2z′i

µ′

µ
+ 2zi

(
µ′

µ

)2

− czi
µ′

µ

)
+ w1(1 − w1)(µJτ (zi/µ) − Jτ (zi)). (2.10)

We have

µJτ (zi/µ) − Jτ (zi) =

∫ ∞

−∞

φ(ξ)zi(x − ξ)

(
µ(x)

µ(x − ξ)
− 1

)
dξ.

Both terms in the right-hand side of (2.10) uniformly tend to zero at infinity. From this and from

the local convergence zi → 0 in C2, it follows that yi converges to zero in Cα(R).

2.4. Properness

In this section we show that the operator Aτ , defined in (2.3), is proper. First, let us prove the

following lemma.

Lemma 2. For any u, u0 ∈ C2+α
µ and τ, τ0 ∈ [0, 1] the following representation holds

Aτ (u) − Aτ0(u0) = A′
τ0

(u0)(u − u0) + ϕ(u, u0, τ, τ0), (2.11)
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where A′
τ0

(u0)(u − u0) = Lτ0(u0)(u − u0) and

ϕ(u, u0, τ, τ0) = Jτ (w)w(1 − w) − Jτ0(w)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0),

where w = u + ψ and w0 = u0 + ψ. Moreover

ϕ(u, u0, τ0, τ0) = (u − u0)(Jτ0(w)(1 − w − w0) − Jτ0(w0)(1 − 2w0)). (2.12)

Proof. Let us denote the difference Aτ (u) − Aτ0(u0) − Lτ0(u0)(u − u0) by ϕ(u, u0, τ, τ0), then

using (2.3) and (2.7) we obtain

ϕ(u, u0, τ, τ0) = (u − u0)
′′ + c(u − u0)

′ + Jτ (w)w(1 − w) − Jτ0(w0)w0(1 − w0) − α(u − u0)−

(u − u0)
′′ − c(u − u0)

′ − Jτ0(w0)(1 − 2w0)(w − w0) − w0(1 − w0)Jτ0(w − w0) + α(u − u0) =

Jτ (w)w(1 − w) − Jτ0(w0)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0) − w0(1 − w0)Jτ0(w − w0)

= Jτ (w)w(1 − w) − Jτ0(w)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0).

Simple transformation of ϕ(u, u0, τ0, τ0) gives (2.12). The lemma is proved.

✷

Theorem 2 (properness of operator Aτ ). If the operator Lτ , defined in (2.7), satisfies Condition

NS, then the operator Aτ (u), defined in (2.3), is proper with respect to both u and τ.

Proof. Consider a convergent in Cα
µ (R) sequence {fn} → f0 and solutions of the equations

Aτn
(un) = fn (2.13)

bounded in C2+α
µ (R) × [0, 1], ‖un‖C2+α

µ (R) 6 M. We should prove the existence of a subsequence

{umn
} that is convergent in C2+α

µ (R) to a function u0 ∈ C2+α
µ (R).

Since {un} is bounded in C2+α
µ (R), it admits a subsequence {unm

}, which is convergent to a

function u0, uniformly on any bounded interval I ⊂ R. By a diagonalisation process we prolong

u0 to all R. The limit function u0 ∈ C2+α
µ (R). Passing to the limit m → ∞ in the equation

Aτnm
(unm

) = fnm
we obtain

Aτ0(u0) = f0. (2.14)

We know that unm
→ u0 uniformly on any bounded interval I. Let us show that the convergence

is uniform with respect to x on the whole axis, unm
→ u0 in C(R).

Let us write the subscript n instead of nm and denote

vn = unµ, v0 = u0µ, zn = vn − v0, gn = fnµ, g0 = f0µ. (2.15)

Subtracting (2.14) from (2.13) and multiplying it by µ we obtain

(Aτn
(un) − Aτ0(un))µ + (Aτ0(un) − Aτ0(u0))µ = gn − g0. (2.16)

Denote

rn = (Aτn
(un) − Aτ0(un))µ, (2.17)
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then we have

‖rn‖Cα(R) → 0, n → ∞.

Injecting (2.15), (2.17), and (2.3) into (2.16) and taking into account Lemma 2, we obtain

z′′n+z′n + Jτ0(w0)(1 − 2w0)zn + w0(1 − w0)Jτ0(un − u0)µ − αzn+
(
−zn

µ′′

µ
− 2z′n

µ′

µ
+ 2zn

(
µ′

µ

)2

− czn
µ′

µ

)
+ ϕ(un, u0, τ0, τ0)µ = gn − g0 − rn.

(2.18)

We should prove that there exists a subsequence {znk
} convergent uniformly on the whole axis,

znk
→ 0 in C(R). Suppose that it is not true. Then there exists an unbounded sequence {xm}, such

that |zm(xm)| > ε > 0. Let us introduce shifted functions,

z̃m(x) = zm(x + xm).

Since ‖z̃m‖C2+α(R) 6 M, from sequence {z̃m} we can choose a subsequence {z̃mk
(x)} converging

to a limiting function z̃0 ∈ C2+α(R) in C2 uniformly on any bounded interval I ⊂ R (the same

reasoning as above). We have |z̃0(0)| > ε > 0. Functions z̃mk
(x) with shifted arguments satisfy

equation (2.18). From the definition of the weight function µ we obtain

µ′(x + xm)

µ(x + xm)
→ 0,

µ′′(x + xm)

µ(x + xm)
→ 0 as xm → ∞.

From (2.12):

ϕ(um(x + xm), u0(x + xm), τ0, τ0)µ = zm(x)Tm(x + xm),

where

Tm(y) = Jτ0(wm(y))(1 − wm(y) − w0(y)) − Jτ0(w0(y))(1 − 2w0(y)) =

(Jτ0(wm(y) − w0(y)))(1 − wm(y) − w0(y)) + Jτ0(w0(y))(w0(y) − wm(y)) =

(Jτ0(zm/µ)(1 − wm(y) − w0(y)) − Jτ0(w0(y))zm/µ.

Here wm = um + ψ Since zm → 0 in C2 uniformly in every bounded interval, then zm/µ → 0 in

C2(R). Hence

‖ϕ(um(x + xm), u0(x + xm), τ0, τ0)µ‖Cα → 0 as m → ∞.

By definition of gm and g0, ‖gm − g0‖Cα(R) → 0 as m → ∞. In the limit m → ∞, equation (2.18)

becomes

L̂z̃0 = 0,

which means that limiting operator L̂ admits a nonzero solution. This contradicts Condition NS.

Thus, convergence zm → 0 is uniform in C(R). Using this convergence and the Schauder estimate

(Lemma 1) we obtain convergence zm → 0 in C2+α(R), which means the convergence um → u0

in C2+α
µ (R). This completes the proof.

✷
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2.5. Functionalisation of parameter c

We recall that parameter c in (1.3) is an unknown constant that should be found along with function

w(x). Note that solutions of (1.3) are invariant with respect to translation, i.e. if w(x) = u(x) +
ψ(x) is a solution of (1.3), then w(x+h) = u(x+h)+ψ(x+h) is also a solution of this equation for

all h ∈ R. Then the weighted norm ‖u(x + h)µ(x)‖C2+α tends to infinity as h → ±∞. Hence the

set of solutions of the equation A(u) = 0 is not bounded in the space C2+α
µ (R), and the topological

degree cannot be applied.

To get rid of the invariance of solutions with respect to translation, we apply functionalisation

of parameter c first used for travelling waves in [12, 13]. We introduce a functional c = c(u) that

satisfies the following properties:

1. c(u) satisfies Lipschitz condition on every bounded set in C2+α
µ (R) and has a continuous

Fréchet derivative,

2. function c̃(h) = c(u(x + h)) is a decreasing function of h, such that c̃(−∞) = +∞ and

c̃(+∞) = −∞,

3. the solution w = u + ψ of equation (1.3) satisfies

〈c′(u), w′〉 6= 0.

We introduce the following function

c(u) = ln

∫

R

(u(x) + ψ(x) − w+)2σ(x)dx,

where σ(x) is an increasing function, with σ(−∞) = 0, σ(+∞) = 1 and

∫ 0

−∞

σ(x)dx < ∞.

The function c(u) introduced in this way satisfies the conditions enumerated above, the proof can

be found in [13]. Equation (1.3) is equivalent to the equation

(u + ψ)′′ + c(u)(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) = 0. (2.19)

Instead of the operator Aτ introduced in Section 2.2 we will consider the operator

Aτ (u) = (u + ψ)′′ + c(u)(u + ψ)′ + Jτ (u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ),

where the constant c is replaced by the functional c(u). We keep for it the same notation. It can be

easily verified that introduction of the functional c(u) does not change the Fredholm property and

the properness of the operator.
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2.6. Construction of topological degree

Consider an operator A acting from a Banach space E into another Banach space F . By definition,

topological degree is an integer number γ(A,D) which depends on the operator and on the domain

D in the function space E. Topological degree for elliptic operators in unbounded domains is

constructed in [15, 14] on the basis of the theory of Fredholm and proper operators. The results on

the Fredholm property and properness of the integro-differential operators presented above allow

us to use the same construction.

One of the main applications of the topological degree is related to the Leray-Schauder method

widely used to prove existence of solutions of various problems. We briefly recall the main ideas

of this method. If the operator Aτ continuously depends on the parameter τ and

Aτ (u) 6= 0, u ∈ ∂D, τ ∈ [0, 1], (2.20)

then the value γ(Aτ , D) of the degree does not depend on τ . This property is called homotopy

invariance. If we can reduce the operator A = A1 by a continuous deformation to a model operator

A0 for which γ(A0, D) 6= 0 and (2.20) is satisfied, then γ(A,D) 6= 0. Another property of the

degree, nonzero rotation, ensures that the equation A(u) = 0 has a solutions in the domain D.

Let us take as a domain D a ball B of the radius R. Then condition (2.20) will be satisfied if all

solutions of the equation Aτ (u) = 0 satisfy the inequality ‖u‖ 6 R. These are a priori estimates

of solutions. They play a crucial role in the proof of the existence of solutions. We discuss them in

the next section.

3. A priori estimates

A priori estimates of travelling wave solutions have some specific features. We note first of all that

they imply not only the estimate of the function w(x) but also of the wave velocity. Moreover,

the function w(x) should be estimated in the weighted space. We consider in fact the function

u(x) = w(x) − ψ(x) with the zero limits at infinity. It decays exponentially at infinity, so its

weighted norm with a polynomial weight is limited. The difficulty is to estimate it ”far” from

infinity.

To explain the origin of this difficulty, let us consider the following geometrical interpreta-

tion. Travelling wave is a heteroclinic trajectory of some first order ordinary differential system of

equations. Suppose that this trajectory approaches some intermediate stationary point during the

deformation of the system. In the limit we can obtain two heteroclinic trajectories which connect

consecutively three stationary points.This situation corresponds to loss of a priori estimates in the

weighted space. Thus, we need to prove that the trajectory, which corresponds to the travelling

wave, cannot approach intermediate stationary points or other invariant manifolds.

We will follow here the method developed in [12, 13] for monotone reaction-diffusion systems.

It consists of two steps. First of all, we separate monotone and non-monotone solutions w(x) of

problem (1.3), (1.4). This means that two sequences of solutions, wj
M(x) and wj

N(x), where the

former are monotone with respect to x and the latter non-monotone, cannot converge in C2(R) to

the same limiting function. This result allows us to deal only with monotone solutions. At the
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second step, we obtain a priori estimates of monotone solutions. According to the geometrical

interpretation given above, we prove that the trajectory cannot be attracted by an intermediate

stationary point. This will follow from the sign of the wave velocity. Here we use the monotonicity

of solutions. Otherwise, the intermediate manifold can have a more complex structure, and the

method is not applicable.

3.1. Monotonicity

In this section we show that monotone solutions of equation (2.6) are strictly monotone. We begin

with an auxiliary result on the positiveness of solutions of the linear parabolic equation

∂v

∂t
=

∂2v

∂x2
+ a(x, t)J(v) + b(x, t)v (3.1)

in x ∈ R assuming that a(x, t) and b(x, t) are continuous functions, a(x, t) > 0. We cannot

directly use the classical positiveness theorems here because of the integral term in the right-hand

side.

Lemma 3. Suppose that a(x, t) + b(x, t) < 0 for |x| > N , 0 6 t 6 T with some positive N and

T . If v(x, 0) > 0 and v(x, 0) 6≡ 0, then v(x, t) > 0 for 0 6 t 6 T .

Proof. Suppose that the assertion of the lemma does not hold. If there exists such (x0, t0) that

v(x0, t0) = 0, v(x, t0) > 0 for all x ∈ R, and v(x, t) > 0 for all x ∈ R and 0 < t < t0,
then we obtain a contradiction with the classical positiveness theorem [7]. Indeed, we can write

equation (3.1) in the form
∂v

∂t
=

∂2v

∂x2
+ b(x, t)v + c(x, t),

where c(x, t) = a(x, t)J(v) > 0 for all x and 0 6 t 6 t0. Since v(x, 0) is non-negative and not

identically zero, then v(x, t0) should be strictly positive.

Otherwise, the solution becomes negative for some t1 > 0. Then there exists such t0, 0 6 t0 6

t1 that v(x, t0) > 0 for all x ∈ R and v(xk, tk) < 0 for some sequences xk and tk > t0, tk → t0
as k → ∞. If the sequence xk is bounded, then we can find a convergent subsequence. Denote its

limit by x0. Then v(x, t0) > 0 for all x and v(x0, t0) = 0. As above, we obtain the contradiction

with the classical positiveness theorem.

Hence, the sequence xk does not have bounded limiting points. Without loss of generality we

can assume that xk → +∞. For each fixed t we have v(x, t) → 0 as x → ∞. Therefore, the

function v(x, tk) has a negative minimum that we denote by xm
k . As before, xm

k → +∞.
Let us choose k sufficiently large such that xm

k > N . Put z = v + ǫ where ǫ = |v(xm
k , tk)|.

Then z satisfies the equation

∂z

∂t
=

∂2z

∂x2
+ a(x, t)J(z) + b(x, t)z − (a(x, t) + b(x, t))ǫ. (3.2)

Moreover, z(x, tk) > 0 for all x, 0 6 t 6 tk and z(xk, tk) = 0. We obtain a contradiction in signs

in the last equation. Indeed, the time derivative at the point x = xk, t = tk is non-positive, while
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all terms in the right-hand side are non-negative. The last term is strictly positive. The lemma is

proved.

✷

Lemma 4. If w0(x) is a non-constant solution of equation (2.6) such that w′
0(x) 6 0 for all x ∈ R,

then w′
0(x) < 0.

Proof. Denote v = −w′. Differentiating equation (2.6) and taking into account that J ′(w) = J(v),
we obtain

v′′ + cv′ + a(x)J(v) + b(x)v = 0,

where

a(x) = w(1 − w), b(x) = J(w)(1 − 2w) − α.

We note that a(x)+b(x) < 0 for |x| sufficiently large. Indeed, a(x)+b(x) → F ′(w±) as x → ±∞.

According to the conditions of Section 1, F ′(w±) < 0.

We should prove that the solution of this equation, which satisfies v > 0, is strictly positive.

This follows from Lemma 3 if we take function v(x) as initial condition.

✷

Lemma 5. If wj(x) is a sequence of solutions of problem (2.6), (1.4) such that wj → w0 in C1(R),
where w′

0(x) 6 0, x ∈ R, then for all j sufficiently large 0 < wj(x) < 1 and w′
j(x) < 0, x ∈ R.

Proof. Let us first prove the inequality 0 < wj(x) < 1. The right inequality holds for j sufficiently

large because of the uniform convergence wj → w0 and 0 < w0(x) < w− < 1. We now verify

that wj(x) is positive for all x. If this is not the case, then each of these functions has a negative

minimum xj . From the uniform convergence wj → w0 it follows that xj → +∞ and J(wj(xj)) →
0. Hence,

w′′
j (xj) > 0, w′

j(xj) = 0, J(wj(xj))(1 − wj(xj)) − α < 0, wj(xj) < 0.

This gives a contradiction in signs in the equation

w′′
j + cw′

j + (J(wj)(1 − wj) − α)wj = 0.

Next, we prove that the functions wj are decreasing. Suppose that this assertion does not

hold and there exists a sequence xj such that w′
j(xj) = 0. If it is bounded, then there exists a

subsequence converging to some point x0. Hence w′
0(x0) = 0. We obtain a contradiction with

Lemma 4.

Consider now the case where xj → +∞. Denote v = −w′. Differentiating equation (2.6) and

taking into account that J ′(w) = J(v), we obtain

v′′ + cv′ + a(x)J(v) + b(x)v = 0,

where

a(x) = w(1 − w), b(x) = J(w)(1 − 2w) − α.
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If vj(x) > 0 for all x, then the existence of xj such that vj(xj) = 0 contradicts Lemma 4. There-

fore, there exist negative values of this function for each j. On the other hand, from the convergence

w′
j → w′

0 it follows that vj is positive in each given interval for j sufficiently large. Finally, note

that vj(x) → 0 as x → ±∞. Hence, there exists a sequence x̂j → ∞ such that it is a negative

minimum of the function vj(x). The uniform convergence w′
j(x) → w′

0(x) implies that vj(x̂j) → 0
as j → ∞.

Put ǫ = |vj(x̂j)| for some j sufficiently large and z(x) = vj(x) + ǫ. Then

z′′ + cz′ + a(x)J(z) + b(x)z − (a(x) + b(x))ǫ = 0. (3.3)

Moreover, z(x) > 0 for −∞ < x < ∞, z(xj) = 0. Hence z′′(xj) > 0, z′(xj) = 0, J(z)(xj) > 0.
Since 0 < wj(x) < 1, then a(xj) > 0. It remains to note that a(xj) + b(xj) < 0 for j sufficiently

large. Indeed, if xj → +∞, then a(xj) → 0, b(xj) → −α. If xj → −∞, then a(xj) → α,

b(xj) → w−(1 − 2w−) − α, that is

a(xj) + b(xj) → w−(1 − 2w−) < 0.

We obtain a contradiction in signs in equation (3.3). The lemma is proved.

✷

3.2. Estimates of derivatives

In this section we obtain estimates in C(−∞, +∞) of the derivatives w′(x) and w′′(x) of the

solution w(x) of equation (2.6). We will use the notation R2 = max
|w|6R

|Jτ (w)w(1 − w) − αw|.

Lemma 6. Let solution w(x) of equation (2.6) satisfy inequality |w(x)| 6 R for all x. Then the

derivatives w′(x) and w′′(x) can be estimated in C(−∞, +∞) by a constant, depending only on

R and R2.

Proof. Let us first obtain an estimate for the first derivative w′(x). We consider two cases, |c| > 1
and |c| < 1. Suppose that |c| > 1. The second derivative w′′(x) equals zero when w′(x) is at its

extremum point, which we denote by x0. Then from equation (2.6) we obtain

|w′(x)| 6 |w′(x0)| 6 |Jτ (w(x0))w(x0)(1 − w(x0)) − αw(x0))| 6 R2, ∀x ∈ R.

Suppose now that |c| < 1. Consider an interval [α, β] where |w′(x)| > 1. Integrating equation (2.6)

over the interval [α, x], we obtain

w′(x) − w′(α) + c(w(x) − w(α)) +

x∫

α

(Jτ (w(x))w(x)(1 − w(x)) − αw(x))dx = 0.

This provides

|w′(x)| 6 1 + |c||w(x) − w(α)| + R2(β − α) 6 1 + 2R + R2(β − α).
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The mean-value theorem gives

|w(β) − w(α)| = |w′(x0)|(β − α) > (β − α),

which provides that β − α 6 2R and thus finally we obtain

|w′(x)| 6 1 + 2R + 2R R2.

So we have estimated the first derivative of the function w(x). Let us now estimate the second

derivative. From equation (2.6) we obtain

|w′′(x)| 6 |cw′(x)| + R2.

The first term in the right-hand side has its maximum when w′(x) reaches its extremum, that is

w′′(x) = 0 at this point. Therefore, from equation (2.6)

|cw′(x)| 6 R2.

Hence

|w′′(x)| 6 2R2,

which completes the proof of the lemma.

✷

3.3. A priori estimates of the speed

In this section we obtain a priori estimates of the speed c of monotone waves. Suppose that there

exists a solution w(x) of equation (1.3) for some c = c0 with the limits (1.4) at infinity. Let us

estimate the value c0 of the speed. For this purpose we consider the evolution equation

∂u

∂t
=

∂2u

∂x2
+ c0

∂u

∂x
+ J(u)u(1 − u) − αu. (3.4)

So that w(x) is a stationary solution of this equation. Let u(x, t) be a solution of equation (3.4)

and v = u − w0, where w0 < 1/2 satisfies w0(1 − w0) = α. Then v satisfies the equation

∂v

∂t
=

∂2v

∂x2
+ c0

∂v

∂x
+ J(v)(1 − w0)u − J(u)uv. (3.5)

Suppose that 0 < u < 1 and v > 0. Then

J(v)(1 − w0)u − J(u)uv < J(v). (3.6)

Next, consider the equation
∂z

∂t
=

∂2z

∂x2
+ c0

∂z

∂x
+ Jη(z), (3.7)
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Figure 1: The estimate of the speed of the travelling wave solution of equation (1.1). The wave w
propagates with the speed c0, the solution û with the speed c. The wave remains below the solution.

If it touches it, this will contradict the comparison of solutions. Hence c > c0.

where

Jη(z) =

∫ ∞

−∞

η(x − y)z(y, t)dy,

η(x) is a piece-wise constant function equal to M = supx φ(x) in the support of the function φ(x)
and zero otherwise. Let the support of the function η(x) be [−N,N ]. Let us look for a solution of

the equation

w′′ + cw′ + Jη(w) = 0 (3.8)

for some c possibly different from c0 in the form of the exponential w(x) = e−λx. We obtain

λ2 − cλ +
M

λ

(
eλN − e−λN

)
= 0.

For any M and N , if c is sufficiently large, then this equation has a solution λ. Let us take

these values of c and λ and consider the corresponding solution w(x) of equation (3.8). Then

z(x, t) = w(x − (c − c0)t) is a solution of equation (3.7), which has a constant profile and moves

to the right with the speed (c − c0). The function û(x, t) = z(x, t) + w0 satisfies the equation

∂û

∂t
=

∂2û

∂x2
+ c0

∂û

∂x
+ Jη(û − w0) (3.9)

Let us now compare the solution u(x, t) of equation (3.4) and the solution û(x, t) of equa-

tion (3.9) (Figure 1). We recall that u(x, t) → w± as x → ±∞ for each t > 0 and û(x, t) is
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a strictly decreasing function converging to w0 as x → +∞ and exponentially growing at −∞.

Hence, we can choose a constant h such that u(x, 0) < û(x − h, 0) for all x ∈ R. We are going to

prove that u(x, t) < û(x − h, t) for all x ∈ R and t > 0. Suppose that this is not true. Then there

exists t0 > 0 such that u(x, t0) 6 û(x−h, t0) for all x ∈ R and u(x0, t0) = û(x0 −h, t0) for some

x0. Since û(x0 − h, t0) > w0, then v(x0, t0) > 0. This inequality holds in some neighborhood

δ(x0) of x = x0. Moreover, 0 < u(x, t) < 1, J(u) > 0. Hence, by virtue of (3.6),

J(u)u(1− u)− αu = J(v)(1−w0)u− J(u)uv < J(v) = J(u−w0) 6 Jη(û−w0), x ∈ δ(x0).

We obtain a contradiction with the classical positiveness theorem. Thus, if there exists a stationary

solution w(x) of equation (3.4), then we put u(x, 0) = w(x) and obtain w(x) ≡ u(x, t) < û(x, t).
Therefore, c0 < c, where c is the value of the speed chosen above.

In order to estimate the speed c from below, we repeat a similar construction with a solution

w(x) such that w(x) → w0 as x → ∞ and exponentially decreasing as x → +∞. It propagates to

the left with a certain speed (c − c0). We thus have proved the following theorem.

Theorem 3. For any arbitrary solution (c, w) of problem (2.6), (1.4), where w(x) is monotonically

decreasing function, there exists an estimate of the speed c independent of τ.

3.4. Sign of the speed

In this section we consider behaviour of solutions of equation (2.6) as x → ±∞. The subscript τ
is omitted. We prove that the waves connecting a stable point with an unstable point can exist only

with the speed of a certain sign. This will be used below in order to obtain a priori estimates of

solutions. We begin with an auxiliary result.

Lemma 7. Suppose that v(x) is a decreasing positive function, φ(x) is even and non-negative.

Then for any N
∫ ∞

N

dx

∫ ∞

−∞

φ(x − y)v(y)dy >

∫ ∞

N

dx

∫ ∞

−∞

φ(x − y)v(x)dy. (3.10)

If v is a positive and increasing function, then

∫ N

−∞

dx

∫ ∞

−∞

φ(x − y)v(y)dy >

∫ N

−∞

dx

∫ ∞

−∞

φ(x − y)v(x)dy. (3.11)

It is assumed that all these integrals exist.

Proof. We have
∫ ∞

N

dx

∫ ∞

N

φ(x − y)v(y)dy =

∫ ∞

N

dx

∫ ∞

N

φ(x − y)v(x)dy.

If v is decreasing, then

∫ ∞

N

dx

∫ N

−∞

φ(x − y)v(y)dy >

∫ ∞

N

dx

∫ N

−∞

φ(x − y)v(x)dy
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since y 6 N 6 x in the domain of integration and, consequently, v(y) > v(N) > v(x). Taking a

sum of the last two relations, we obtain (3.10).

Consider now the second case. From the equality
∫ N

−∞

dx

∫ N

−∞

φ(x − y)v(y)dy =

∫ N

−∞

dx

∫ N

−∞

φ(x − y)v(x)dy

and inequality
∫ N

−∞

dx

∫ ∞

N

φ(x − y)v(y)dy >

∫ N

−∞

dx

∫ ∞

N

φ(x − y)v(x)dy,

which takes place since in the domain of integration x 6 N 6 y and v(x) 6 v(N) 6 v(y), we

obtain (3.11). The lemma is proved.

✷

Let w0 < 1/2 be a solution of the equation u(1−u) = α. Suppose that there exists a decreasing

solution u(x) of equation (2.6) such that u(x) → w0 as x → +∞. Put u(x) = w0 + v(x). Then

v′′ + cv′ + (J(v)(1 − w0) − (w0 + J(v))v)(w0 + v) = 0. (3.12)

Consider first the linear equation

v′′ + cv′ + (J(v)(1 − w0) − w0v)w0 = 0 (3.13)

and integrate it from N to +∞:

−v′(N) − cv(N) + I+(N) = 0, (3.14)

where

I+(N) = w0(1 − w0)

∫ ∞

N

dx

∫ ∞

−∞

φ(x − y)v(y)dy − w2
0

∫ ∞

N

dx

∫ ∞

−∞

φ(x − y)v(x)dy.

Since 1 − w0 > w0, then by virtue of Lemma 7, I+(N) > 0 for any N. We recall that v(x) is

positive and decreasing. Therefore, equality (3.14) can take place only if c > 0.
The corresponding integral remains positive for equation (3.12) since J(v) → 0 as x → +∞

and for any ǫ > 0, w0 + J(v) 6 w0 + ǫ, x > N for N sufficiently large. Therefore, integrating

(3.12), we obtain, as before, that c > 0.

Suppose now that there exists a decreasing solution u(x) of equation (2.6) such that u(x) → w0

as x → −∞. Put v(x) = w0 − u(x). Then v(x) is a positive increasing function. As above, we

obtain equation (3.13). Integrating it from −∞ to N , we obtain

v′(N) + cv(N) + I−(N) = 0, (3.15)

where

I−(N) = w0(1 − w0)

∫ N

−∞

dx

∫ ∞

−∞

φ(x − y)v(y)dy − w2
0

∫ N

−∞

dx

∫ ∞

−∞

φ(x − y)v(x)dy.

It follows from (3.11) that I−(N) > 0. Then from (3.15), c < 0. Thus, we have proved the

following lemma.
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Lemma 8. If there exists a decreasing solution of equation (2.6) with the limits w(−∞) = w−,

w(+∞) = w0, then c > 0. If such solution has the limits w(−∞) = w0, w(+∞) = w+, then

c < 0.

3.5. A priori estimates of solutions

In this section we obtain a priori estimates of monotone solutions of equation (2.6) with condi-

tions (1.4). We begin with the lemma which states exponential behaviour of solutions at infinity.

Lemma 9. There exists a constant ε > 0 such that the following estimates of monotone solutions

wτ (x) of problem (2.6), (1.4) hold

|wτ (x) − w+| 6 Ke−ax (3.16)

for such x that |wτ (x) − w+| 6 ε, and

|wτ (x) − w−| 6 Ke−bx (3.17)

for such x that |wτ (x) − w−| 6 ε. Moreover, constants K > 0, a > 0 and b > 0 are independent

of τ and of solution wτ (x).

Proof. Consider first behavior of solutions of equation (2.6) as x → ∞. Since wτ → w+ = 0, and

it is monotonically decreasing, then for sufficiently large x we can estimate the integral Jτ (w) by

a small constant β > 0 such that β < α,

Jτ (w(x)) 6 β, ∀x > x0,

which provides

Jτ (w(x))w(x)(1 − w(x)) − αw(x) 6 (β − α)w(x), ∀x > x0.

We can now compare solutions of equation (2.6) with the equation

v′′ + cv′ + (β − α)v = 0, β < α

Exponential behaviour of solutions of this equation is well known. It remains to prove that mono-

tone solutions w(x) of equation (2.6) can be majorated by solutions v(x) of the previous equation,

i.e.

w(x) 6 v(x), ∀x > x0. (3.18)

To do so, consider the difference z(x) = v(x) − w(x). It satisfies the following equation:

z′′ + cz′ + (β − α)z + ((β − α)w − Jτ (w)w(1 − w) − αw) = 0.

It can be rewritten as

z′′ + cz′ + (β − α)z + g(x) = 0, (3.19)
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where g(x) > 0 for all x > x0. Consider this equation on the half-axis [x0, +∞) with the boundary

conditions z(x0) = 0 and z(x0) → 0 as x → 0. If we prove that solutions of this problem satisfy

z(x) > 0 for all x > x0, then estimate (3.18) will be proved. Let us assume that this is not

true. Hence z(x) has negative values. Since it converges to zero at infinity, then there exists

a point x2 > x0 where the function z(x) attains its negative minimum. At this point we have

z′′(x2) > 0, z′(x2) = 0, (β − α)z(x2) > 0 and g(x2) > 0. We obtain a contradiction in signs in

equation (3.19). Estimate (3.16) follows from (3.18). Estimate (3.17) can be proved in a similar

way.

✷

Lemma 10. There exists a constant χ > 0 such that outside of the ε-neighbourhoods of the points

w+ and w− the following estimate holds |w′
τ (x)| > χ for arbitrary monotone solution wτ (x) of the

problem (2.6), (1.4). Constant χ is independent of the parameter τ and of solution wτ (x), constant

ε is defined in Lemma 9.

Proof. Let us assume that the assertion of the lemma does not hold. Then there exist sequences

{τk}, {wτk
}, {xk} such that w′

τk
(xk) → 0 and points xk do not belong to ε-neighbourhoods of

points w− and w+. We can assume that τk → τ0 and ck → c0, where τ0 ∈ [0, 1], c0 is a constant,

and ck is the speed of the wave wτk
.

Since solutions of equation (2.6) are invariant relative to translation with respect to x, we can

assume that |wτk
(0) − w−| = ε. We can also assume that the sequences {wτk

(0)} and {w′
τk

(0)}

are convergent with limits y and z, respectively. Denote by v(1)(x) the solution of equation (2.6)

for c = c0, τ = τ0 with initial conditions v(1)(0) = y, v(1)′(0) = z. It is clear that v(1)(x) → w− as

x → −∞.
Let us suppose that v(1)(x) → w+ as x → ∞. Then, outside of the ε-neighbourhoods of the

points w−, w+, function v(1)(x) exists on a finite interval with respect to x. Since solutions wτk
(x)

converge to v(1)(x), then, for some x = x0, we have v(1)′(x0) = 0, and the point v(1)(x0) lies

outside the ε-neighbourhoods of the points w−, w+. This contradicts Lemma 4. Thus v(1)(x) is

a monotone (not necessarily strict) function not tending towards w+. Then v(1)(x) tends to w0 as

x → ∞, where w0 is such that w0(1 − w0) − α = 0.
In a similar way we may prove existence of function v(2)(x) having limits w0 as x → −∞ and

w+ as x → ∞. Thus we have simultaneously two solutions of equation (2.6) with the same wave

speed c = c0. This contradicts Lemma 8, which completes the proof of the lemma.

✷

Lemma 11. Let Mr (r > 0) be the set of all monotone solutions of problem (2.6),(1.4) for all τ
such that for x0 defined by

wτ (x0) = w0

holds the estimation |x0| 6 r. Then there exists such a constant Mr that for all w ∈ Mr the

following estimate holds,

‖w − ψ‖C2+α
µ (R) 6 Mr. (3.20)
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Proof. Let w be from Mr and points x1 and x2 be defined by the equalities

|w(x1) − w−| = ε, |w(x2) − w+| = ε,

where the constant ε is defined in Lemma 9, ε < w0. Then

x1 < x0 < x2, |x0| 6 r. (3.21)

Let χ be the constant in the estimate of w′(x), presented in Lemma 10. Then

0 < x2 − x1 < (w− − w+)/χ := N. (3.22)

We suppose that χ < 1. From (3.21) and (3.22) we obtain that

|x1| 6 N + r, |x2| 6 N + r.

From Lemma 9 we conclude that solutions w(x) approach ψ(x) exponentially outside the interval

[x1, x2]. Thus we conclude that

‖w − ψ‖C2+α
µ (R) = ‖w − ψ‖C2+α

µ ([x1,x2]).

This norm, in turn, is

‖w − ψ‖C2+α
µ ([x1,x2]) = ‖(w − ψ)µ‖C2+α([x1,x2]).

The estimate of the norm in the right-hand side follows from the estimate of the Hölder norm of

the functions w and µ. The former follows from Lemma 6 for the function itself and its first two

derivative. The norm Cα of the second derivative can be obtained from the equation. The estimate

of the Hölder norm of µ follows from the boundedness of the interval.

✷

Proposition 1. Consider the homotopy defined in Section 2.2 and the equation

w′′ + cw′ + Jτ (w)w(1 − w) − αw = 0, (τ ∈ [0, 1]).

1) The following estimate holds for all monotone solutions w(x) of problem (2.6), (1.4),

‖w − ψ‖C2+α
µ

6 R,

where R > 0 is some constant.

2) For some r > 0 we have the estimate

‖wM − wN‖C2+α
µ

> r,

where wM and wN are, respectively, an arbitrary monotone and a nonmonotone solution of prob-

lem (2.6), (1.4).
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Proof. Up to now we considered c as a constant, now we consider it as a functional c(u) introduced

previously, u(x) = w(x)−ψ(x). Let us denote the solution of equation w(x) = w0 by x0 and prove

that there exists a constant r > 0 such that |x0| < r for all monotone solutions of our problem and

for all τ ∈ [0, 1]. Let us assume the contrary. Then there exists a sequence {xk} such that |xk| → ∞
with k → ∞ and a sequence of solutions {wk(x)} with c = c(uk), uk(x) = wk(x)−ψ(x) are such

that wk(xk) = w0. Let

vk(x) = wk(x + xk) − ψ(x),

so that vk + ψ ∈ M0 (see Lemma 11), and, thus, we have the estimate

‖vk‖C2+α
µ

6 M0.

From functionalisation of parameter c we have

ρ(u) =

(∫

R

(u(x) + ψ(x) − w+)2σ(x)dx

)1/2

,

which provides

ρ(uk) =

(∫

R

(vk(x) + ψ(x) − w+)2σ(x + xk)dx

)1/2

.

Further we show that c(uk) = ln ρ(uk) is unbounded, which leads to a contradiction with the

a priori estimates of the speed obtained in Section 3.3. When xk → ∞, σ(x + xk) → 1 and

|vk| → 0. Function ψ(x) is different from w+ when −x is big, thus ρ(xk) → ∞ as xk → ∞.
We should consider as well the case when xk → −∞. From the definition of the norm in Hölder

spaces we obtain that |vk(x)| 6 N(µ(x))1/2. Thus there exists square summarible function y(x)
such that |vk(x)| < y(x). This allows the conclusion that ρ(uk) → 0 as xk → −∞.

Thus we have shown that all monotone solutions of problem (2.6),(1.4), in which c = c(u), be-

long to Mr for some r > 0 and validity of the first part of the proposition follows from Lemma 11.

Let us now prove the second part of the proposition. Introduce the notation,

uM = wM − ψ, uN = wN + ψ.

Assume that the assertion of the second part of the proposition does not hold. We can then find

sequences of solutions of equation (2.6) {u
(k)
M } and {u

(k)
N } such that

‖u
(k)
M − u

(k)
N ‖C2+α

µ
−−−→
k→∞

0. (3.23)

Since all the functions u
(k)
M are in the ball of radius R of the space C2+α

µ (R), we obtain the strong

convergence of {u
(k)
M } to some u

(0)
M ,

‖u
(k)
M − u

(0)
M ‖C2 −−−→

k→∞
0

We let w(0) = u
(0)
M + ψ. Then function w(0) is a solution of problem (2.6),(1.4) for some τ and c

and

‖w
(k)
M − w(0)‖C2 −−−→

k→∞
0 (3.24)
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Then from (3.23) and (3.24) we have

‖w
(k)
N − w(0)‖C2 −−−→

k→∞
0 (3.25)

Applying Lemma 5 to sequence {w
(k)
N } we obtain a contradiction, which completes the proof of

the proposition.

✷

Consider a ball ‖u‖C2+α
µ

6 R of space C2+α
µ (R), in which all solutions of equation (2.6) are

contained. We set R1 = R + 1 and select r, 0 < r < 1, such that for solutions of equation (2.6) in

the ball ‖u‖C2+α
µ

6 R1 we have the inequality

‖wM − wN‖C2+α
µ

> r.

In Theorem 2 we have proved that operator Aτ (u) is proper with respect to both τ and u. This

means that the set of solutions of equation Aτ (u) = 0 is compact in the ball ‖u‖C2+α
µ

6 R1. For

a fixed solution uM(x) we construct the ball K(uM) of radius r and center at the point uM . By

virtue of compactness of the set of solutions uM , we can select from a covering of this set by balls

K(uM) a finite subcovering. We denote by Gk, k = 1, . . . , N, the set of domains formed by the

union of the balls from this subcovering, Γk are boundaries of these domains.

It is obvious that any uN /∈
⋃N

k=1[Gk + Γk] and all solutions uM belong to
⋃N

k=1 Gk for all

τ ∈ [0, 1]. We thus have separated all monotone solutions from all nonmonotone solutions, which

allows us to prove the main result of this work stated in Theorem 1.

Proof. Consider the homotopy (2.4)-(2.6). As it is shown in Section 2, the topological degree can

be introduced for the operator Aτ . By virtue of a priori estimates obtained in this section we can use

the Leray-Schauder method. As shown in [2], equation (2.6) with conditions (1.4) has a solution

in the form of monotone travelling wave when τ = 0. This solution is unique up to translation in

space. Functionalization of the wave speed removes the zero eigenvalue of the linearized operator.

Therefore, the spectrum of the linearized operator lies completely in the left-half plane. Thus

topological degree for the operator Aτ (u), introduced in (2.3), equals 1 for τ = 0. Consequently,

the topological degree for operator A1, corresponding to the initial equation (1.3) also equals 1,

whence the existence of a solution follows.

✷
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