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Abstract

We address a problem that often arises in industry, the multi-item capacitated-lotsizing and
scheduling problem with sequence dependent setup times and costs. Powerful commercial solvers
fail to solve even medium-sized instances of this NP-hard problem, therefore we employ a tabu
search and a variable neighbourhood search metaheuristic to solve it and compare the perfor-
mance of these metaheuristics over time. In contrast to the majority of the literature on this
topic, the solution representation explicitly considers production quantities and setup variables,
which enables us to develop fast search heuristics. A comprehensive set of computational ex-
periments shows the effectiveness and efficiency of the proposed approaches in solving medium
to large size problems.

Keywords: sequence-dependent setup, tabu search, variable neighbourhood search, CLSP.

1 Introduction

In an increasingly competitive global marketplace, production planning plays a key role in the
performance of industrial enterprises. Apart from resource acquisition, decisions are typically
operational (short-term) or tactical (medium-term) planning problems. One of the most important
and challenging production planning problems is lotsizing and scheduling.

The lotsizing problem consists of determining the production orders or lots in order to sat-
isfy demand at minimum cost. The complexity of lotsizing problems depends on the features and
assumptions taken into account by the model, much of which is determined by the industry appli-
cation and the actual problem needing to be solved. The majority of models consider a discrete
time scale, dynamic demand and a finite time horizon. The single-level lotsizing problem for mul-
tiple items that compete for finite machine capacity is known as the capacitated lotsizing problem
(CLSP). The CLSP can be seen as an extension of the Wagner-Whitin model that takes into account
capacity constraints. Since several products may be produced per period (i.e. this is a large-bucket
model), such a period normally represents a time slot of a week or a month. As a pure lotsizing
model, CLSP does not sequence (schedule) products (jobs) in each period, as it requires a setup
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for an item in any period in which it is produced. By allocating unnecessary setups (that eat into
production capacity), such a model does not perform well in practice, this becomes more obvious
as the capacity reduces and/or the ratio of the bucket size to average setup times decreases. The
inclusion of setup carryovers, meaning that no additional setup is charged if a product is the last
one to be produced in a period and the first one in the following period, has lead to the development
of the CLSP with linked lot-sizes model (e.g. Haase [1994] and Suerie and Stadtler [2003]). These
models incorporate both the lotsizing and partial sequencing decisions but only the first and last
products of each period are considered for optimisation as the setups are sequence-independent.

Nevertheless, a wide range of process industries face significant sequence dependent setup times
and costs in product changeovers, especially when the same facilities produce items of different
family types. Examples can be found in packaging, glass container manufacturing, abrasive manu-
facturing, chemical manufacturing among many others. Here, the differentiation between lotsizing
and scheduling is completely blurred, and it is imperative that both decisions are made simultane-
ously in order to efficiently use the capacity available. Despite its relevance, little research has been
done in this area. The review by Karimi et al. [2003] highlights the scarcity of literature devoted
to CLSP with sequence-dependent setups and setup-carryovers, and underlines the need for faster
and more efficient heuristics. Jans and Degraeve [2008] give an overview of recent developments in
the field of modeling deterministic single-level dynamic lotsizing problems, and point out a further
integration of lotsizing and scheduling as an interesting area for future research.

We study single machine CLSP with sequence dependent setup times and costs. Even the stan-
dard CLSP is known for its computational intractability (see Maes et al. [1991]), thus motivating the
development of heuristics and/or metaheuristics to solve this problem. The success of metaheuris-
tics relies on their flexibility to deal with large and complex problems (Jans and Degraeve [2007]).
Those that have studied this specific CLSP, such as Gupta and Magnusson [2005] and Almada-Lobo
et al. [2007], report large average deviations from the optimal solution, which demonstrates further
how hard this problem is to solve, even for medium-sized instances. Clark et al. [2006] formulate
the CLSP with sequence dependent setups as an Asymmetric Traveling Salesman Problem and test
it on a real-world instance coming from an animal feed plant, with 21 products and 4 time periods.
Clark and Clark [2000] develop a mixed integer programming (MIP) model for this problem on
parallel machines that allows for multiple set-ups (up to a pre-determined number) per planning
period. Due to its large dimensionality, the authors use approximate models that are tested in a
rolling horizon scheme using very small instances.

The CLSP is considered to be a large-bucket model, since several setups can be performed per
(lengthy) time period. In small-bucket models, the planning horizon is divided into many short
periods, in which at most one setup may be performed, and therefore, depending on the model,
at most one or two items may be produced per period. An example of the former is the discrete
lotsizing and scheduling problem (DLSP – see Jans and Degraeve [2004]), and of the latter is
the proportional setup lotsizing problem (Suerie [2006]). A more flexible lotsizing and scheduling
problem is the general lotsizing and scheduling problem (GLSP), e.g. Araujo et al. [2007], that
makes use of a two-level time structure, that divides the planning horizon into large buckets which
are then divided into a number of small time slots. The reader is referred to Pochet and Wolsey
[2006] for an introduction to integer programming formulations of lot-sizing problems.

Neighbourhood-based search algorithms start with an initial solution and iteratively try to find
better solutions in the neighbourhood of the incumbent one. When designing such algorithms, one
of the key issues is how to represent a solution. In most of the reported approaches to lotsizing
and scheduling problems the solution representation only includes the setup (binary) variables.
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Given a fixed set of those variables, the remaining linear subproblem is solved (optimally or not)
to calculate the previously discarded production quantities. Even if the linear programming (LP)
problem is solved efficiently, this step consumes most of the overall computational time. On the
other hand, this representation is less complex than the one that considers production quantities
and setup variables explicitly, as done in this work.

Karimi et al. [2006] study CLSP with setup carryovers and sequence independent setups, there-
fore production runs are not sequenced. The authors employ a tabu search procedure with a direct
representation of only the binary variables. The subproblem is solved as a minimum-cost network
flow problem. Meyr [2000] addresses GLSP with sequence-dependent setups, as follows: after fix-
ing the setup sequence with either threshold accepting or simulated annealing (SA), a minimum
cost network-flow problem is solved in order to determine the lotsizes and the holding costs of
the candidate. Meyr [2002] considers the same problem on non-identical parallel machines and
also fixes the setup sequence by local search and solves the remaining problem as a generalized
network flow problem. Araujo et al. [2007] consider a GLSP from a foundry, which is tackled
by three local search variants: descent heuristic, diminishing neighbourhood search and simulated
annealing. Their solution representation only includes setup variables. We note that in DLSP, the
machine either produces at full capacity or is idle (this is called the “all-or-nothing” assumption),
which clearly simplifies the problem and therefore the solution procedure. Therefore, all the papers
addressing this problem make use of a representation that only includes binary variables (see for
example Bruggemann and Jahnke [2000]).

All the aforementioned manuscripts explore local search variants on the combinatorial variables
with linear programming on the continuous variables. To the best of our knowledge, Gopalakrishnan
et al. [2001] is the only big-bucket lotsizing and scheduling paper that simultaneously determines
production quantities and setup variables in their solution representation, which they solve using
a tabu search heuristic. However, these authors tackle CLSP with sequence independent setups
and propose move types that solely deal with partial sequencing, which simplifies the problem
considerably. Ozdamar and Bozyel [2000] and Ozdamar et al. [2002] also consider lot size and
setup variables in their model which is solved using simulated annealing and genetic algorithm
integrated with tabu search approaches, respectively, to tackle the pure CLSP, but they do not
determine the schedule in this version of the problem. By integrating a big-bucket lotsizing and
scheduling model and a batching scheduling model (converting lots into jobs) we are able to develop
very efficient neighbourhood-based search algorithms, and achieve near optimal solutions, even for
the most complicated instances. Tabu Search (TS) and variable neighbourhood search (VNS)
metaheuristics are employed to solve this problem. Both metaheuristics use neighbourhoods based
on moves that alter either the sequence of jobs processed or both the sequence and the quantities
produced by splitting a job in two and moving the split quantity to another part of the sequence.
We show that these heuristics clearly outperform CPLEX 10.1 for the larger instances, for which
CPLEX fails to produce feasible solutions within a one-hour time limit. Comparing the effectiveness
of TS against VNS, the latter constantly beats the former, especially as capacity tightens and setup
cost increases. However, as the problem gets very large on the number of products and periods,
TS starts to outperform VNS within the one-hour time limit.

The remainder of the paper is organized as follows: Section 2 presents the CLSP formulation.
Section 3 describes the solution approach. The metaheuristics used are described in Section 4.
Lower bounds for the problem are explained in Section 5. Computational experiments are reported
in Section 6 and finally, Section 7 draws some conclusions from this work and suggests directions
for future research.
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2 The Formulation

We start by introducing the parameters and decision variables of CLSP model. We consider a
planning interval with periods t = 1, . . . , T and products i, j = 1, . . . , N processed on a single
machine. We use the notation [M ] to refer to the set {1, 2, . . . ,M}. Let dit denote the demand of
product i in period t, sij and cij the time and cost incurred when a setup occurs from product i to
product j respectively, hi the cost of carrying one unit of inventory of product i from one period to
the next, pi the processing time of one unit of product i and Ct the machine capacity available in
period t. In addition, Mit is an upper bound on the production quantity of product i in period t.

The following decision variables are used: Xit refers to the quantity of product i produced in
period t, Iit the inventory level of product i at the end of period t and Vit an auxiliary variable
that assigns product i in period t. In addition, the following 0/1 decision variables are defined:
Tijt equals one if a setup occurs from product i to product j in period t, and αit equals one if the
machine is set up for product i at the beginning of period t.

A conventional model for CLSP with sequence dependent setups is as follows (Almada-Lobo
et al. [2007]).

min
∑

i

∑
j

∑
t

cij · Tijt +
∑

i

∑
t

hi · Iit (1)

Iit =Ii(t−1) + Xit − dit i ∈ [N ], t ∈ [T ] (2)∑
i

pi ·Xit +
∑

i

∑
j

sij · Tijt ≤Ct t ∈ [T ] (3)

Xit ≤Mit ·

∑
j

Tjit + αit

i ∈ [N ], t ∈ [T ] (4)

∑
i

αit =1 t ∈ [T ] (5)

αit +
∑

j

Tjit =αi(t+1) +
∑

j

Tijt i ∈ [N ], t ∈ [T ] (6)

Vit + N · Tijt − (N − 1)−N · αit ≤Vjt
i ∈ [N ], j ∈ [N ] \ {i},
t ∈ [T ]

(7)

Tiit = 0 i ∈ [N ], t ∈ [T ] (8)
Ii0 = 0 i ∈ [N ] (9)

(Xit, Iit) ≥ 0, (Tijt, αit) ∈ {0, 1}, Xit ∈ I, Vit ∈ R (10)

Objective function (1) minimizes the sum of setup and inventory holding costs. Constraints (2)
balance production and inventories with demand. Constraints (3) ensure that production and
setups do not exceed the available capacity. The setup forcing constraints are provided by (4).
Constraints (5) determine that the machine is set up for one product at the beginning of each
time period, whilst constraints (6) keep track of the setup carryover information. Disconnected
subtours are eliminated by constraints (7) and (8) (Almada-Lobo et al. [2008]). These constraints
apply whenever one subtour occurs in a period, forcing the machine to be set up at the beginning
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of that period to one of the products that are part of the subtour. Initial inventory is set to zero
in constraints (9). Finally, there are the non-negativity and integrality constraints (10). Note that
setup carryovers are guaranteed here, since if a product is the last one to be produced in a period
and the first one in the following period no setup is required in the latter period.

3 The Solution Approach

3.1 Problem Representation

We represent the CLSP problem as a sequence of jobs, each with a predefined production quantity.
A job is defined as the production of a quantity of one type of product and is subject to a deadline.
The deadlines of the jobs are determined by the demand for the product in a given period, therefore
the demand for a given period should be met by one or more jobs which have a deadline of that
period’s end date.

In order to schedule a given sequence of jobs, we start at the final job in the sequence and
work backwards to the first job. The final job is scheduled to finish on the job’s deadline. The last
unscheduled job in the sequence is then scheduled to complete at minimum of that job’s deadline
or the starting time of the last job scheduled. This process is repeated until all jobs are scheduled.
When a job is scheduled on its deadline, this essentially inserts idle time into the schedule and
therefore we refer to this procedure as the idle time insertion algorithm. The pseudo code for the
algorithm is presented in Figure 1.

Let S = the sequence of all jobs over all periods
Let Si = the job being produced in the ith position in the sequence S
Let PSi = the processing time of the job in the ith position
Let SUi,j = the setup time for changing from job i to job j
Let DSi = the deadline for the job in the ith position
Let CSi = the completion time of the job in the ith position
i = |S|
time = DSi

do
if (time > DSi) then

time = DSi

CSi = time
time = time− PSi − SUSi−1,Si

i = i− 1
until i = 0

Figure 1: Idle Time Insertion Pseudo Code

Any violation of a deadline constraint for a job is penalised in the objective function in propor-
tion to the number of units of time the deadline is violated, however note that using the idle time
insertion algorithm ensures no deadline penalties are incurred. Any production scheduled to be
performed before time zero is also penalised by the number of units of time the schedule required
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production before time zero. This penalty is similar to the idea, proposed in the literature, of hav-
ing an initial inventory that is costed at a different rate to other inventory holdings, for example
Vanderbeck [1998] and Degraeve and Jans [2007].

Recall that holding costs are only incurred if the product is held in inventory between time
periods. If a job is started in one time period and completed in another, then the the number of
units of the job completed before the end of the period are deemed to incur a holding cost.

For example, assume we have the demand, setup and and capacity data for a problem as given
in Table 1.

Table 1: Example Data
Demand in Setup Time

Period To Product
Products 1 2 1 2 3

1 2 1 0 1 2
2 3 2 2 0 1
3 1 3 2 1 0

Capacity in Period 12 10

Also assume each product takes one unit of time to produce. Assume also that we have the
sequence as shown in Figure 2.

Position 1 2 3 4 5 6
Product 3 1 1 2 2 3
Quantity 1 2 1 3 2 3
Deadline period 1 1 2 1 2 2

Figure 2: Initial Sequence

In order to determine the schedule, the idle time insertion algorithm will start with the last
job, producing 3 units of product 3, and schedule this on its deadline date, in this case at the end
of period 2 or at time 22. The algorithm repeats this process scheduling jobs from the back of the
sequence to the front, setting the completion time of the job either on the job’s deadline date or
at the start time of the last job that was scheduled, essentially scheduling the job before the last
scheduled job. Hence the production of 2 units of product 2 is scheduled before the production of
product 3, taking into account the necessary setup times. In the end we end up with the schedule
shown in Figure 3, where an X indicates a setup is being done at this time.

Schedule 3 X X 1 1 X 2 2 X 3

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Period 1 Period 2

Figure 3: Sequence with Idle Time Inserted
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3.2 Moves

We have implemented three different types of moves which form the basis for the neighbourhoods
used in the metaheuristics we developed. These moves are:

- Insert : This takes a job and inserts it before another job in the sequence. The completion
times of the jobs affected by this move are then re-evaluated and the objective value of the
schedule is recalculated. Note that inserting a job before itself or before the job after itself are
explicitly excluded from the neighbourhood as they do not change the schedule of jobs and
therefore are non-productive moves. This neighbourhood also explicitly excludes moves that
simply resequence a contiguous series of jobs producing the same product, as these moves do
not change the objective function value.

- Swap: This takes two jobs in the sequence and swaps their location in the sequence. The
sequence then has its idle time and objective value recalculated.

- Fractional Insert : This move is similar to an insert move however it allows the option of
splitting a job into two jobs, where the total quantity produced is the same as the original
job. One of these new jobs is left in the same position as the original job while the second
job is inserted into a new location in the sequence. This move tries to preserve the periods
in which jobs are currently produced, hence the quantity moved is dictated by the capacity
available in the period where part of the job is being moved to. If there is enough capacity,
then all of the job will be moved, if not then only the amount that can fit in the period will be
moved. All locations within the period are tested as the capacity available in the period will
vary depending on position the new job is inserted into and the jobs surrounding it because
of the sequence dependency of the setup times. For example if we take the schedule in Figure
3 and try to insert the production of product 2, due in period 2 into the first position in the
sequence then we find that this would not fit into the two remaining units of capacity in this
period due to the required setup between products 2 and 3, so the fractional insert would split
this job into two and insert one unit of production into the schedule at time 1, and produce
the second unit at time 18. In the end we get a schedule that looks like Figure 4. Note that if
we were to insert this production into the fourth position in the sequence then all of this job
would be moved, as there is no extra setup required in this position and all two units could
be produced in the capacity available.

Schedule 2 X 3 XX 1 1 X 2 2 X 3

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 4: Fractional Insert Move - Splitting Jobs

Note that when there are two jobs producing the same product next to each other in the
sequence it has the same overall processing time and cost as if this was one job, hence there is
no need for an aggregation move that amalgamates two consecutive jobs that produce the same
product and are due at the same time.
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4 Metaheuristic Approaches

We compare two different metaheuristics for solving this problem. The first is a Variable Neigh-
bourhood Search (VNS) and the second is a Tabu Search (TS).

4.1 Variable Neighbourhood Search (VNS)

VNS is a metaheuristic approach that has been used in for solving many different types of combi-
natorial optimization problems, see [Hansen and Mladenovic, 2003] for a review. The Basic VNS
requires a list of neighbourhoods schemes that are going to be used to generate neighbours during
the search. It incorporates a “Shaking Phase”, that randomly chooses a neighbouring solution from
the current neighbourhood scheme, and a “Local Search” phase that improves this solution. This
new solution is then compared to the incumbent and if it is better it becomes the incumbent and we
reset the current neighbourhood to the first neighbourhood. If it does not provide an improvement
we move to the next neighbourhood scheme. [Hansen and Mladenovic, 2003] state that the most
successful applications of VNS have replaced the local search phase with a variable neighbourhood
descent (VND). VND starts with an incumbent solution and a list of neighbourhood schemes.
Starting with the first neighbourhood scheme VND finds the best move using this neighbourhood
scheme. If it is an improvement, move to it and reset the current neighbourhood scheme to the first
neighbourhood scheme. If it does not improve on the incumbent, move to the next neighbourhood
in the list and try again. Stop when all neighbourhoods have been tried and no improvement is
found.

For this problem we use a VNS with a VND instead of the local search phase. The Fractional
Insert and Swap neighbourhood schemes are used in the Shaking Phase, while the Insert and the
Swap neighbourhood schemes are used in the VND Phase. Fractional Insert was chosen for the
shaking phase as it can provide changes in the structure of the problem by changing both the
sequence and the lot sizes in the problem, and hence provide diversification to the search. Insert
was used in the VND phase as Insert provides the ability to fine tune the sequence, and hence
provide a more intense set of neighbours. Swap was used in both the Shaking and VND phases as
it provided a route to solutions which are difficult to get to via insert moves only due to the capacity
constraints and penalties. Preliminary testing confirmed that this combination of neighbourhoods
produced a very effective form of search.

4.2 Tabu Search (TS)

Tabu Search has been used successfully to solve many different types of combinatorial optimisation
problems (see Glover and Laguna [1997]) for a review). Our TS implementation only includes
short term memory, however it does alternate between two neighbourhood schemes, the Insert and
Fractional Insert neighbourhoods.

The search initially starts off with the insert neighbourhood and after visiting a given number of
local minima changes to the fractional insert neighbourhood. After visiting a given number of local
minima using this scheme (which may be different from the number for the insert neighbourhood),
the search then reverts back to the insert neighbourhood, and this process repeats until the stopping
criteria is met.

A fixed tabu list was used that recorded the product type and the old completion time for the
job being moved. Various tabu restrictions were tested. Tabu restrictions based on the position
in the sequence did not perform well as the position in the sequence does not directly correlate to
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the objective function, hence sequence based tabu restrictions allowed cycling in subsequences of
jobs. The scheme that was found to work the best was to tabu the moved job’s product and its
original completion time in combination and to use a tabu restriction that did not allow a move
if it produced a schedule where a job of that product type completed at the tabued completion
time. Finding a job completing at a given time in the schedule could slow the search down, so
for computational efficiency the tabu list also recorded the position the job has been moved from.
This is the starting point in the sequence where the search will look for jobs completing around
the time that is tabu. The rationale being that the completion times will probably not change
dramatically around this position and, even if the completion times do change, it is fairly quick to
scan the sequence from this position for the correct job.

The aspiration criteria used was the standard aspiration criteria used in most TS application,
that is a tabu move was accepted if the solution it produced was better than the best solution
found to date.

4.3 Starting Point

The initial solution to the problem for all of these metaheuristics was generated using the heuristic
of Almada-Lobo et al. [2007]. It contains five (forward and backward) steps that are able to find
feasible solutions efficiently, even for very tight and large problem instances.

This solution was then converted into jobs that correspond to the demands in the problem. If
a job produced products for more than one period then this job was split into two consecutive jobs
producing the same product, but with different due dates. This ensured that deadlines for each
job represented demand exactly.

5 Lower Bound

In order to assess the overall performance of the metaheuristics, a good lower bound is needed to
assess the quality of the metaheuristic results.

To generate good lower bounds we rely on the alternative stronger formulation presented in
Almada-Lobo et al. [2007] that uses an exponential number of constraints (that can be separated
in polynomial time). This formulation is obtained by replacing constraints (7) by the following set
of inequalities:

∑
i∈S

∑
j 6∈S

Tijt +
∑
i∈S

αi(t+1) ≥
∑

j Tjkt t ∈ [T ], k ∈ S, S ⊆ [N ]. (11)

To find the most violated (t, S, k) inequalities, we implement the separation algorithm introduced
by Almada-Lobo et al. [2007], which is based on the use of minimum cuts in directed graphs.

In order to tighten this second formulation, we use the (Wt) inequalities developed in Almada-
Lobo et al. [2007], and the well known (l, S) inequalities for uncapacitated single-item lotsizing
(Barany et al. [1984]). Hence, the lower bounds are obtained through the LP relaxation of this
model, strengthened with these inequalities.
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6 Computational Experiments

Random data sets were generated using the approach of [Almada-Lobo et al., 2007]. Elements of
the problem were generated from a uniform distribution and then rounded to the nearest integer,
or calculated from elements that were generated this way. The ranges used for the elements are as
follows:

- Setup Times between 5 and 10 time units.

- Setup Costs are proportional to the setup time by a specified parameter (Cost of Setup per
unit of time).

- Holding costs between 2 and 9 penalty units per period.

- Demand between 40 and 59 per period.

- Period Capacity is proportional to the total demand in that period as defined by a parameter
(Capacity Utilisation per period, Cut): Ct =

∑
i dit/Cut.

- Processing time for one unit = one unit of time.

Forty eight different problems types were created from the combinations of the following problem
parameters:

- Number of Products (15, 25)

- Number of Periods (5, 10, 15)

- Capacity Utilisation per period: Cut (0.6, 0.8)

- Cost of Setup per unit of time: θ (50, 100)

In each case 10 different instances were generated, meaning a total of 240 problem instances
were solved. Each type of instance can be characterized by the quadruple N , T , Cut and θ.

The MIP construction heuristic requires one parameter, which is the number of periods to
solve at a time. For this we tested 2 and 3 period solutions. There is little point solvng single
period solutions as this has little chance of creating good solutions. More than 3 periods at a time
potentiallty took a lot of CPU time, hence resticting these experiments to only 2 and 3 periods
at a time. For the MIP Improvement heuristic there are three parameters, the number of periods
to solve, . The parameters that appeared to work well for most instances were a tabu list size of
10, 40 insert local minima and five fractional insert local minima before swapping neighbourhood
schemes. As TS is deterministic, only one run of TS was required for each problem instance.

Computational experiments were performed on machines with Core 2 Duo 6600 CPUs running
at 2.4 GHz, each with 2GB of random access memory. CPLEX 10.1 from ILOG was used as the
mixed integer programming solver, while the separation algorithm, used to add the most violated
(t, S, k) and (l, S) inequalities to the problem, was coded in C++.

An instance of type N = 25, T = 15, Cut = 0.8, θ = 100 produces an MIP, as formulated in
Section 2, with 11, 636 rows, 10, 515 columns and 130, 180 nonzeros. This is a fairly large MIP
that is very hard to solve to optimality in a reasonable amount of time. Tables 2 and 3 present
the average number of branch-and-bound nodes, the gap (%) between the upper bound obtained
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by CPLEX 10.1 and the lowerbound, the number of instances (out of ten) that CPLEX found
the optimal solution (No. Optimal), and the number of instances that CPLEX failed to produce
any feasible solution (No. Undefined), and the average time to solve the problem instances. In our
computational study, lower bounds are obtained through the LP relaxation of the model introduced
in Section 5, strengthened with the (l, S) and (Wt) inequalities. The CPU time to compute the lower
bound were always less than one minute. Each instance had a CPU time limit of one hour. An empty
gap field means that CPLEX 10.1 was not able to generate at least one feasible solution within the
time limit. As the size of the instance gets bigger (both in N and T ), as capacity gets tighter and
as setup costs increase, the CPLEX results worsen since the value of #opt. (#undef.) decreases
(increases). When CPLEX solves these instances we find that, with all the other parameters being
constant, the gap decreases as N increases. This seems counterintuitive, however it is due to the
fact that the lower bound quality improves considerably as N increases, and does not come from
a better upper bound. When we compare the gap between the best solution and the best bound
obtained in the same run, the gap exponentially worsens as a function of N . It is also clear from the
substantially lower number of branch-and-bound nodes that as N and T increase, the LPs become
much more difficult to solve. CPLEX was not able to solve instances with N = 25 and T > 5 and
also for some particular cases with N = 15 and even N = 10. As expected, and acknowledged by
other researchers, the hardest instances are for Cut = 0.8 and θ = 100.

Table 2: CPLEX 10.1 optimality gap (%) and nodes within the one hour time limit for θ = 50
Cut = 0.6 Cut = 0.8

T N 5 10 15 25 5 10 15 25
5 Nodes 212 10, 034 157, 228 61, 455 1, 564 273, 742 104, 974 50, 001

Gap 1.1% 0.2% 0.2% 0.5% 5.4% 0.7% 0.5%
No. Optimal 10 10 7 0 10 8 4 0
No. Undefined 0 0 0 0 0 0 0 5
Time 0.7 45.0 1521.5 3621.9 2.0 1191.2 3058.7

10 Nodes 61, 484 106, 713 94, 551 26, 771 223, 813 158, 217 81, 655 20, 243
Gap 1.6% 0.6% 4.8% 1.3%
No. Optimal 10 6 0 0 9 1 0 0
No. Undefined 0 0 2 10 0 0 6 10
Time 127.7 1799.2 713.7 3445.8

15 Nodes 809, 348 194, 837 60, 915 17, 811 805, 277 123, 125 47, 843 13, 314
Gap 2.3% 0.6% 5.2%
No. Optimal 4 0 0 0 1 0 0 0
No. Undefined 0 0 9 10 0 1 8 10
Time 2984.9 3654.9 3737.1

To generate an upper bound, we implemented both the VNS and TS approaches from Section 4
in C++ by using Visual Studio 6.0. Both the VNS and TS metaheuristics stopped after a given
amount of computational time. The time given for each search was determined from the size of the
problem, as determined by N × T . If N × T was less than 100 then each instance was run for 20
minutes, if less than 150 it was run for 40 minutes, and if greater or equal to 150 it was run for one
hour. The running times of the starting point solution were always less than one second for all of
the instances, and these starting points were generated before the search time allowed commenced.

The results are measured as a deviation from the lower bound, which is the same lower bound
obtained through the LP relaxation of the model introduced in Section 5, and used in Tables 2
and 3. Tables 4 and 5 show the minimum, average, and maximum gap of the VNS solution from
the lower bound, for θ = 50 and θ = 100, respectively.
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Table 3: CPLEX 10.1 optimality gap (%) and nodes within the one hour time limit for θ = 100
Cut = 0.6 Cut = 0.8

T N 5 10 15 25 5 10 15 25
5 Nodes 577 165, 580 280, 034 41, 037 12, 395 498, 100 222, 649 54, 427

Gap 6.8% 2.2% 1.5% 11.2% 3.4% 2.1%
No. Optimal 10 10 0 0 10 5 1 0
No. Undefined 0 0 0 1 0 0 0 3
Time 1.1 735.4 3693.1 13.3 2433.0 3339.5

10 Nodes 518, 013 341, 359 117, 713 14, 840 617, 127 146, 614 57, 974 10, 660
Gap 9.0% 4.0% 12.8% 5.6%
No. Optimal 9 0 0 0 0 0 0 0
No. Undefined 0 0 2 10 0 0 10 10
Time 1301.0 3661.4 3725.1 3811.9

15 Nodes 843, 969 119, 878 37, 999 6, 661 345, 011 98, 189 33, 711 5, 651
Gap 11.8% 5.5% 16.2%
No. Optimal 0 0 0 0 0 0 0 0
No. Undefined 0 0 5 10 0 10 10 10
Time 3920.2 3966.4 3726.8

Table 4: Gap (%) between the lower bound and VNS solution for θ = 50
Cut = 0.6 Cut = 0.8

N T = 5 T = 10 T = 15 T = 5 T = 10 T = 15
5 0.2/2.7/5.4 0.8/2.8/5.1 1.0/3.1/6.2 1.6/7.0/10.8 2.4/6.9/9.6 1.8/6.8/10.3
10 0.2/1.4/2.5 1.0/2.1/3.5 1.6/2.7/4.0 0.5/2.0/4.4 0.9/2.2/3.8 1.8/3.0/4.2
15 1.0/1.6/2.2 1.7/2.7/3.7 2.2/3.5/5.0 1.1/1.9/2.6 1.8/2.7/3.9 2.7/3.6/5.0
25 1.7/2.6/3.8 3.1/4.6/6.3 3.1/5.2/6.7 1.8/2.8/4.1 2.9/4.6/5.8 3.4/5.4/6.5

minimum / average / maximum gap (%)

Table 5: Gap (%) between the lower bound and VNS solution for θ = 100
Cut = 0.6 Cut = 0.8

N T = 5 T = 10 T = 15 T = 5 T = 10 T = 15
5 5.6/9.6/13.2 8.4/12.3/18.4 9.3/13.4/16.0 9.7/14.0/18.6 11.4/15.7/18.5 9.7/16.7/20.3
10 3.2/4.8/6.7 4.9/6.7/8.3 6.3/8.5/10.3 3.7/5.9/8.2 5.7/7.7/10.3 7.2/9.3/12.5
15 2.8/4.8/6.3 4.2/6.7/9.3 5.8/8.5/10.8 3.5/4.7/5.7 5.8/7.2/8.1 6.7/9.0/10.1
25 3.6/5.1/7.4 5.7/7.6/8.9 8.1/10.0/12.6 3.7/4.5/5.3 5.5/7.4/8.6 8.6/9.6/11.9

minimum / average / maximum gap (%)

When we compare Tables 2 and 4 and Tables 3 and 5, it is clear that CPLEX outperforms
the heuristics in terms of deviation from the lower bound for the smaller sized problems. In fact,
for most of the instances with N = 5 and a significant portion of instances with N = 10, CPLEX
found the optimal solution. However, the heuristics outperformed CPLEX for the larger problem
instances, as CPLEX does not find feasible solutions to these problems within the one hour time
limit. Looking at the number of nodes CPLEX is able to investigate for these larger problems,
we also see that as the problem gets bigger the number of branch-and-bound nodes CPLEX can
consider in one hour reduces due to the extra complexity of the problem. From these trends we can
see that even if we provided significantly more computational time or significantly faster processors
it is still unlikely CPLEX would be able to solve these problems.
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If we exclude the smallest instances, with N = 5, the results from the VNS indicate an average
gap below 5% for θ = 50 and below 10% for θ = 100. We stress that most of the gap of the smallest
instances comes from a weak lower bound. As an example, the instance N = 5, T = 5, Cut =
0.8, θ = 100 for which was reported one of the worst results (14% of mean gap), presents an average
gap between the heuristic solution and the CPLEX’s upper bound (corresponding to the optimal
solution – see Table 3) of 2.6%. The quality of the solution seems to be independent of the number
of products (N) and deteriorates slightly as the number of periods increase (T ). The results also
show that, on average, the gap of the instances with θ = 50 (Cut = 0.6) is lower than the gap of
the instances with θ = 100 (Cut = 0.8). Starting with the solution generated by the heuristic of
Almada-Lobo et al. [2007], we were able to improve its quality considerably. For instance, Almada-
Lobo et al present a gap of 24% for N = 25, T = 5, Cut = 0.6 and θ = 100 against 5.1% displayed
in Table 5. Table 6 gives the average gap between the lower bound and the starting point, TS and
VNS solutions. Clearly, the deviation reduction obtained by the aforementioned techniques over
the starting solution is significant.

Table 6: Gap (%) between the lower bound and the starting solution (StartPt), TS and VNS
T = 5 T = 10 T = 15

N StartPt TS VNS StartPt TS VNS StartPt TS VNS
5 20.12 9.88 8.35 25.92 12.20 9.40 28.27 13.29 10.02
10 12.06 4.97 3.54 14.42 6.25 4.68 15.01 7.09 5.86
15 14.96 4.62 3.25 16.84 5.88 4.79 18.30 6.76 6.15
25 18.42 4.88 3.74 21.27 6.29 6.05 22.20 7.35 7.56

We now compare the effectiveness of TS against VNS. Let UBTS and UBV NS denote the values
of the upper bounds obtained by TS and VNS approaches, respectively. Table 7 presents the gap
UBTS−UBV NS

UBV NS
. Generally, VNS clearly outperforms TS for θ = 100 and Cut = 0.8. However, as the

problems get very large TS starts to outperform VNS in the one hour time limit provided for these
problems. This can be seen more clearly in the deviation versus time graphs in Figures 5–7. As
an example, the series TS 10 − 15 in Figure 5 refers to the instance type N = 10, T = 15, Cut =
0.8, θ = 100 tackled by TS. Note that the graphs stop at the point where the search found its
best solution, which will normally be before the total time the search was allowed to run for. In
Figure 7 we can see how VNS initially provides better solution faster, before being overtaken by
TS at some point, and then slowly VNS converges to the TS solution. This is in contrast to the
deviation versus time graphs of the smaller problems in Figure 5 where TS finds better solutions
faster than VNS, but VNS quickly overtakes the TS result.

The reason for this pattern in performance can perhaps be explained by considering the balance
between intensification and diversification between the two search techniques. VNS, as it is config-
ured here, is a more diverse search than the TS that has been implemented here. Therefore with
the smaller problems, TS looks carefully around a small area of the solution space which is based
around the initial solution hence makes some quick progress. VNS, on the other hand, moves in a
more diverse manner and finds other areas of the solution space that are perhaps more promising.
This takes a little longer but provides better long run results.

When the size of the solution space is expanded considerably, the ‘good’ area of the solution
space around the starting point expands considerably and therefore the VNS can quickly find good
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Figure 5: Average deviation from the lower bound over time for N = 10, Cut = 0.8 and θ = 100

Figure 6: Average deviation from the lower bound over time for N = 15, Cut = 0.8 and θ = 100

solutions in this area as it moves to other areas of the solution space. TS, on the other hand,
considers more points in this area and therefore eventually finds a better points than what VNS

14

Page 14 of 18

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 7: Average deviation from the lower bound over time for N = 25, Cut = 0.8 and θ = 100

has found. As time progresses VNS slowly catches up to TS. If we gave these searches more
computational time, then we would predict that VNS would eventually out perform the TS due to
its more diverse nature.

Table 7: Comparison (%) of TS and VNS: UBTS−UBV NS
UBV NS

Cut = 0.6 Cut = 0.8
N T = 5 T = 10 T = 15 T = 5 T = 10 T = 15
5 0.1/1.4 1.0/2.6 1.6/5.4 1.4/2.6 2.1/4.4 2.0/2.8
10 1.0/2.1 0.4/2.2 0.7/1.3 0.5/1.9 1.0/2.4 1.0/1.7
15 0.9/1.4 0.6/0.8 0.3/0.4 1.2/1.7 1.0/1.7 0.4/1.1
25 0.8/0.7 −0.4/− 0.2 −0.5/− 1.0 0.9/2.0 0.1/1.3 −0.1/0.8

θ = 50 / θ = 100

7 Conclusions

Industrial lotsizing and scheduling poses some very hard analytical problems, especially challenging
is the CLSP with sequence dependent setup times and costs that appears in different manufacturing
contexts. We give new insights into current literature by developing very efficient Tabu Search and
Variable Neighbourhood Search metaheuristics based on a solution representation that enables us
to determine simultaneously the production quantities (lotsizing decision) and the setup variables
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(sequencing decision). By integrating a big-bucket lotsizing and scheduling model and a batch-
ing scheduling model (converting lots into jobs), very good results are reported, even for highly
capacitated instances with high setup to holding costs ratio. The research also showed that the
preferred metaheuristic for solving this problem varied with the size of the problem. However if
sufficient time was available, in general we found that the VNS as formulated here would eventually
outperform the TS as formulated here.

In order to improve the computational results reported for this and similar problems and to
address additional complexities stemming from the inclusion of other industrial features, such
as parallel machines, inventory constraints and uncertainty to name but a few, the combination
of different solution approaches is mandatory. Given their flexibility in dealing with complex
manufacturing settings, metaheuristics will lie at the very heart of these hybrid approaches, if
well combined with exact methods. The extension of the techniques proposed in this paper to the
multiple machine CLSP with sequence dependent setups and setup carryovers is an interesting area
for future research.
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