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CONTINUITY CORRECTION FOR BARRIER OPTIONS IN
JUMP-DIFFUSION MODELS

EL HADJ ALY DIA* AND DAMIEN LAMBERTONT

Abstract. The aim of this paper is to study the continuity correction for barrier options in
jump-diffusion models. For this purpose, we express the pay-off of a barrier option in terms of the
maximum of the underlying process. We then condition with respect to the jump times and to the
values of the underlying at the jump times and rely on the connection between the maximum of the
Brownian motion and Bessel processes.

Key words. Barrier option, Bessel process, Continuity correction, Exponential Lévy model,
jump-diffusion.
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1. Introduction. In the Black-Scholes setting, Broadie, Glasserman and Kou
(1997) and Kou (2003) derived continuity correction formulas for barrier options.
The purpose of this paper is to establish similar results for jump-diffusion models.
The approach of Broadie, Glasserman and Kou was based on the expression of the
pay-off of a barrier option in terms of the hitting time of the barrier by the underlying
stock price. They managed to relate the discrete barrier option price to the continuous
one by using classical results on the overshoot asymptotics of the Gaussian random
walk.

Our approach is completely different and provides a new proof of the Broadie-
Glassserman-Kou results, even in the Black-Scholes case. We start from the expression
of the pay-off of barrier options in terms of the maximum process, which essentially
involves the cumulative distribution function of the maximum. We then rely on the
connection between the maximum of Brownian motion and the Bessel process, follow-
ing the ideas of Asmussen, Glynn, Pitman (1995), in their study of the weak conver-
gence of the normalized difference between the continuous and discrete maximum of
Brownian motion. The extension to jump-diffusions is obtained by conditioning with
respect to the jump times and to the values of the process at the jump times.

Note that the Asmussen-Glynn-Pitman Theorem was the basic tool for the deriva-
tion by Broadie, Glasserman and Kou (1999) of continuity corrections for lookback
options, and we showed in [5] that this approach could be extended to jump-diffusion
processes. The dependence of the payoff with respect to the maximum is much less
smooth in the case of barriers, and we will need to go deeper into the connection
between the maximum and the Bessel process to prove our results. In some sense, our
results prove that continuity correction formulas can be obtained in a unified way for
barrier and for lookback options.

The paper is organized as follows. In the next section, we present our main results:
a continuity correction formula for a general pay-off (see Theorem 2.1), and its appli-
cation to barrier options (see Proposition 2.2). We also demonstrate the use of these
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results by showing some numerical results for a double-exponential jump-diffusion
model. The other sections of the paper are devoted to the proof of Theorem 2.1.
In Section 3, we derive some preliminary estimates on the jump times of a Poisson
process. In Section 4, by conditioning with respect to the jump times, we reduce the
problem to the analysis of discrete vs continuous supremum between the jump times.

In Section 5, we further condition with respect to the values of the underlying
process at the jump times. We then have to deal with independent Brownian motions,
and we establish a representation of a conditional expectation of a function of the
maximum, the discrete maximum and the terminal value in terms of Bessel processes
(see Proposition 5.2).

Section 6 is devoted to the derivation of some elementary estimates concerning
the transition kernel of the Bessel process which are needed in the last two sections.
In Section 7, we derive some bounds for conditional expectations, in order to be able
to derive convergence results for the unconditional expectations from the correspond-
ing results for conditional expectations. In Section 8, we establish the continuity
correction for conditional expectations.

2. Continuity correction formulas. In a jump-diffusion model, the price of
the underlying stock at time ¢ is given by

Sy = SpeXt, 0<t<T,
where, under the pricing measure, the process X = (Xy)o<i<r is given by

N
Xy =7t+0oB;+ Y Vi, (2.1)

i=1

where v and ¢ are real constants, with o > 0, (B;)o<i<r is a standard Brownian
motion, N is a Poisson process with intensity A > 0, and (Y;),, are i.i.d. random

variables. Note that, under the pricing measure, the process (e~ ("=9S,)o<; <1, where
r is the interest rate and 0 the dividend rate is a martingale. This implies the following
relation between v and the other parameters

2
'y:rf(sf%Jr/\E(eYlfl).

In the terminology of exponential Lévy models, note that X is a Lévy process with a
non-zero Brownian part and a finite Lévy measure, given by v(dz) = Au(dx), where p
is the distribution of the random variable Y;. For more details about Lévy processes
see [12].

We define
X X,n
M = sup X,, M = max Xk
0<s<t 0<k<n n
. X .
mf( = inf X, m;" = min Xu.
0<s<T 0<k<n n

When there is no ambiguity we can remove the super index X.

The options we will consider in the sequel will have as underlying the asset with
price S. We will denote by K and H the strike and the barrier of the option. The
maturity of the options is assumed to be T'. Figures 2.1 and 2.2 give the payoffs of
barrier options. The corresponding prices are the expected values of the discounted
payoffs.
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Barrier Continuous Discrete
Up Out | (Sr—K)™1 (Soerr<ar) | (ST = K)'1 (S0 <n1)
UpIn | (Sp—K)" Lygperrsm | (57— K)" ]I{SOGM;EH}
Down Out | (St — K)" Lisyemrsmy | (S7—K)© ]l{soem;g>H}
Down In | (St — K)* Lispemr<my | (ST — K)* ]l{sue"”%gH}

Fic. 2.1. Payoffs of barrier call options

Barrier Continuous Discrete
Up Out | (K —Sp)" Lg,evrapy | (K = St ]1{506M;<H}
Up In (K—ST)+]I{306A4TZH} (K*ST)JF]I{SWM;EH}
Down Out | (K —Sp)* Lispemrsmy | (K — Sr)T ]l{suemle>H}
Down In | (K — S7)" Lispemr<my | (K — St) ﬂ{soem;g}

Fic. 2.2. Payoffs of barrier put options

Let UOC(H) be the price of a continuous up and out call with barrier H, We
have

—r - +
UOC(H) =Ee™ " (Spe*T — K) 1 upyeyar Socxe <t}

K H
k10g<5—>, hlog<5—>.
0 0

UOC(H) = SoEBe™ " e*™ L {prpan xpory — Ke "TP[Mr < h, X7 > K]
= Soe TEBe™ T X apy o xpoky — Ke "TP [My < b, X7 > K]

Define

We can write

We know that the process (e’(“‘s)texf)0<t<T is a martingale. Let P be the probability
defined by its density with respect to the pricing probability measure P

@ _ e—(r—é)T-{-XT )
dP

Note that (as can be deduced, for instance, from Theorem 3.9 of [10]), the process
X remains a Lévy process under probability P, and that its Lévy measure under P is
given by v(dz) = e"v(dz).

We have

UOC(H) = Soe °TP [Mr < h, Xy > k] — Ke "TP My < h, X1 > k]

If we call UOC™ the price of a discrete up and out call with barrier H, and n fixing
dates (with step L), then we have similarly

UOC™(H) = Soe TP [M} < h, X7 > k] — Ke "TP[MJ} < h, X7 > k] .
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Finding continuity corrections between continuous and discrete barrier options amounts
in fact to finding corrections between the above probabilities. This is the aim of the
following result.

THEOREM 2.1. Let X be an integrable Lévy process of the form (2.1), with o > 0.
For any bounded Borel measurable function g : R — R and for any positive number
x, we have

1
E[g(X0) L (atrzasriyy | = E {g(XT)]l{MT>z>MTN;BI }] ‘o <ﬁ) |

where 1 = ER and R is defined by

R = min R(U + j). 2.2
{J_EZ}( J) (2.2)

Here, (R(t))er is a two sided three dimensional Bessel process (i.e. R(t) = Ri(t)
fort > 0 and R(t) = Ro(—t) for t < 0, where Ry and Ry are independent copies
of the usual three dimensional Bessel process, starting from 0) and U is uniformly
distributed on [0,1] and independent of R.

Note that the result does not depend on the jump part of the process, so that the
continuity correction for jump-diffusion models is the same as for the Black-Scholes
model.

The result of Theorem 2.1 can also be written in the form

1
B3] st ] 20(35)

Moreover, the proof of Theorem 2.1 shows that the theorem is still true if we replace
x by a sequence x,, which converges to  when n — 4+00. So, under the assumptions
of Theorem 2.1, we have

oVTPB
NG

1
IP’(MT<JC—|— ,XT>y>:IP’(M}’<$,XT>y)+0(

ﬁ) (2.3)
oVTh

Vi ro (e

Therefore, we deduce from Theorem 2.1 the relations between continuous and discrete
barrier options.

PROPOSITION 2.2. Let X be a Lévy process with generating triplet (v, 02, v)
satisfying o > 0 and v(R) < oo, V(H) be the price of a continuous option with
barrier H, and V" (H) be the price of the corresponding discrete barrier option. We
assume that the process (eXt_(T_‘s)t)t 18 a martingale. Then

P(MT<$,XT>y):PlM%<$— ,XT>y

>0

i v () o (L)

V(H)=V" (Hef@a) +0 (%) ,

where in £ and F, the top case applies for Up options and the bottom case applies
for Down options.
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REMARK 2.3. Under the assumptions of Proposition 2.2, we can prove that

V(H) — V" (H) =

See Remark 8.7.

C
NG

—=+o

(%)

Proof of Proposition 2.2. For the proof, we will consider only barrier options without
rebate, since the latter can be easily deduced from the former. Theorem 2.1 and (2.3)

lead obviously to the following results

[ T 1

P MT<y+U\\//_ﬁﬂ1,XT§x P[M%<y,XT§z]+o<ﬁ)
[ VT 1

P Mp>y+ 2 nﬂl,XTSSC P[M$Zy,XT§z]+0<%)
[ VT 1

P MT<y+U\/Eﬂl,XT<x P[M$<y,XT<z]+o<ﬁ).

The price of barrier options can be written in terms of the above probabilities (as in
the case of the call Up and Out studied in the beginning of the section). Recall that
in the Down case, the infimum process m of X satisfies

inf X,
0<s<t

= — Ssup (*Xs)'
0<s<t

mi =

We deduce the first result of the proposition. For the second part of the proposition,
we proceed in the same way and use (2.4). o

We will test the performance of Proposition 2.2 with the double exponential jump-
diffusion model (see [8]). So, we have

N
X :78+JBS+ZYZ-7
=1

where N is a poisson process with intensity A, and Y7 follows an asymmetric double
exponential distribution with probability density function

Sy (y) =pme " >0 + qnae™V 1y <oy,

where 1)1, 12 are positive numbers (with 71 > 1 to ensure integrability of the exponen-
tial), and the non-negative real numbers p and ¢ satisfy p + ¢ = 1. In our numerical
examples, the values of the parameters are the following: ¢ = 0.3, p = 0.6, A = 7,
n1 = 50 and ny = 25. We will consider the up and out put option with parameters
So =100, r = 0.05, 6 =0, T =1, K = 100, H = 110 and rebate = 10. The con-
tinuous price, computed by the method used in [9], is equal to 13.240. The discrete
prices are computed by Monte Carlo methods. In Table 2.1, we study the conver-
gence of the discrete price and the corrected discrete price (using the second equality
in Proposition 2.2) to the continuous price.
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Discrete price | Relative error | Corrected discrete price | Relative error

n

5 14.193 7.201% 13.883 4.857%
6 14.160 6.945% 13.772 4.016%
7 14.128 6.707% 13.667 3.379%
8 14.095 6.459% 13.627 2.923%
9 14.072 6.278% 13.577 2.544%
10 14.048 6.101% 13.542 2.273%
15 13.957 5.410% 13.429 1.430%
25 13.851 4.619% 13.358 0.896%

TABLE 2.1

Performance of the continuity correction in double exponential jump-diffusion model.

As expected, the discrete price converges slowly, while the corrected price con-
verges rapidly to the continuous price. The reverse problem is studied in Table 2.2.
We approximate the discrete barrier price by the corrected continuous price according
to our correction formula (see the first result of Proposition 2.2). In the last column
we give the relative error made by approximating the discrete price by the corrected
continuous price. The latter clearly is a good approximation of the discrete price,
compared to the continuous price.

n | Discrete price | Corrected continuous price | Relative Error
5 14.193 13.964 1.613%
10 14.048 13.894 1.096%
15 13.957 13.829 0.917%
20 13.896 13.780 0.834%
25 13.851 13.742 0.787%
30 13.816 13.711 0.760%
35 13.789 13.685 0.754%
40 13.764 13.664 0.726%
45 13.743 13.645 0.713%
50 13.726 13.629 0.707%
TABLE 2.2

Performance of the continuity correction in double exponential jump-diffusion model.

3. Estimates for the Poisson process. In this section, we give some estimates
for the jump times of a Poisson process. These estimates will be used to derive
domination conditions in order to justify the convergence of some expectations.

PROPOSITION 3.1. Let (N¢)e>0 be a homogeneous Poisson process, with jump
times (17);>1. Fort >0 fized and for any integer | > 1, we have, fori=1,...,1,

El——1 N -i)< X
VT =T 1 Vit

and
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Proof. Using the conditional distribution of the jump times T1,.. ., Tj, given {N; = [},
we have

1

t_ldtl Loudty

1 1
E— N, =1 :/ L
<\/ Ti =T ) {o<ti<..<t;<t} Vti —ti-1
10
| L,
u1>0,..., ul>07zz:1 ’U.j<t} vV Uq t

1...dul

21 [ —1)
§—/ ( 171) duy...dw...du
Vit {u1>0 ..... ul>0,2j¢iuj<t} t

2
=

where we have used fot \d;;— = 2/+/t and, in the last integral, u; is omitted. The proof
of the second inequality is similar. o

PROPOSITION 3.2. Let (Ny)i>0 be a homogeneous Poisson process, with jump
times (11);>1. Fort > 0 fized and for any integer | > 1, we have, fori=1,...,1 and
for any a > 0,

P(E—E_lgat|Nt:l)§la
and

Pit—-T,<at| N, =1) <l

Proof. We can assume that o < 1 and write, for ¢ = 1,...,[, using the conditional
distribution of jump times given {N; = [},

!

P(T,—Ti 1 <at|Ny=1)= / ]].{ti_tiilgat}t—ldtl ..dy

{0<t1<...<t; <t}
!

= ]1 <t —d’u,l...dUl
/{u1>0,...,ul>0,zzl “j<t} {ui<a }tl

[—1)!

< la/ ( 171)

{ul >0,...,ul>0,2j¢i uj<t} t

= la,

dul...—dru—i...dul

where, in the last integral, the variable u; is omitted. The proof of the second in-
equality is similar. o

4. Conditioning with respect to the jump times. For the proof of Theo-
rem 2.1, we will first condition with respect to the jump times of the Poisson process.
Fix £ > 0 and ¢t > 0. We have

E(9(X)L{as,52y) — E (g(Xt)]l{IV[t”Zz}) =K (!](Xt)]l{Mtzx>M7})

ZE (g(Xt)]l{MthE>thn} | Nt = l) P(Nt = l)
=0
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Conditionally on {N; = 0}, we have X = vs + 0B, for s € [0,t], and
E (g(Xt)]l{MtZCE>Mt"} | Nt = 0) =K (g(Xt)]l{I\/IUZI>MO’"} | Nt = 0) ,

with M0 = supogsgt(vs +0By), MO = maxg=0,....n Xkt/n-
Conditionally on {N; =1} and {T} =t1,..., Ty =}, with 0 < 1 < ... <t < ¢,
we set t;41 =t and, for j =0,...,1,

M’ = sup X, M™M= max Xkt /ns
s€[tj t41) k.kt/n€ltstjr1)

with, by convention M7" = —oco if there is no integer k such that kt/n € [t;,t;41).
In the sequel, we denote by 6 the vector (t1,...,%) and by E; ¢ the conditional expec-
tation given {Ny; = 1,11 = t1,...,T; = t;}. Conditionally on the values of X at times
t;, the random variables M7 are independent and have a density. So they are almost
surely pairwise distinct and we have

1
E; o (g(Xt)]l{Mtszgl}) = ZEM) (g(Xt>]l{Mt2x>Mt",Mj>maxi¢j Mi})
=0

l

K0 (g(Xt)]l{]MJ' >o>MP,MI >max;«; Mi}) .

=0
Hence
l
Ei6 (g(Xt)]l{MtZz>Mt”}) = Z (a{’"(@) - sz’n(e)) ;
j=0
with
Oé{’n(e) =K (g(Xt)]l{MJ' >x>M7 " Mi>max; Mi})

and

ﬁljyn(e) = El,@ (g(Xt)]l{Mj21>ij”',Mj>maxi¢j M max;; ]\/Iiv”'zz}) .
Integrating with respect to the jump times, we get
E (9(X) M as,05npy) = E (o, (Th, ..., Tn,) — B3, (Th, ..., Tn,))
where for [ € N,
l .
Oé?(tl, . ,tl) = 1{121} Za?’n(tl, . ,tl)
j=0
and
l .
ﬂln(tl, . ,tl) = ]l{lzl} Zﬂlj’n(tl, ey tl).
j=0

With these notations, we can state the following proposition.
PROPOSITION 4.1. We have limy,_, 1 o0 v/nE (8%, (T1,...,Tn,)) = 0.
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For the proof of this proposition, we will use the following reformulation of the
Asmussen-Glynn-Pitman Theorem. It can be deduced from a careful reading of the
proof of Theorem 1 in [1] (see particularly pages 879 to 883, and Remark 2).

THEOREM 4.2. Consider four real numbers a, b, x and y, with 0 < a < b. Let
B = (Bs)a<s<b be a Browian bridge from x to y over the time interval [a,b] (so that
Ba = and By = y) and let t be a fized positive number. Denote by M the supremum
of B and, for any positive integer n, by M™ the discrete supremum associated with a
mesh of size t/n, so that

kt
M= sup Bs and M"™ = sup B, where[n:{k€N|—€[a,b]}.
a<s<b kel, " n

Then, as n goes to infinity, the pair (v/n(M — M™),3) converges in distribution to
the pair (VtR, B) where R, defined in Theorem 2.1, is independent of [3.
Proof of Proposition 4.1. We have

187" (0)] < ||g||ooZPz,9 (M7 >z > M»™ M7 > M' > M"" > 1)
i#]
<lglloe D Pro (z < M7 <+ (MY = MP"), 2 < M' <@+ (M7 - MI™)).
i#]
Conditionally on {N; = I}, {(T1,...,T;) = 0} and {X7, = xx,k = 1,...1}, the
processes (Xy — X, )t,<s<t,y, and (Xs — Xy )i;<s<t;y, (for i # j) are independent

Brownian motions. The pairs of random Varlables (M7 — zj, M9 — M7™) and (M* —
xi, M — M*®") are independent and we have

_ _ T—mi+MI—MI™
E (]l{mgMi<x+IV[j71V[J""} | MJ,MJ’") =/ fi(u)du,

r—T;

where f; is the probability density function of the random variable

SUPg<s<t;,,—t; (Y8 +0Bs). We know (see for example Lemma 2.22 of [4]) that the
function f; is bounded by C//ti11 — &;, where the constant C' depends only on v, o
and t. We deduce that

Pl,e (1' < Mj <x-+ (Mj 7Mj,n)7x < Mi < x4+ (Mj _ Mj,n))

C ‘ ‘
< B (W = APt <o)

Note that by Theorem 4.2 and the fact that M7 has a continuous distribution, the
sequence (y/n(M7 — Mj7n)]].{ISMj<I+(I\/[j7Mj,n)})n€N converges to 0 in probability

and, since (y/n(MJ7 — M7™)) __ is uniformly integrable (see [1], Lemma 6), we have

neN
i VB (M7 = M7 acnrs <ot aas-arinyy) = 0.
On the other hand, we have

;05{"” S P prmca T f (4.1)

J=0 i#£j

<cz\/72m (4.2)
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We deduce that the sequence of random Variables\/ﬁﬂ}},t (Th,...,Tn,) is dominated
by an integrable random variable by Proposition 3.1. This concludes the proof. o

5. Conditioning with respect to the positions at jump times and rep-
resentation using the Bessel process. It follows from the discussion of Section 4
that

E (9(Xe)L (s, >0>mp3) = Eo (g(Xt)]l{]MUzz>]M£'"}) P(Nt = 0)
—|— E (a}i,t(Tl, e ,TNt)) —|— O(l/\/ﬁ),

where Eg = E (. | Ny = 0) and af(t1, ..., 1) = S5_gai" (t1, ..., ;). We have

a{’n(tl, ot) =E (g(Xt)]]-{Mf21>ij”',Mj>maxi¢j iy [ Ne=1Ty=t1,...., T =1).

For j =0,...,1, we set

ao Xt —ts ” Xy
J — M, forue[0,1), and ] = i

We have, putting o; = o/Tj41 — 5,
MI = O’ij and MI" = Jij’”,
where

M? = sup f, and M?"=sup .
u€[0,1] kerd Tnob

with the notations >‘j = t/(thrl — tj), tAj = tj/(thrl — tj) and
II={keN|t;<kt/n<tjp}forj=0,....,01—1

and I!, = {k € N | t; < kt/n < t;41 = t}. Here again we use the convention
MI" = —o0 if I} = 0. _

For the computation of o™ (t1,...,%), we will further condition with respect to
{Xr, = 21,...,X1, = x;}, where 21, ..., x; are arbitrary real numbers. So, we
introduce the notations

9:(t1,...,tl), 51(561,...,:171),
and
Proec=P(|Ne=1,Tp =ti, Xy, =, k=1,...,1).

The expectation under P; g ¢ will be denoted by ;g ¢. Note that, under P; g ¢, the
processes 37 are independent Brownian motions on the interval [0,1], with initial
values Bé =3;, with &; = z;/0;,7=0,...,L

With these notations, we can state the following lemma.

LEMMA 5.1. We have

Ei0.¢ (g(Xt)]l{szx>Mj’”,I\/ﬁ>maxi¢j Mi}) =Ei6,¢ (ﬂ{szz>Mj,n}a{191£(Xf ,Mj)) ,

341
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where

j El@&(g(Xt)]l{maXv M"<m}) ijzoaal_l
J — s7 iF£] -
al,e,g(ya m) { 9P (max#j ]\4]Z < m) if j=1.

Proof. Note that, if j < [, under Py g ¢, the pair (M7, M7™) on the one hand, and the
random variables X;, M" for i # j on the other hand are independent, so that
Ei0.6 (9(Xe) L (a5 305 Mo ms smaxis, mi}) = Broe (ﬂ{Msz>Mj,n}a{707§(Mj)) ,
where
a{,e,g(m) = Ei0.6 (9(X0) L fmaxs,; mi<my) -

Note that in this case the function a{e ¢ does not depend on y. Now, if j = [, we
have X; = X,- and the random variables M i for i < I are independent of the pair
J+1

(Xt,,,, M"Y, so that

B¢ (g(Xt)]l{szm>Mjm,MJ‘ >max;; Mi}) =Ko (ﬂ{Mj 21>Mj,n}a{191£(th+1, Mj)) ,

with

of g¢(y:m) = g(y)Pro,e (mgx M* < m> :
i#]
<&

We will now give a representation of the expectations in Lemma 5.1 in terms of
Bessel processes. Set 7/ = sup{u € [0,1] | 37 = M7}. Conditionally on 77 = s
and M7 = m, we set RI(u) = m — p?_,, for u € [0,s] and Ri(v) = m — BngU, for
v € [0,1—s]. We know that, conditionally on {77 = s, NI = m, 3] = y}, the processes
R? et R are independent Bessel bridges of dimension 3 (cf. [1], Proposition 2). We
can write, conditionally on {77 = s, M7 = m},

M7 — N™ = min R (s + 1; — X\j(k/n)) A min Ry(\;(k/n) —t; — s),
kel, kelt

with
I ={keN|0<s+1i;—\(k/n)<s}, IT={keN|s<\(k/n)—1t <1}
Hence

N — NP = min  RI(d(s) + Aj(k/n)) A | Inin Ri(\j(k/n) — di(s)), (5.1)

0<k<N} <k<N2

>

with &/ (s) = ; + s — % [M} (where [z] is the greatest integer in x; note that

n J

0 < d/(s) < \j/n) and

N! =max{k € N | & (s) + \;(k/n) < s},

n

N2 =max{k € N| —d(s) + \;j(k/n) <1-s}.
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Note that N} is a well defined non-negative integer if I, is not empty and N2 is a
well defined positive integer if I;7 is not empty. When one of the two sets is empty
and not the other, the minimum in (5.1) is considered on the non-empty set. Note
that, if A\;/n < 1 (or, equivalently, t;41 —t; > t/n), at least one of the two sets is
non-empty. In the following proposition, we will also use the notation

v =1V ti+1 — /o

It should be emphasized that, in the next statement, there is no conditioning on the
terminal values of the Bessel processes, in contrast with the statement of Proposition
2 of [1].

PROPOSITION 5.2. Assume \;j/n < 1. For any bounded Borel measurable function
F:R? = R, we have

1
El,G,&F (Xt;+1,Mj,Mj _ Mjan) :/O dsE (F (Rl(s)’R2(1 _ S),R;’n)) ’

where
. 1 eYilri=r2)=(v}/2)
F(ri,re,p) = §—F(1'j +oj(r1 —r2),xj + 0jr1,05p),
rir2

Ry et Rs are independent three-dimensional Bessel processes, starting from 0, and

RI™ = in  R(d Ak
R (d7,(s) + A (k/n)),

with R(u) = Ry (u) for u >0 and R(u) = Ry(—u) for u < 0.

Proof. Note that F (th , M7, MI —MJV") =F (ojﬁl,oij,oj(Mj —MJ")) In
41

view of the discussion before the statement of Proposition 5.2, we observe that the

conditional distribution of M7 — M7™ given {17 = s, M7 = m, 3] = y} is the same as

the conditional distribution of RZ™ given {R;(s) = m — &;, Ro(1 — s) = m — y}, so

that

Evoe (F (X, M, M7= M) |70 = 5,000 =m, 3 = y) =
E (F (0jy,05m,0;R)™) | Ri(s) =m —&;, Ro(1 — s) = m —y)
= ¢i(m —&j,m —y),
with
PI(ry,re) = E (G (rl,rg,Rg’") | Ri(s) =71, Ra(1 — s) =1r3),
and
G(r1,r2,p) = F(2j +0j(r1 —r2), 25 + 0571,05p) -

Recall that, under probability IP; g ¢, the process (B{;)ue& 1] is a Brownian motion,
starting from &; = z;/0;, with drift v; and with unit variance coefficient. It follows

that the conditional probability density function of the pair (77, M7) given I =

can be written

u(s,m —&;)u(l —s,m —y)
n(y — ;)

P(r? e ds, M7 € dm | Bl = y) = dsdm,
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where n is the probability density function of the standard normal distribution and

L M —m?/2s),

)= ﬁSB/Q

The above expression of the conditional distribution of (77, Vgl ) follows from Propo-
sition 8.15 in Chapter II of [6].
We now have

m > 0.

J J_Afim) —
Evoel (X, M/, M7 = MP") =
/P(Tj eds, M’ e dm,B{ € dy)wg(m —Zj,m—y)
n 1 o0 dm . i A
= [ P(3] edy) | ds —————u(s,m — &;)u(l — s,m — y)Yi(m — &;,m —y).
0 #;Vy n(y — xj)

Since ]P’(B{ € dy) =n(y — &; — ;) dy, we can write, with the substitution r; = m—2;,
ro = m — y in the integral with respect to y and m,

BioeF (X, M7, M7 — M) =

1 o] 00
/ ds/ dry / dreei (r1=r2)=(7; /Q)U(S,T1>u(1 — 5, 19)2 (11, 79). (5.2)
0 0 0
Recall that the transition density of the three-dimensional Bessel process is given by

- 1
qt(zay): EQt('rvy)ya $7y>0,t>0,

where g¢(z,y) is the transition density of Brownian motion (on [0, +00)) killed when
it hits 0, which can be written

a(z,y) = gi(x — y) — gz + y),

where ¢g; is the density of the normal distribution with mean 0 and variance ¢t. For
these properties of the Bessel process, see [11] (Chapter VI, Section 3). For = 0, we

have
2 2
@t(O,y)Z\/7t 372¢ " ey >0, t>o0.

Note that, for any m > 0 and for any s > 0,

u(s,m) = %qs(o, m).

my/2

Hence, (5.2) can be written as follows

ErocF (X, M7, M/ =M™ =

e'Yj("‘l r2)— ('7]/2) X
/ ds/ / P(RI(s) € dr1, R(1 — s) € dry) ———————— ) (1, 12)

rir2

/0 dsE (LIE (G(Ry(s), Ra(1 — 5), RI™) | Ry(s), Ra(1 — 5)))
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where

;O R-9)-(}/2)
L . 5.3
s 2R1(S)R2(1 - S) ( )

The proposition then follows from the equality
. 1 evi(ri—r2)=(v;/2)

F(ri,re,p) = §TG(7’1,7’2,P)-

<

6. Transition density of the Bessel process. In this section, we give some
estimates for the transition density (g:(z,%))t>0, 2,y > 0 of the three-dimensional
Bessel process. As noted previously, we have

- 1
qt($5y): eq(l‘,y)y, xay>oat>oa

where ¢:(z,y) is the density of the Brownian motion killed at 0, which can be written

@ (2, y) = gi(@ — y) — ge(z +y),

where ¢g; is the density of the normal distribution with mean 0 and variance ¢t. For
z = 0, we have

2 2
G:(0,y) = \/;gﬁe_yz/(%), y>0,t>0.

We set, for r > 0, m > 0,

Gi(r,m) = = ;Qt(rvm)-

Note that
_ 1
Gi(r,m) = - (9¢(r —m) — g¢(r +m))

+1
. / gL (m + re)de.

-1

This last expression allows to extend by continuity the definition of g (r,m) for r =0
or m = 0, so that

+1 2 m 2
_ _ / _ o/ _ 2 M —m=/(2¢t)
qt(O, m) = /_1 gt(m)d§ = 29t(m) “\Vx tg/ze :

Notice that, for any r > 0, g(r,0) = 0.
PROPOSITION 6.1. We have the following estimates, for any v € R.
1. For any s, r, m > 0,

1
G (r,m)erm=07s/2) < Z e (C1+ Cav4V/s),
S

with C1 = \/% and Cy = +/2/7.
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2. For any r,m > 0,
1
/ dse’ym*(’YQS/?)qfs(r, m) < 93/2,77+
0

3. For any s, r > 0,

Wi,
TSs '

+oo 9
[ dmem 0%, ) <
0

Proof. Note that we can assume that v > 0 because, for v < 0, eYm=(v’s/2) <1. We
have, using the equalities g;(z) = g1(x/vt)/V/t and ¢} () = —xg1(x)

+1
G(rym) = — / gl (m + r€)de

-1

L[ m (m+r€) dt.

sl T U
Note that
ym—(2s/2), (M _ —arg, (M AETE— TS
e g1 ( \/g e g1 \/g .
Hence
+1
ym—(v?s/2) 7 :l/ e TE (M TE s 6.1
e qs(r,m) s/, e 7 g1 Nz ¢ (6.1)
e [T m e — s m+ré —s
< AL S NP
<= [1 Ve + Vs 91( s 3

e 1
<2 sup xgi(x) + s ,
. (Dré g1(z) +7Vs Tw)

which gives the first inequality. For the second and third inequality, we start from
(6.1) and notice that

(m + 7€ —v8)% = (m +1€)? + %8> — 2ys(m + 7€)

(m+ rf)Q)

> (m+ r€)? + 42s% — (27252—1— -

(m+7r8)* 5,

=y
We deduce
m+7rE— s 2,0 (m—i—rf)
mATE =S\ s |
91( NE )— "\ Ve
Hence

+1
e (~25/2) — . m+ré m~+ré
eym—(v /2)(13(7“7 m) < e /_1 | o |g1 ( N )df, (6.2)
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and, integrating with respect to s,

1 +1 1
2oy + 7| m+ré
dseYm—(17s/2) S (7, < 'YT/ </ [m < >d ) d
/0 se q (T m) <e . ) $3/2 g1 R s | d€

+1 +oo
= 23/26”/ / g1(u)du | d¢
—1 \Jim+re/v3
< 23/267"7,
where we have set u = |m + r£|/v/2s. Integrating (6.2) with respect to m, we get

400 ) +1 “+o0
/ e'ymf('y 5/2)65(7’, m)dm < e'yr/ </ |m:;§|gl <m+7"§> dm) d§
0 1 0 53/ V2s
+1 o0 m 4 ¢ m+ré
yr
o [ (7 (2 )

err +o00 e
:481T/OO |z]g1 (z)dz:4\/§\/§,

where we have set z = (m + r£)/v/2s. o

We complete this section with a lemma concerning the minimum of the Bessel
process. This result is a consequence of Lemma 3 of [1].

LEMMA 6.2. Let (R(t))i>0 be a three-dimensional Bessel process starting from 0
and let t1, ta, y, m, b be positive numbers, with t1 < to. We have, using the notation
Ri(ty,t2) = ming e, +,) R(u),

ym

Proof. We assume that b < y A m, since if b > y A m, the upper bound is larger than
or equal to 1. We then have, using Lemma 3 of [1] (and the fact that the Bessel bridge
can be viewed as a Brownian bridge conditioned to remain positive: see the proof of
Lemma 4 of [1]),

e2(b7y)(m7b)/T _ 672ym/T

1— e—2ym/T ’

P (R¥(t1,t2) <b| R(tr) = y, R(t2) = m) =

with T" = to — t;. Hence, using the convexity of the exponential function and the
inequality b(m — b+ y) < ym,

(2((b=y) (m—b)+ym)/T _ |
e2ym/T _ |
2b(m—b+y)/T _ 1

P (R¥(t1,t2) < b | R(t1) =y, R(t2) = m) =

e
T /T
b(m —b+y) < b(m+y)
ym ym
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7. Domination of the conditional probability. The following proposition
will be used to ensure the domination of conditional expectations.

PROPOSITION 7.1. There exists a constant Cy ., (depending only on t, v and o)
such that, for anyl € N, § = (0 < t; < ... <t; <t) € Rl et &£ € R, we have, for
7=0,...,1,

Ctma 1
v Vi =t

Proof. Note that Prg ¢ (M7 > x> M3™) =By g ¢F (M7, M3 — M7™), if we define the
function F' by F(m, p) = L{z<m<zip}- It follows from Proposition 5.2 that

Pro.¢ (Mj >r> Mj’") < ]l{tjﬂftj <8t/n} T

1
Pl,@,& (M] >z> M]m) - /0 dsk (Lg]l{ijSRl(s)SijJrRi’n}) ’

where LJ is given by (5.3) and
Pt
gj
We can obviously assume that ¢;1—t; > 8t/n, which, with the notations of Section 5,
can be written \j/n < 1/8 and ensures that at least one of the sets I, and I;7 is non-
empty. So we can bound the random variable R by R*(\;/n) where, for u € [0,1],
we set

~

R*(u) = max R(v).

—u<v<4u
Hence
Pl797€ (Mj > x> M]’n) < / dskE (Lglj (Rl(s),R*()\]/n))) ,
0
where
I; (7“7 /)) = ﬂ{@ggiﬁp}-
We have
kj/n . kj/n i
/ dsE (L1, (Ra(s), B (A;/n))) < / dsE (L),
0 0
and
2 2(1—s
eV:‘Rl(S)—% eWR?(l—s)—W](z )

E(l) =E NTACE e R )

By scaling, we have

iR ()= . Vs R (1) =4
V2Ri(s) | V23R (1)
1
Sct,’y o~ ~-

s



18 E. H. A. DIA AND D. LAMBERTON

Similarly

w(l s)

eWRZ(l 5)— -2

1
< Chryg———.
\/_RQ(l—s) ST T

Therefore
ANi_ Ctyo 1
n ‘/thrl — tj \/ﬁ,

and, by a similar argument, f117 X /n dsE (Lg) < % NG It remains to study the
J J+1715

A]‘/n .
/ dsE (Lg) <Ciypo
0

integral on the interval [A;/n,1 — X;/n]. Denote by (Fs)s>0 the natural filtration of
the pair (R!, R?). For s € [\;j/n,1 — \;/n], we have, by conditioning with respect to
‘F)\j /na

E (L3 Ry )€l o+ R O /ml})
:E(/ Am @y, (RO /) m)éd__ (Ro (/) m, B (3 /n)))
where
@ (r,m) =e¥m P12 gs(r,m) and ¢J(r) = %/OOO dme= " qs(r, m).
By Proposition 6.1, we have

sir) < 22 iz < Coova i)
™8 S

We have

1-Xj/n )
dsqy_y, jn(Ra(X;/n),m)éy_ 5. ) (Ra(A/n))

\

/1 225 /n )
=[O e (Rl ),

For s € [0,1/2 — (\;/n)], we have

1 1
V1—5—2)\;/n = 1/2—(\;/n) =2

because A;/n < 1/4. Hence

Y2=(0g/n) _
/ s, O g (o)

1
< Ct,%"/ ds @ (Ri(Aj/n), m)elslfz(s/m)
0

<Ci, pel Ml (BL(As /n)+Ra (X5 /n))
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where the last inequality follows from Proposition 6.1. On the other hand, for s €
[1/2 = (A;/n),1 — Xj/n], we have, using the first inequality of Proposition 6.1,

) C,
—j >0 i i
qs_/\j/n(r, m) < p—y nerl'm < 4Ctmaerl'm.

Here, the last inequality follows from the condition A;/n < 1/8. We deduce
1=(Aj/n) .
[ sy (ROl (Ra(hy /)
1/2=(A;j/n)

1
gamwmmﬂﬂm/ dsdi_,(Ra(N;/n))
1/2

1
ds

<c gem\<R1<Aj/n>+R2<Aj/n>>/
o e VI=s

<Cis gel ViR /n)+R2(A;/n)) |

Then we have
1-X\;/n )
A / dsE (LIL (R, (s)efe; 254 R (0 /m)]})
J n

< CiyoE (elw(Rl(/\j/N)JrRz()\j/N)) / dm I;(m, R* ()\J/n))) (7.1)
0
< Ciy ok ( R () /n)em\<R1<Aj/n>+R2<Aj/n>>)

= Ctryoy/Aj/1E (R*(l)em\\/Aj/nml(l)mz(?)))
__Gne 1
VT =t vn’

where we have used the scaling property of the Bessel process, \/A; = \/t/(tj+1 — t;),
and |7;]\/A; = [Vt/o. o

REMARK 7.2. It follows from the proof of the proposition that, for any § > 0, we
have

Ct,’y,a,zs 1
Vo V=

Indeed, we have Pyg¢ (M7 >z > M7 —§/\/n) = fol dsE (LiI; (Ri(s),0/(0;v/n))),
and we can replace R*(\;/n) with §/(cj4/n) in (7.1).

Pro.¢ (Mj >z > M — 5/\/5) < ]l{tHl—thSt/n} +

8. Convergence of the conditional expectation. The aim of this section is
to prove the following result and to deduce Theorem 2.1.

THEOREM 8.1. Let F : R? — R be a bounded Borel measurable function, such
that m +— F(y,m) is continuous for all y € R.

We have, with the notation Ey =E (. | Ny = 0),

Eo (F(Xt, MO 30505 r0y) = Eo (F(Xt, MO)]I{MOZDMngl\/t/—n}) +o(1/v/n).



20 E. H. A. DIA AND D. LAMBERTON

Moreover, for any positive integer 1, and for any 0 = (t1,...,t;) € R, with
O<ti<...<t;<t, &= (1,...,71) € R, we have, for j € {0,1,...,1}, if z; # x,

B¢ (F(th;l ) Mj)]l{MfszM}) =g (F(Xt;ﬂ , Mj)]l{]vﬁzz>Mj—a,81\/t/_n})
+o(1/vn),

where By is defined as in Theorem 2.1.
We will first show how Theorem 2.1 can be deduced from Theorem 8.1.

Proof of Theorem 2.1. Observe that, with the notation Eqg = E(- | Ny = 0),

E (9(X0)Lias,505mp03) = Bo (9(Xe) L arozasnr0my) P(N: = 0)

Using Theorem 8.1, we have
Eo (g(Xt)]l{M°ZI>M°*"}) = Eo (g(Xt)]l{M021>M0—aﬁu/t/n}) +o(1/v/n).

On the other hand, we deduce from Proposition 4.1 that
N:
E(9(X) L zasnrpy [ Ne 2 1) =E (> o' (T1,...,T) | Ny > 1| +0(1/v/n),
j=0

where, for any positive integer [, and for j =0,...,1,
al™(0) = Eio (9(Xe) L inrisas mim Mo smaxs, Mi}) -

Note that, as a consequence of Lemma 5.1, we have, assuming z; # z,
Elﬂfoal””(@) = Elﬁf (]]'{Mj2I>Mj’n}a{19,E(thjrl , MJ))
=Eio,¢ (]l{Mj233>Mj_,31,;1 /t/n}o‘g,e,g(Xt;H ) Mj)) + 0(1/\/5)

=B (]I{MJEE>MJ—,810 t/n, M3 >max;; Mi}) +o(1/v/n),

where the second equality follows from Theorem 8.1, and the last one from the expres-
sion of O‘g,e,g (see Lemma 5.1 and its proof; note that m ali,e,g (y,m) is continuous
because P g ¢ (max;+; M; = m) = 0). By taking the sum over j =0,...,[, we deduce
that, for [, § and & fixed, we have

Ero.e (9(X) L, 505 00)) = Eroe (g(Xt)]l{Mt2m>Mt7ﬁla\/t/_n}) +o(1/y/n). (8.1)

Observe that P (XT]. = z) = 0 for all jump times T} (including Ty = 0, since = > 0).
Therefore, in order to get the resut for the unconditional expectations, we only need
to check a domination condition. We have

Ero.e (9(X) L s, 505 mpy) | < lgllooProe (My > x> M)
l

< ||g||ooZ]P)1797§ (Mj > > qun) ,
j=0
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and

l
Pl,g,g (Mt >x > M; — 610’ t/n) < ZP17975 (Mj > x> Mj — 610' t/?’L) .
7=0

Using Proposition 7.1 and Remark 7.2, we deduce that
Proe(My>a>M)+Proe (Mt > x> My — Bioy/ t/n) < P(1,0),

where

! l
P(Le):]Dl(tl,-..,tl):Z]l{tj+1_tj§8t/n}+ ,naz\/T
.7

J=0 Jj=
It follows from Proposition 3.2 that

Ny

8t
Z]I{TJ+1At T;<8t/n} | < E(Nt(Nt+1))
7=0

and, from Proposition 3.1, that

N 1 _ G EMNi 4+ 1)

T‘+1 /\t_T] - \/E

j=0 J

E

The last two inequalities are sufficient to extend the estimate (8.1) to unconditional
expectations. o

For the proof of Theorem 8.1, we start from the representation given by Proposi-
tion 5.2, which reads

1
Ei ¢ (F(Xt;+1,MJ)]I{]\/1121>]\/11v"'}) = /0 Elj,’;fg(s)ds,

with
Elj"’ﬁ( s)=E (LJO‘J(Rl( ) Ba(1 _S))]l{ingl(s>Sij+Ri’”})’

75 (R1(s)=R2(1=9))~(+3/2)
2R1(s)R2(1—s) ’

where L] = ¢

T — Ty

aj(ri,re) = F(xj+0j(r1 —r2),x; + ojr1), and Z; = -
j

Note that the function «; is bounded, and ||®j|lcc = ||F||co- For any integer J > 1,
we can write, for n large enough,
1 2L+ 1 1-247
/0 El]:en,g(s)ds :/ Eljbg( )ds—i—/l_L El]bg( )d8+/>\j(~]+l) Elj’eg( s)ds.

0
(8.2)
The first two terms of this decomposition are controlled via the following lemma.
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LEMMA 8.2. For any integer J > 1, for any (1,6,£), and for j = 0,1...,1, we
have, if x; # 0

2 (J+1)
n

1
|7 ¢ ()]s + / o Bl (s)lds = o(1//n).

0 1-—=r

Proof. We will only consider the first integral, the argument is similar for the second
term. Note that for n large enough and s € [0, A;(J 4+ 1)/n], we have 1—s > \;/n and
we can bound RJ™ from above by R3()\;/n) (with R3(s) = maxo<y<s R3(u). Then
we have, using the boundedness of F,

B 1P (B, e s (2)3)

7 [(RL()+ Ra (1=9))

BT AOI P EO Hence, with the substitution s’ = ns,

where L] =

N (J+)/n Aj(J+1)/n .
], J
\/E/O rEl,O,é(s)‘ dS S \/EHF”OO/O dSE (Ls]l{féj<R1(S)<ij+R;(%)}>

A (J+1) g4 1
= ||F||°O/O ﬁE (LS//" {ij<R1(S’/n)<ij+R;(%)}) '

By scaling, we can write, using the notation

elvil(ritr2)

Ai(ri,72,p) = {5, <r1<&;+p}>

27"17"2

(P s enmeam()) B (8 (B 0= 08 (32))
—& (& (Revaro- 2.5 (%))
< vie (15" (o). ;.15 (2 ).

with

As,n( ) _ elvj‘(r_\/%-i_ 1_%T2) ]l

;2. p) = 2r /1= =1 {a;< <340}
Hence

\/ﬁ/ ng;gfg(s)’ ds < ||F||Oo/ dsE (A;’" (Rl(s),Rg(l),R§ (n & S))) .
0 0

Now, if n > 2X;(J + 1), we have, for s € [0,\;(J +1)], n —s > n/2, so that

R; (n)\—Js) < R; (%)a and V 1- S/TL > 1/\/5, so that

A, el (R (5)+ B2 (1))
L )) < 1, IR
V2R (s)Ra(1) {zi<miG)/vasa;+r; (52) }

A" (Rl(s),R2(1)aR§ (

n—s
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If x # x;, we have Z; # 0, and the right hand side of the inequality goes to 0 almost

surely as n — oo, for all s € (0,1). Since fol dsE (%
that

(J+1)/n
; i —
nhﬂnéo \/_/ Efye(s)ds | =0.

We will now examine the case z < ;.
LEMMA 8.3. If x < x;, we have,

) < 00, we conclude

/0 (Bi(5)lds = o(1//m).

Proof. In view of Lemma 8.2, it suffices to show that fl Ag/n |Elj7’9n7€(s)|ds =o(1/+/n).
From (7.1), we have, for n large enough,

1-X\j/n
/ |Ei],0§( )|d3 < CE( [vi1(R1(Aj /n)+Ra2(X; /n))/ m]l{m <m<E;+R*(\; /n)})
0

i/m

<CE (e\'yj|(R1()\j/n)+R2(/\j/n))R*(Aj/n)]l{R*(Aj/n)z_ij})

— YR (i VER QR ) g
= C WE (6 kel 1 2 R (1)]1{13*(1 m}

Since Z; < 0, the right hand side of the last equality is o(1/y/n). o

We will now study the case z; < z. We go back to the decomposition (8.2) and
assume that n is large enough, so that A\;J/n < 1/4. Note that, for s € [A\;(J +
1)/n,1—X;J/n], we have N} > .J and N2 > J. So, we have

Jj,n J,J,mn
RI™ < RLS™,
where

Jydim J .
RJI™ = 7]Hélkn<]R(d (s) + Xj(k/n)).

LEMMA 8.4. If x; < =, we have,

AiJ
1— 2=
" J,Jin Jy1 _
Jhrf hinSU.p vn /Aj(Hl) (El be (5) — El,e,g(s)) ds | =0,

where

EJ]T(s)=E (Lgaj(Rl(s>, Ro(1 =)L g5 (o SiﬁRJS-,J,n}) .

Proof. Note that

Elj@]sn( ) = Elje e(s) = E(LJ%(Rl( ), R2(1 75))]1A£,J,n,)7
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with
AP ={§; < Ry(s) <&+ R)7™ and 3k € [0, N} U [-N72, —1],
7+ R(d) (5) + X (b/m) < Ra(s) }

Introducing the notation, for ¢ = 1,2, and for any real numbers s1, so with 0 < s1 < s9,

Rg(51752): min R;(u),

u6[51,82]
we see that
AP LE; < Ry(s) < &+ RY7™)

N {Rﬂl()\jj/n, s) < RZ,J,n or Rg()\jj/n’ 1-5)< Rg"]’n}_

Note that R&7 ™ < R¥(\;/n) A R3(\;/n) and Ri(s1,s2) < R5(s1), where

Ri(s) = ueﬁlifm[Rg(u)’ s>0.

So, we have
j,J,m j,n j,J,n j,J,n
(B () = Bl () < IIFlloo (27 (5) + GEIE ()
where

s Jsm _ j
Fige(s)=E (Liﬂ{ijSR1<s>sm+R’;<Aj/n>,R§<AjJ/n><R;<AJ/n>})

and
g, Jmn _ J
Glﬂvf (s) =E (Ls]l{iJSRl(S)SiﬁRS(/\j/n)7R§(/\jJ/n75)<R’2"(/\j/n)}) )

In the sequel we denote by (F¢)s>o (i = 1,2) the natural filtration of the process
(Ri(s))s>0 and by F* the o-algebra generated by the union of the o-algebras Fr,
s> 0.

2
. j . O O .
In order to estimate Flje‘jgn(s), we write L? = %Mf_s, with

22
e—iRa(1=5)= 4 (1-5)

M_ =
1=s 2R5(1 — s)

By conditioning with respect to F! and using the Cauchy-Schwarz inequality, we get

2
+2
e—ViR2(1-s)— 5 (1-s)

1
2Rs(1 — s) ]l{Rg(/\jJ/n)<RI(>\j/N)} | F

4 1/2
J 1
< I la (B (L gagon,m<mionm) | 7))

= [|M{_,ll27/ £3" (R} (A; /),
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where fj" is the cumulative distribution function of the random variable Rg()\j J/n).
Note that, by scaling, we have, for any r > 0,

) = 1 (rM) : (8.3)

where f; denotes the cumulative distribution function of Rg(J ). On the other hand,
we have

1 o~ VI—sR2(1)— 4 (1-5)
2¢y/1—s Ry(1)

1M ]2 =

2

. - 1/2
_ —2v;V/I—sm—r2(1—s)— > d
N (/0 ¢ ’ m)

1 oo 5 1/2
< —2v;VTmsm—n2(1-s)— B> \/jd
_2\/1,9(/_006 74

2 1/2 1 2
(267],(1—3)) — = (=92 (8.4)
V2(1—s)

e

1
21 -5
Using the inequalities (8.3) and (8.4) in the expression of Flj:g‘]’gl(s), we get, after
conditioning with respect to F ij Jn

g, J,n eV?/Q in
R2 () < < (V13 (i )
o A BVEL VR REL T
with
(jg,,\j /n (7’, m) = e’ijqs—Aj/n (Ta m)
We can prove (by the same arguments as in the proof of Proposition 7.1) that
17)\1'.]/7’7, . dS
77 |yl
Te_x; n(ra m) < C‘t7 o€
/)\j(J-i—l)/n Ao/ 2(1 —s) 7
Hence
17A]‘J/’n 7 "
M M Dx e Aj/n) pxy
/ i (s)ds < CtmoE( TR (N /n))ell s/ )R1()\3/n))
Xj(J+1)/n

Ct.w]E< F1(Ry(1))el VA mi (D /\j/nRT(l)>’

where the last inequality follows from (8.3) and the scaling invariance of R;. Hence

1-X;J/n

lim sup v/n Flfefgn(s)ds < CiryoV/AE ( f](R’l‘(l))Ri‘(l)) .

n—o0 X (J+1)/n
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We have f;(r) = P(RY(J) <r) = P(R4(1) < r/v/J). So, for any r > 0,
lim 0o f7(r) = 0. We deduce, by dominated convergence that

We will now prove the same property for G{ ’é]’g (s). We have, by conditioning with
respect to the o-algebra generated by F?2 and the pair (R1()\;J/n), Ri(s)),

J,Jsn _ J
Glge(s) =E (Ls]l{ijgm(smﬁfz;(xj/n)ﬂﬁ(xjJ/n,s)<R;<Aj/n>})
B , A A ey
=E (Li]l{ijgﬁzl(s)giﬁR;(Aj/n)}A (—n ,8, Ry (—n ) , Ra(s), 5 (; ,

with the notation, for 0 < ¢; < t2 and b,y, m > 0,
Aty ta,y,m,b) =P (Rﬂl(tlvt2) <b| Ri(t1) =y, Ri(t2) = m) :

By Lemma 6.2, we have A(t1,ts,y,m,b) < A(y,m,b), with

- b(m+y)

A(y,m,b) = Al

ym

Therefore
j,Jn j A *
GLe ) SE (Lo <y m g 0y o) DEL A T/ 0), Ra(s), B3 (/) )
Note that

2

’Y?

- (=)= F1-s) N1 2

i —yjm——=-(1—s)
SR —s) | Fa;m VF 2/0 dme

X(jlfsf/\j/n(RQ()‘j/n)a m)
< ¢ eIl R208 /m)
T J1-s—=Xj/n
where we have used the third estimate of Proposition 6.1. Now, condition with respect
to fij gV F? to get (introducing the random interval I = [#;,%; + R3(\;/n)] in
notations)

elvil(Ra(X;/n)+Ra(s))

Gl (s) <CE (le(S)ﬂI:ﬁ (R1(s))

X A(Ry(NjJ/n), Ri(s), R5(\;/n)))

V1—s=Xj/nJo

x A (Ry (AjJ/n),m, R5(A;/n))) |

el R2(X;/n) co
=CE dm qs—», 5/n(R1(N;J/n), m)

where we have set

A%(Tlv m, TQ) = ehj'm]lj*j (m>A(T17 m, T?)'
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Note that (with the arguments of the proof of Proposition 7.1)

T 1vilm g ds <C ;1
€ qgf/\jJ/n(ra m) = Uty,0€ )
A

(1) /n V1—s=Xj/n

so that

1-X;J/n . o0
/ A5G () < Cry o (elw<Rz<kf/n>+Rl<wn>> [am 1 0m)
Xj(J+1)/n 0

x A(Ry(A\;J/n),m, Ry(X;/n)))
e e R

0
x A (Ri(J),m, R3(1))),

with
[ = [@@ﬁ Aj/nRS(l)}, A (r1,m,r9) = A <\/Aj7r1,m, mw)_
We have
AL (Ra(J).m. R3(1) = | R3(1) (Rll(J) +@>] o
B5(1) (e gy YN/
< Ri(J) + <R2(1)T> AT

By assumption, z; < z, so that Z; > 0. Therefore, for m € I7, we have 1/m < 1/%;,
so that

[ am s tm 3R ()m R0 < o s 1) (RE(” + Ry(1) Y2 ”) .

Ri(J) L
Hence
1-X;J/n . Rx(1 2
lim sup v/n dst’é]’g(s) < CryoV/NE ( 2(1) ) .
n—o0 A (J+1)/n . Rq(J)
Since limj_, o R1(J) = 0, we have
17)\1'.]/7’7, .
lim limsup v/n dst’é]’g(s) =0.
J=00 nooo X (J+1)/n w
o
NEYER
We will now study the asymptotic behavior of f e E} ’é] gl (s)ds. Note that, by

n

. . . 1 2
conditioning with respect to ]-'/\j Jm Y ]-'/\j J/n> We have
i, Jn i
El],e,g (5> =E (Liozj (Rl (S), R2(1 — S))]l{ijSIh(S)SijJng"”n})

= E/ dm qu)\jj/n (Rl (/\jJ/n> ,m) (gjl.fszj']/n(R2()‘j‘]/n)vm)
0

X ]l{ij <m<z;+RI7" )
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with the notations

. ’Y]? . 1 oo
B rom) = ™ Fqrm), Erom) = 3 [ @trg)e o (m,)dy,
0

LEMMA 8.5. Assume &; > 0. We have, for any integer J > 1,

2T
1-=4-

lim +/n

n— oo Aj (’+1)

]n iy, Jn
(Bl () = Bl ()] ds =0,

where

Elj’ngn( ) =K (/0 dm qg(O,m)qﬁ{S(O,m)]l{ijgmgiﬁRg,J,n}) .

Proof. We first consider

El]éjg( )=E (/0 dm qi—,\jJ/n(O’m)¢]1—s—AjJ/n(0am)]l{ijgmgijJrRi"”"}) ‘

j, J,m j,J,m j,J,n
Let leeg() Eljeg() Eljeg( s) and

Cﬁ (r1,72,m) = qszjJ/n(rl’ m)‘bksq]‘ J/n(Tva) - qif,\jJ/n(Ovm)g’{fszjJ/n(Ovm)'
We have

Zi],GJEn( ) E (/0 dm]l{ijgmgij-i-RgJ"}Cg (Rl()\]J/TL), RQ()‘JJ/n)a m)) .
Now, for all non-negative ry, ro, m,

|Cg(rlar23m)| < |‘j§:_>\jj/n(r1am) - qz_AjJ/n(Oam)||(gji_s_ij/n(T2am)|

+ qz—ij/n(O’m)|(£J1—s—>\jJ/n(r2’m) - QE{—S—)\jJ/n(O’m”'

By the arguments of Proposition 6.1, we can easily prove that

0! C oy |00 C rril+(2/2)
‘07‘ (T,m)'gme , r(r m) g;e i/2).

We deduce that
(G (1, oy m)| < Celrit O v 7 (s),

with
5 (s) = ! + !
I T TP (A — s — N )2 T (s =N/ (1—s — Ad/n)
Hence
‘ Zidis)| < CE ( RIImell (Ri(g J/m)+Ra (3 /m)+(77/2)

XRl()\]J/TL) V RQ(A]J/H)é;n(S))
< CpyoE ( R* () /n)el sl B (s d/n)+Ra(3s. 0 /m))
X R1(AjJ/n) V Ry(A;J/n)d7 (s))

)\.
= Gy B (R (VAT DR By (1) Ba(1)5)(5))
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where the last inequality follows by scaling, and R*(u) = R} (u) V Rj(u).
Now, fix p > 2. It can easily be verified that, for n large enough, we have

17>\ij \/_

n n n

n < _— 1] _

/— o < C( Np-D (w— 1>J)> |
so that
>\]pJ O

lim su ‘Z]’J" ‘ s < ——L1T
n—>oop\/_ 1,6,¢ Aj(pf 1)J

On the other hand, it can be proved (as in Lemma 8.2) that, for any fixed p > 2,

Xipd XiJ

a7 1—-22-
n n n .7-]1774 .
/MM) 2070 d”/l_m 2570 | ds = o1/ v/).
Therefore
)\ J

e 35, Ciy
lim su ’Z o ds < ——12
nﬁoop\/_ A(J+1) 95( ) = )\j(p—l)J

and, by letting p go to infinity, we conclude that

lim \/ﬁ/ ds = 0.

n—00 A GHD
n

J, =7,
‘Ezjegn s) — Ezj,e,gn(s)

It remains to show that

A
1—221-
n
lim v/n
n%oo\/_ X (J+1)
n

), J,m ), J,m
Eljeg( ) — Eljeg( )‘ds:O.

n

ijﬁ'Ri'Jm
E </ dmn?(s,m))

We have, for s € (w’l _ M)’

R*(N\j)

Tj+ T
<E / dm|n§l(s,m)| ,

J

i, Jn i, Jn
Eljeg( s) — Eljeg( )‘:

with
;' (s,m) =@ 2(0, m)¢1 (0,m) — qs X J/n(o m)¢1 5= J/n(o m).

Recall that Qé(oam) =V 2/7"8?}2 e—m2/2s- Note that, if .’i‘j <m< ,’Z'j + R*\}%j), we
have e~™/45 < ¢=%3/45 5o that, for s € (0,1),

—32%/4s
o e i e (m2
2 (0,m) < 7 melvilm=(m*/49 < ¢ (8.5)

for some positive constant C; (depending on Z;, but not on s or m).
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Furthermore

. 1 o0 B o
340.m) = 3 [ ava0.9) 0 m.y)

1 [ )
= 2—/ dy\/2/mye™V 2TV o (m, /sy),
Vs Jo

so that |¢1(0,m)| < C/+/s, for some C > 0.
We deduce thereof that, for s € (w, 1-— M),

n

it R*(\j 1
[ i s.my < 05 -
& \/ﬁ 1—s5— )\]J/TL
y R* ()
From this estimate, together with the fact that for a fixed s we have | i; Vidm [n7(s,m)| =
o(1/+/n) a.s., we easily deduce that

lim \/ﬁ/ |nf(s,m)|ds = 0.

n—oo Aj(I+1)
n

LEMMA 8.6. We have, if £; > 0,

A J
A R
1 n

i B s = oy B () [ o))+ o1/,
where

‘pg(m) = (jg(o, m)é{—s(oam)’ R’ = |g|li<n] R(U + k)’

and the random variable U is uniformly distributed on [0,1] and independent of R.
Proof. We have

L Zj+R;I" ‘
Bz =E [ dmim)
x

J

so that, intoducing the notation
_in T i (e = T L T o
Bl ¢ (s) = E(RY™)E(0,85)91 (0, %;) = E(RI")pl(2;),

we can write, for s € (\;(J +1)/n,1— X;J/n),

o _ Bj+RET ‘ ,
Bl - B G| <E [ dm |oi(m) - @)
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Note that, using (8.5) and the estimate |¢](0,m)| < C/\/s, we have, for 7; < m <
Tj+ R (Aj) /v,

i
1—

lpl(m)] <

va)

Now, for a fixed s € (0,1), m — ¢ (m) is continuous. Indeed the continuity of ¢Z(0,.)
is obvious and the continuity of ¢J(0,.) follows from the continuity assumption on F
and the equalities

51(0,m) = /O dys(0, )~y (m, y)

1
2
1
2

/ dyqs(0,y)e” " F (x; + oj(m —y),z; + o;m)
0

1 m
3 / dzG,(0,m — 2)e MR Pz + 052,25 + o5m).

Due to the continuity of m — ¢7(m) we have, for a fixed s € (0, 1),

R*(Aj)

Ti+—7m 4 ,
[ T amleim) - @) = o1/vi) as.

J

Hence

)\jJ 1_>\jJ
n

ﬁ o B (s)ds = / o E(REI)G(E5)ds + o1/ V).
We have
E(R>’ ™) = E | min R(d Ak
() =& in R + Ak )

= \xi/u  in )35+ 1))

where, for u € [0,1], f(u) =E (min|k|§] R(u+ k)) Using the definition of d(s) and

classical arguments, one can show that, for any integrable function g on [0, 1], we have

A J

1-27 3 1 1
nh—{r()lo/)‘j(i*l) f (nd;\’j(s))g(s)ds :/0 g(s)ds/o f(uw)du.

1 2id

1
Jrsiron B s = 5 B (R [ dsol(@) + ol /).

which proves the Lemma. o

Therefore
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Proof of Theorem 8.1. Recall that

1 .
Eio. (F(Xt* lvM])]]-{MJ'2x>MJ\n}) :/ El{’gfg(s)ds
0

1— )\j.l
n

Ely(s)ds + o(1/v/n), (8.6)

2 (J+1)
for any positive integer J. Here, we have used Lemma 8.2. Note that, if z < z;, we
have, due to Lemma 8.3, E; g ¢ (F(th ,Mj)]l{Mj>m>]\/]j,n}) =o(1/y/n).

j+1 -
We now assume = > x; and fix a positive integer J. We have, using Lemma 8.5

and Lemma 8.6,

1_>\j.l 1_)\j.l

n . _ PN
/Aj(um Eljﬂ,g(s)ds B /Ajuﬂ) Eljﬂ,g(s)ds +o(1/\/ﬁ)

A L
— 2B [ ila)ds + o1/ Vi)
0
Note that lim;_,., E(R’) = 81, so that
N

- T idn BV A
lim limsupv/n /AJ(JH) EZJGJE (s)ds — #ﬁl/o Ol (z;)ds | =0. (8.7)

J—>400 nooo

By combining (8.6), (8.7) and Lemma 8.4, we derive

) s L
Er0.¢ (F(Xt;rlvMJ)]]‘{MJZI>MJ’"}) =/ #51/0 ©l(&;)ds + o(1//n). (8.8)

On the other hand, for any p > 0, we have (using Proposition 5.2 for a function which
does not depend on the difference M7 — MI™)

1 [e%s}
Ei6.¢ (F(Xt;+15Mj)]l{l\/ﬂzm>Mffp}) /o dS/O dm]l{ijgmgiﬁ%}dmsﬁi(m)-

If 2; <0, we get Eyg ¢ (|F(th+ ,Mj)|]l{Mj>x>Mj,p}) =0 for p < 0;|%;|, so that
j+1 -

Bao. (F(Xt;H’M])]I{szz>Mi—oﬂ1\/t/_”}) = o(1/v7n).
If 2; > 0, we have
1
Elﬁ,ﬁ (|F(Xt* 5Mj)|]l{M12m>Mjfp}) = ﬁ/ gai(:i])ds +O(p)
i 9i Jo
as p goes to 0. Therefore

j oVt [P
Ei 0. (F(Xt].jrl’M])]l{l\/ﬂZI>Mffaﬁl\/t/_n}) v o @(T5)ds + o(1/v/n).

= 713?11:/2\/5 ; @ (3;)ds + o(1//n)

e [ ieis + o1,
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which completes the proof of the second statement of the Theorem. The first one can
be proved by the same method. o

REMARK 8.7. It can be deduced from (8.8) that we have an expansion

E (6(X0) 0 ar2eonrzy) = % T o(1/vm),

for some constant C. This can be used to derive an expansion for the difference
between continuous and discrete barrier option prices.
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