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ABSTRACT 

 

An early diagnosis of Alzheimer’s disease (AD) and other types of dementia-causing 

disorders is vital in order to achieve effective treatments. Fortunately, in the recent 

years the search for specific biomarkers has undergone a rapid evolution. New 

technologies in proteomics and genomics have permitted great advances in defining 

biochemical markers in cerebrospinal fluid (CSF) and in blood. Novel imaging 

techniques are also improving the diagnosis and early detection of brain changes in 

vivo. Furthermore, combined analysis of different biomolecules, or of biochemical 

and neuroimaging studies, increase diagnostic sensitivity and specificity. However, 

the discovery of sensitive and specific biomarkers for neurodegenerative diseases 

needs to overcome some important challenges. With the available technology, 

standardization of methods is essential to reducing inconsistency and increasing 

reliability. Global initiatives, multicenter studies and consensus protocols of analysis 

are of critical importance. The present review summarizes the results achieved in the 

search for an early diagnosis of neurodegenerative disorders, and reflects the 

limitations and the perspectives of the field.  

 

 

Keywords: Dementia; Alzheimer's disease; proteomics; imaging; biomarkers 
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INTRODUCTION 

A diversity of neurodegenerative disorders are associated with the development of 

dementia. All of them are characterized by neuronal dysfunctions that eventually lead 

to neuronal death. All of them are similarly complex, possibly resulting from several 

neuropathological mechanisms acting together. Alzheimer’s Disease (AD) is the 

most prevalent. It has been calculated that more than half of patients with dementia 

have AD, and that this number will double every 20 years (Brookmeyer et al., 1998). 

Lewy Body dementia (LBD) is the second most common dementia after AD 

(Tarawneh and Galvin, 2007). Also, frontotemporal lobar neurodegenerations such 

us frontotemporal dementia (FTD), midbrain disorders such as Parkinson’s disease 

(PD) or progressive supranuclear palsy (PSP) and vascular dementia (VaD) are 

associated with progressive cognitive impairment.  

Mild cognitive impairment (MCI) is often, but not always, a transitional state between 

normal aging and dementia (Winblad et al., 2004). The concept of MCI has been 

essentially derived from clinical and neuropsychological settings, and its definition is 

continually being revised. To reduce the heterogeneous nature of MCI, a subdivision 

of the concept has been further proposed based on the presence of a deficit in the 

amnestic domain, a single domain other than the amnestic, and multiple domains 

(Winblad et al., 2004). The estimated annual incidence of MCI in population studies 

is of about 2% in population studies (Larrieu et al., 2002; Palmer et al., 2008) and 

about 5–9% in clinical samples (Adak et al., 2004; de Leon et al., 2001).  Few 

longitudinal data are available at the population level on MCI subtypes and their role 

as a transition between normal aging and dementia. The rates of transition between 

MCI and AD have been calculated between one-third to one-half for the MCI-

amnestic subtype (Palmer et al., 2008; Petersen et al., 1999) and two-thirds for MCI-

multidomains subtype over a period of three years. However, a substantial number of 

MCI patients are reclassified as normal aging on follow-up (Larrieu et al., 2002) and 

many MCI do not progress to any sort of dementia (de Jager and Budge, 2005). In 
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other words, the standard clinical diagnostic evaluations, including 

neuropsychological tests failed to identify those people with global cognitive deficits 

who have high risk of progressing to dementia. 

As cognitive decline advances, other specific disease-related features appear, such 

as visual hallucinations and Parkinsonism in LBD (McKeith et al., 1996) or 

personality changes in FTD (Neary et al., 2005). Although the clinical picture of these 

diseases is often related to the area of the brain that is primarily affected, mixed 

pathologies are common and clinical manifestations in early disease phases are 

often similar. Furthermore, a single type of pathology can produce different cognitive 

outcomes making the diagnose difficult.   

There is evidence that the pathological changes in dementia-causing diseases begin 

decades before the appearance of the first clinical manifestations (Jack et al., 2009). 

The challenge of finding effective treatments for AD and other dementias is parallel 

to the prospect of detecting the preclinical changes at the earliest stage possible, and 

of accurately identifying the pathology (or pathologies) responsible. To develop and 

validate biomarkers capable to early detect and discriminate between disorders with 

similar clinical outcomes is one of the most important goals of neuroscience 

research. 

The quest for biomarkers for AD and other dementias includes research in multiple 

fields: genomics, proteomics, structural and functional imaging and neurophysiology. 

The present review summarizes the most recent advances and analyses the current 

and future directions in the pursuit of biomarkers for AD and other dementia 

disorders. 
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BIOCHEMICAL MARKERS  

 

Biomarkers in CSF  

CSF is a useful diagnostic window to neurodegenerative diseases for many reasons, 

mainly because it reflects metabolic processes in the brain in a direct manner, due to 

the free exchange of molecules between the brain and the CSF (Reiber and Peter, 

2001). Amyloid plaques in AD brain are mainly composed of Aβ-42 and Aβ-43 

(Welander et al., 2009) , while in cerebral amyloid angiopathy (CAA) predominantly 

contain Aβ-40. The CSF biomarkers total tau (tTau), hyperphosphorylated tau (p-

Tau), and the 42 amino acid form of Aβ (Aβ-42) are now established markers for AD 

(Zetterberg et al., 2003) and can identify AD in the early, MCI stage of the disease 

with high accuracy (Hansson et al., 2006). CSF of AD and MCI patients shows 

decreased values of Aβ-42 and increased total tau (tTau) or phosphorylated tau 

(pTau) (Ewers et al., 2007). Recent studies have been focused in investigating if the 

pattern of different length Aβ peptides could enhance the diagnostic power. The 

levels of Aβ (1-37, -38, -39, -40, -42) gave a 91% sensitivity and a 64%.specificity in 

predicting the development of AD form MCI during a follow-up study (Hoglund et al., 

2008). While progressive increase of CSF tTau CSF concentrations was found along 

the progression of AD (Andersson et al., 2007), this is not the case for Aβ-42 levels 

(Stefani et al., 2006). Both Aβ and tau levels in CSF are influenced by other factors 

that participate in AD, such age and apoE. Aging and the presence of the APOE ɛ4 

allele accelerate the deposition of Aβ-42 in brain and decrease of CSF Aβ-42 levels 

(Peskind et al., 2006). Also, CSF ApoE levels in correlate with t-tau and 24S-

hydroxycholesterol (24S-OHC) in patients with cognitive disorders (Shafaati et al., 

2007). The association between Aβ load in the brain and CSF Aβ reduction remains 

puzzling, but it has been suggested that aggregation of this peptide into oligomeric 

forms could result in concomitant reduction of soluble forms in CSF and in the brain, 
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and increased Aβ deposition in plaques. Also, the relationship between CSF 

biomarkers (Aβ-42, t-tau and p-Tau) and plaque and tangle burden in the brain is not 

clear. Although initial studies suggested a direct correlation between that CSF p-Tau 

and neurofibrillary pathology in AD patients (Buerger et al., 2006), recent reports 

have shown no association (Buerger et al., 2007; Engelborghs et al., 2007). 

Both increased CSF tau and decreased Aβ is also seen in other neurodegenerative 

disorders (Jellinger et al., 2008). P-tau181 differentiates AD and LBD, whereas p-

tau231 differentiates AD and FTD (Hampel et al., 2004). Recent studies have also 

shown associations between several Aβ peptides and specific dementias. For 

example, decreased Aβ-38 levels correlated with FTD (Bibl et al., 2007b) and Aβ-37 

(Bibl et al., 2006) with LBD.  

Neurofilament light unit has been suggested as a possible CSF biomarkers to 

distinguish VaD from AD (Petzold et al., 2007). CSF neurofilament protein levels may 

also help to discriminate between FTD and early onset AD (Petzold et al., 2007). 

However, the combination of tau and Aβ measurements in CSF enhance the 

accuracy of the diagnosic power. CSF tau/Aβ-42 ratio predicts cognitive decline in 

cognitively intact older adults (Fagan et al., 2007) and in individuals with MCI 

(Hansson et al., 2007; Li et al., 2007). Moreover, grouping these biomarkers is today 

the only biochemical tool with enough sensitivity and specificity to distinguishing AD 

from other dementias in the early stages (Finehout et al., 2007; Wiltfang et al., 2005), 

LBD (Mollenhauer et al., 2006a) and PD patients with dementia (Mollenhauer et al., 

2006b). 

Several other CSF biomarkers for AD and other dementia disorders have been 

described (Table 1). Some of these molecules have been shown to play a role in AD 

pathology, like the -secretase BACE1 (Ewers et al., 2008; Vassar et al., 1999), 

cholesterol carriers (Mollenhauer et al., 2006a), cholesterol metabolites (Bjorkhem et 
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 7 

al., 2009; Mateos et al., 2009), or antioxidant molecules (Akterin et al., 2006), while 

other have an unknown relation to the disease. Comparative proteomics or 

metabolomics of CSF detecting a large number of molecules may provide a further 

means to diagnose and assess neurodegenerative diseases. However some 

considerations need to be taken into account when designing future studies, 

including the standardization of CSF extraction and the avoidance of factors like 

blood contamination, CSF gradient effects, and storage differences. 
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Biomarkers in plasma  

An ideal early detection of different types of dementia would require simple, non-

invasive and non-expensive diagnostic tests. However, up to date, no validated 

peripheral diagnostic markers for the early and differential diagnosis of dementia-

causing disorders are available. The structure of the blood brain barrier (BBB) limits 

the presence of potential biomarkers that are closely associated to brain 

pathogenesis to small molecules, lipophilic molecules, and molecules with specific 

transporters (Irizarry, 2004). Brain derived proteins and metabolites that pass into the 

plasma will also become markedly diluted in a biochemically complex medium. It is 

also possible the presence of high intra- and inter-person variability due to factors 

that could influence the levels of a potential biomarker. The majority of the efforts in 

finding plasma biomarkers for neurodegenerative disorders have been made in AD, 

starting more than a decade ago with the traditional approach of measuring one 

molecule closely related to the pathology of the disease, in this case beta-amyloid 

(Aβ) (Mayeux et al., 1999; Tamaoka et al., 1996; Vanderstichele et al., 2000). 

Plasma total Aβ or Aβ-42 are increased in cases of familial AD (Kosaka et al., 1997; 

Scheuner et al., 1996) and in Downs syndrome with amyloid precursor protein (APP) 

triplication (Schupf et al., 2001) but the results were not consistent with the diagnosis 

of sporadic AD (Assini et al., 2004; Fukumoto et al., 2003; Mayeux et al., 1999; 

Schupf et al., 2001; Tamaoka et al., 1996; Vanderstichele et al., 2000). Peripheral Aβ 

is transported via receptor for advanced glycation end products (RAGE) across the 

BBB into the brain (Deane et al., 2004) and Aβ elimination from brain across the BBB 

by cell surface low-density lipoprotein receptor related protein-1 (LRP) (Sagare et al., 

2007). On the other hand, APP is also produced by platelets and is thus an 

alternative source Aβ of exists in plasma.  

Several studies have investigated plasma Aβ levels and most groups have found no 

significant differences between AD and control cases (Fukumoto et al., 2003; Kosaka 
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et al., 1997; Mayeux et al., 1999; Scheuner et al., 1996; Tamaoka et al., 1996; 

Vanderstichele et al., 2000). Similarly, other studies showed that elevated levels of 

Aβ-42 (van Oijen et al., 2006) low levels of Aβ-40 (Sundelof et al., 2008) or a 

reduced Aβ-42/Aβ-40 ratio in plasma (Graff-Radford et al., 2007) in aging could 

indicate the conversion from a normal cognitive status to MCI or AD. In contrast, 

others reported that reduced Aβ-42 plasma levels might reflect the evolution from 

normal aging or MCI to AD (Song et al., 2007), rather than a marker for 

neuropathological events occurring in the disease. 

CSF Aβ levels do not correlate with plasma Aβ levels in individual patients (Mehta et 

al., 2001; Vanderstichele et al., 2000). As previously discussed, other sources of Aβ, 

such platelets, are contributing to the total Aβ present in plasma. Also, it has been 

shown that the concentration of Aβ in plasma is considerably influenced by 

simultaneous medication (Blasko et al., 2005), including insulin treatments (Kulstad 

et al., 2006). 

Decreases in plasma Aβ have been shown in cerebral CAA, amyotrophic lateral 

sclerosis, and LBD (Jellinger et al., 2008), and a decrease in the ratio of plasma Aβ-

38/-40 peptides in vascular dementia (VaD) (Bibl et al., 2007a). 

Although not useful for diagnosis, plasma Aβ measurement could be potentially 

helpful in clinical studies to evaluate the pharmacological effects of modulators of 

APP processing, such as β- or γ-secretase inhibitors. 

 

Plasma homocysteine has been shown to be directly related to Aβ-40 levels, while 

the association with Aβ-42 was not significant, suggesting that homocysteine is 

related to aging but not specifically to AD, but it could interact to affect AD risk and 

cognition in PD (Irizarry, 2004; Luchsinger et al., 2007). Elevated homocysteine is a 

risk factor for cardiovascular disease (Boushey et al., 1995) but its relation with AD 

risk is unknown. 
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Chronic inflammation with microglia activation is believed to play a central role in AD 

pathogenesis. Whether the accumulation of inflammatory markers within the brain is 

also reflected in serum or plasma is unclear because many of these proteins do not 

easily cross the BBB. Inflammatory molecules including C-reactive protein, 

interleukin (IL)-1β, tumor necrosis factor-α, IL-6, IL-6 receptor complex, α1-

antichymotrypsin and transforming growth factor-β show inconsistent changes across 

studies, while other cytokines such as IL-12, interferon-α, and interferon-β remain 

unchanged (Teunissen et al., 2002). 

 

Increasing evidence has suggested that cholesterol, or cholesterol metabolism, plays 

a role in some neurodegenerative disorders including AD. The relation between 

hypercholesterolemia and AD or MCI has been confirmed repeatedly (Evans et al., 

2004; Kivipelto et al., 2002; Launer et al., 2001). The presence of the E4 isoform of 

the apolipoprotein E (apoE), the main cholesterol transporter in the body, is the major 

known risk factor for AD and has been associated with either risk or severity of 

several other dementia-causing disorders (Cedazo-Minguez, 2007). The presence of 

the APOE ε4 allele has been associated with less apoE protein in plasma (Schiele et 

al., 2000) However, there was no consistent association of plasma apoE levels and 

AD. Studies have documented elevated apoE levels (Taddei et al., 1997) no 

difference, (Panza et al., 2003) or reduced levels relative to controls (Siest et al., 

2000). Blood lipids are modifiable by dietary or pharmacologic intervention, and the 

lipoprotein cholesterol profile is an established marker of the effects of cholesterol-

lowering medications and the associated reduction in cardiac risk. Metabolites of 

cholesterol such as 24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol 

(27-OH) can pass the BBB, and a large amount of 27-OH is taken up from the blood, 

acting as an important link between extra-cerebral and intra-cerebral pools of 

cholesterol (Bjorkhem et al., 2009). The central origin of 24S-OHC and its relatively 

constant hepatic metabolism has led several investigators to examine if 24S-OHC 
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may be a marker of brain cholesterol balance. Patients with advanced AD have 

significantly reduced levels of 24S-OHC in plasma (Bretillon et al., 2000; Kolsch et 

al., 2000). In a recent work it was shown that plasma levels of 24S-OHC decrease in 

parallel with decreases in the volume of the caudate measured with MRI in patients 

with different stages of Huntington´s disease (Teunissen et al., 2007). Very recent 

studies on patients with PD have reported a markedly decreased level of 24S-OHC 

in plasma, which is consistent with its possible utility as a marker of CNS neuronal 

mass (Bretillon et al., 2000). Although 24S-OHC is not a diagnostic marker in itself, it 

may be a modifiable risk factor. It has been suggested that the determination of 24S-

OHC levels may complement MRI morphology as a valuable tool to follow 

neurodegenerative changes in the early stages of this disease.  

 

Other proteins present in plasma with recently discovered associations to AD 

pathology have also been proposed as biomarkers, such ALZAS (ALZheimer 

ASsociated protein). Pilot studies in serum of patients with probable AD have 

detected an up to tenfold increase of ALZAS in patients with MCI, but only 

moderately increased titres in autopsy-confirmed AD (Jellinger et al., 2008). 

 

Since the pathological processes in neurodegenerative disorders are multiple, the 

diagnostic accuracy may be further improved by combining several markers. Recent 

proteomic discovery of various plasma signaling proteins may allow the development 

of a simple, cost-effective test for AD (German et al., 2007; Ray et al., 2007). A 

multifactorial biomarker can be approached in two ways: a “knowledge-based” 

approach, incorporating “known” putative biomarkers (molecules with known 

association with the disease); or an unbiased survey of many hundreds or thousands 

of molecules.  A few knowledge-based approaches have been attempted for AD, 

integrating selected molecules known to be involved in the disease (Teunissen and 

Scheltens, 2007). In one study a panel of 29 serum biomarkers for inflammation, 



ACCEPTED MANUSCRIPT 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 12 

homocysteine metabolism, cholesterol metabolism, and brain specific proteins were 

evaluated. A model incorporating IL-6 receptor, cysteine, protein fraction α1 and 

cholesterol levels proved to be the best combination to discriminate AD from 

controls, although specificity to other cognitive disorders and PD was weaker 

(Teunissen and Scheltens, 2007). In another study, 120 different signaling proteins 

were evaluated and a model including 18 proteins was generated. This combination 

showed high accuracy (89%) to differentiate 42 AD from 39 control cases and in 

predicting those MCI patients that later converted to AD (Ray et al., 2007). 

Unbiased approaches have been pursued to evaluate a broad range of proteins 

(proteomics), small molecule metabolites (metabolomics), or transcripts 

(transcriptomics) in blood. A proteomic study using 2D-PAGE identified more than 70 

proteins that differed between AD and control cases (Ueno et al., 2000). In another 

proteomic case-control study the combination of several molecules gave a sensitivity 

of 56% and specificity of 80% (Hye et al., 2006). The complexity of serum and 

plasma, and difficulties in assay standardization make these approaches challenging, 

but the rapid evolution in technological and computational facilities will allow greater 

diagnostic accuracy and broader applicability of these methods. 

 

 

GENETIC BIOMARKERS 

Another approach to seek for biomarkers for neurodegenerative diseases is the 

transcriptional profiling of genes in peripheral samples. The potential use of blood-

based gene expression profiling in the diagnosis of brain disorders has been 

described by several independent groups (Burczynski and Dorner, 2006; Sharp et 

al., 2006). Expression profiling of whole blood RNA offers several advantages in 

deciphering aberrant patterns of gene regulation in neurodegenerative processes: it 

might predict much earlier changes than that measured by means of protein 
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alteration; the uniform chemical nature of RNA make transcriptome studies less of a 

challenge than both proteome and metabolome studies and it has been shown that 

peripheral blood cells shares significant gene expression similarities with central 

nervous system (CNS) tissues  (Burczynski and Dorner, 2006; Scherzer et al., 2007). 

A supportive example of this is a recent study that showed that the Parkinson 

disease-linked α-synuclein gene was up regulated both in blood and in the substantia 

nigra of patients with Parkinson disease (Kalman et al., 2005). Some gene 

expression studies have been done for AD biomarker discovery using blood as the 

clinical sample. A global gene expression analysis on fibroblasts from 33 individuals 

(both healthy and demented mutation carriers as well as wild-type siblings) from 

three families segregating the swedish APP, artic APP and presenilin 1 H163Y 

mutations showed that mutation carriers share a common gene expression profile 

significantly different from that of their wild-type siblings (Nagasaka et al., 2005). This 

suggests that the disease process starts decades before the onset of cognitive 

decline, and that presymptomatic diagnosis of AD may be feasible in the near future. 

Another study of AD patients vs. controls identified a group of 20 candidate genes 

(from 3200 genes investigated) that showed an altered expression in AD (Kalman et 

al., 2005). Transcriptional profiling of Alzheimer blood mononuclear cells by 

microarray identified 19 up- and 136 downregulated genes comparing to controls 

(Maes et al., 2007). In a recent study, the expression pattern of 33 genes (including 

APP, Insulin degrading enzyme, Histone cluster 1, H3e (HIST1H3E) and 

Cannabinoid receptor 2 (CNR2)) was investigated in whole blood samples from a 

population clinically diagnosed with AD and from healthy controls. These 33 genes 

were chosen according to previous findings of gene expression profiling in 

postmortem AD brains (Grunblatt et al., 2007; Jacob et al., 2007). The profiling of 

these genes was carried our four times in a period of one year in correlation to AD 

and it was found that the expression of HIST1H3E was correlated in a negative 
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manner to the MMSE scores, while. the expression of CNR2 showed some tendency 

to positively correlate with the decreased MMSE score (Grunblatt et al., 2009). 

The promising results point to the fact that gene expression profiling might be a 

promising method to seek for biomarkers for early dementia.  More studies done in a 

longitudinal large scale manner and including multiple considerations such as 

diagnosis, MMSE score, and medication are need in order to establish the sensitivity 

and the specificity of this diagnostic tool. 

 

 

NEUROPHYSIOLOGICAL BIOMARKERS 

 

In comparison with biochemical or imaging approaches little attention has been paid 

to the application of electroencephalograms, quantitative electroencephalography 

(qEEG), event-related potential (ERP), transcranial magnetic stimulation (TMS), and 

vagus nerve stimulation (VNS) as useful clinical markers of early disease detection 

or progression. A recent meta-analysis explored the diagnostic accuracy of 

spontaneous EEG in dementia in articles published between 1980 and 2008, 

concluding that this method was not sufficient for the initial diagnosis of MCI in 

routine clinical practice (Jelic and Kowalski, 2009) 

Nonetheless, in parallel with the dramatic improvements in technology recent 

promising findings have been reported. Multiple different qEEG components, as well 

as ERP activity, are altered during the transitional stage between healthy aging and 

AD (Jackson and Snyder, 2008; Koenig et al., 2005). For example, abnormalities in 

P600 and N400, two ERP components, have been associated with the conversion 

from amnestic MCI to AD (Olichney et al., 2008). Recently, a novel VNS technique, 

vagus somatosensory-evoked potentials, was developed in an attempt to detect 

dementia at an early stage (Merrill et al., 2006). 

The profiling of EEG, ERP or VNS markers for the diagnostic assessment of early 
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cognitive changes is important. These are simple and cost-effective methods that 

could help in the identification of patients with MCI and in the prediction of which 

individuals will ultimately progress from MCI to AD. This would allow the use of 

therapeutic interventions targeted to those persons at greatest risk for conversion to 

AD. 
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NEUROIMAGING  

 

Along the progression of the neuropathological processes, continuous morphological 

and functional changes occur in the brain, which can be detected and quantified by 

several brain imaging techniques. The most apparent aging-related brain change is 

an atrophy resulting from synaptic and neuronal loss. This atrophy is larger in 

individuals with dementia and often shows a regional variation depending on the form 

of dementia that the patient suffers (Small et al., 2008). However, there are also 

areas in which anatomical changes do not distinguish between these disorders. 

Habitually, neuroimaging techniques are classified as either structural or functional, 

according to the principal information that they give. Structural imaging techniques as 

computed tomography (CT) or magnetic resonance imaging (MRI) are often done to 

rule out other causes of dementia, such as normal pressure hydrocephalus or some 

particular lesions like tumors. Also, they can serve to clarify the diagnosis by 

detecting areas with atrophy or vascular lesions. While CT provides good spatial 

resolution (the ability to distinguish two structures from each other as separate), MRI 

provides comparable resolution with far better contrast resolution (the ability to 

distinguish the differences between two arbitrarily similar but not identical tissues). 

Functional imaging techniques, such PET or SPECT, provide information about brain 

structure as well, but their spatial resolution is lower than structural techniques. 

However, their strong side is that they can be used to measure parameters of brain 

metabolism, like regional cerebral blood flow or regional cerebral glucose 

metabolism. Importantly, these parameters are often impaired in AD and other 

dementias before the morphological changes occur. Therefore functional imaging 

techniques are more suitable for helping the physicians in an earlier diagnosis. The 

clinical use of available neuroimaging techniques is expanding. At the same time, 

new technologies are now undergoing rapid evolution and novel applications of 

imaging techniques are being explored.  
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Magnetic Resonance Imaging (MRI)  
 
MRI has high-resolution and gives high-quality information on brain structure, 

including delineation of grey and white matters. Generally, patients with AD show 

atrophy of the parietal lobes and the hippocampus on MRI compared to controls 

(Jack et al., 1997) (Figure 1).  Several structural MRI studies localize the pattern of 

the atrophy in early-onset AD to more posterior regions (precuneus and posterior 

cingulate) (Frisoni et al., 2007; Karas et al., 2007), amygdala (Krasuski et al., 1998), 

occipital lobes, corpus callosum and prominent posterior cortical involvement (Teipel 

et al., 2003). Atrophies in hippocampus and entorhinal cortex can predict memory 

progression (Mungas et al., 2005) and have shown to be associated with increased 

risk of developing AD (Apostolova et al., 2006). However, it has also been shown 

that these changes are not specific to AD (Rodrigue and Raz, 2004). In clinical 

practice, structural MRI can help to support clinical diagnosis, but is not sufficient for 

establishing a definitive diagnosis, as there is a substantial overlapping between 

atrophy associated with normal aging and several neurodegenerative disorders, 

including AD. Non-specific age-related changes in the white matter appear frequently 

in elderly patients with stroke or MCI, but are also common in healthy elderly 

individuals.  

On the other hand, some studies have shown some discriminative diagnostic power 

using structural MRI. For example, patients with amnestic MCI who converted to AD 

showed larger atrophy in several areas including hippocampus and inferior and 

middle temporal gyri, compared with non-converters (Chetelat et al., 2005). With the 

progression of AD, the corpus callosum usually appears atrophic anteriorly, 

differentiating this disease from FTLD, in which the posterior area of the corpus 

callosum is more affected (Likeman et al., 2005).  

It is expected that with the development of higher resolution volumetric MRI and new 

automated, computerized analytical programs (as voxel-based morphometry), the 
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capacity to identify subtle specific abnormality patterns in various forms of dementia 

will be greater, and the diagnostic utility of MRI improved.  

 

Functional MRI (fMRI)  

Functional MRI (fMRI) measures brain function over time during rest, or more 

commonly, in association with a cognitive task or stimulus that require the 

involvement of related brain areas and networks (Wagner et al., 1998). Blood 

Oxygen Level Dependent fMRI is the most common functional imaging method and 

measures alterations in blood flow associated with neuronal activity, which indirectly 

reflects brain activity. Currently, the high inter- and intra-individual variability of the 

signals and its inherent dependency of hemodynamics has precluded the use of this 

technique for differential diagnostic of dementias. However, fMRI could be useful to 

characterize the functional abnormalities specific to every disease. For example, in 

comparison to controls, individuals with AD show lowered brain activity in parietal 

and hippocampal regions and higher activity in primary cortices unaffected by the 

disease. Some studies found differential fMRI activation responses to a specific 

paradigms in MCI compared to healthy controls (Teipel et al., 2003). Recent 

advances in fMRI have helped to define intrinsic functional networks in the human 

brain (Fox and Raichle, 2007). The study of cognitive-behavioral functions in early 

phases of neurodegenerative disorders could identify the neuroanatomical networks 

affected by these diseases (Sperling, 2007) and it is possible that function-critical 

neural networks could be affected differentially by variant neurodegenerative 

diseases (Seeley et al., 2009). This novel perspective has opened new exciting 

possibilities for the use on fMRI in the differential diagnosis of dementia-causing 

disorders. 

 

Positron Emission Tomography (PET) and Single Photon Emission Computed 

Tomography (SPECT)  
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Molecular imaging by PET or SPECT with radiopharmaceuticals permits quantitative 

evaluation of physiological functions, protein pharmacokinetics and distribution of 

receptors with high sensitivity. PET and SPECT have been extensively evaluated as 

diagnostic procedures for dementia, since they have demonstrated diagnostic and 

prognostic utility for evaluating patients with cognitive impairment and in 

distinguishing among primary neurodegenerative disorders.  

Studies often use the radiolabelled glucose [18F]FDG-PET to measure cerebral 

glucose metabolism, which indirectly indicates synaptic activity. In AD, FDG-PET 

studies have shown distinctive symmetric cortical hypometabolism from posterior 

cingulate and parietal regions, spreading to the temporal and prefrontal cortice 

(Figure 1) (Pakrasi and O'Brien, 2005; Silverman et al., 2001). These alterations in 

AD have been shown to be distinctive from controls and from other types of dementia 

and to correlate with cognitive impairment in MCI patients (Small et al., 2008). In 

terms of diagnostic accuracy, PET assessment of glucose metabolism has been 

found to have high sensitivity (94%) but low specificity (73–78%) (Silverman et al., 

2001). Similar specificity for diagnosis has been found with SPECT studying regional 

blood flow with Tc-hexamethylpropyleneamine oxime (O'Brien, 2007). 

Several low-molecular-weight probes have been developed to measure A  deposits 

with PET in vivo. The most studied is the Pittsburgh compound B (PIB) that shows 

significantly greater cortical binding in patients with AD compared with controls  

(Figure 1) (Klunk et al., 2004). A 2-year longitudinal follow-up showed PIB not 

significant binding increase in AD patients despite declines in glucose metabolism 

and cognitive function (Engler et al., 2006). PIB shows retention in patients with CAA, 

low binding with variable pattern in LBD, and absent binding in FTD (Rowe et al., 

2007). PIB binding in MCI patients appeared bimodal, with approximately 50% of 

MCI patients showing high binding (like AD patients), and 50% low binding (as 

cognitive normal controls). Amyloid binding studies in vivo may serve also to better 
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define the role of A  in AD. Recently, correlation of PIB binding with brain atrophy 

(determined by MRI) has been shown. Higher amyloid deposition was generally not 

associated with more severe gray matter atrophy, except in the medial temporal 

lobes (amygdala and hippocampus), suggesting that different brain areas have 

diverse susceptibility to amyloid toxicity, or that amyloid is nonessential for 

neurodegeneration (Frisoni et al., 2009). 

New PET ligands, such as 2-(1-6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-

naphthyl}ethylidene)malononitrile ([18F]FDDNP), are being developed to measure 

amyloid plaques and tau inclusions that may facilitate the investigation of this 

pathologies in living humans (Braskie et al., 2008). When comparing binding 

potential of PIB and [18F]FDDNP it was found low correlation between them, with 

differences in regional binding and discrepant findings in MCI, suggesting that they 

measure related, but different, characteristics of the disease (Tolboom et al., 2009). 
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CONCLUSION 

The current biochemical and neuroimaging markers have very limited predictive 

value. Combining neuroimaging studies with the analysis of some CSF proteins 

increase diagnostic sensitivity and specificity, especially in AD, but the predictive 

significance is still narrowed to the final stages of the disease (Figure 2). 

A major limitation in the field is that markers discovered by one group cannot be 

reproduced by other groups. Most of dementia-causing diseases are complex and 

heterogeneous, but it is also true that diagnostic criteria and analytical methodology 

varies among studies.  

Standardization of methods seems critical to reducing inconsistency and increasing 

reliability. It is necessary to implement common protocols for sample preparation, 

experimental design and generation proteomics data. Global initiatives of 

standardization are of critical importance. A good example is a recent study coming 

from the Swedish Brain Power initiative. Mattsson et al (Mattsson et al., 2009) 

evaluated the utility of the classical CSF biomarkers for AD (A 42, T-tau and P-tau) 

by including a large number of samples from several European centers. The study 

showed that levels A 42, T-tau and P-tau in CSF could predict to some extent the 

outcome of individuals with MCI. However, the sensitivity and specificity of these 

markers were sufficient to be used for screening but not as an early diagnostic test. 

The inclusion of other molecules could improve the power of diagnostics. 

An early detection of different types of dementia using non-invasive diagnostic tests 

is the ultimate dream. However, the potential use of proteomic analysis of serum or 

plasma faces increased difficulties in assay standardization, and would require 

additional multilateral efforts.  

The rapid evolution of technological and computational advances will eventually 

permit the discovery of biomarkers for an early and differential diagnosis of 

dementia-causing disorders. Identifying the individual risk for having AD or related 
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disorders will allow the development of preventive / delaying strategies. 
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 FIGURE LEGENDS. 

 

Figure 1. Representative examples of brain images (MRI, and PET) from age 

matched cognitive intact individuals and Alzheimer’s disease patients. 

MRI pictures of brains from a control and an AD patient. AD brain shows (symmetric) 

hippocampus atrophy and enlargement of lateral ventricles.  

PET pictures of AD brains showed reduced glucose metabolism mainly in parietal 

areas (determined with the radiolabelled glucose [18F]FDG) and increased cortical 

A  load (determined with the Pittsburgh compound B (PIB)). 

 

Figure 2. Diagnostic and treatment possibilities along the evolution to 

Dementia. 
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TABLE 1: Molecules that showed differential levels in CSF from Alzheimer’s 
Disease patients as compared to controls. 

 

PROTEIN Up / Downregulated and references 

Albumin ↑(Abdi et al., 2006; Zhang et al., 2005) 
Amyloid β A4 protein ↑(Abdi et al., 2006; Simonsen et al., 2007; 

Zhang et al., 2005)  

Angiotensinogen ↑(Zhang et al., 2005) 
Apolipoprotein AI (Castano et al., 2006; Davidsson et al., 2002; 

Puchades et al., 2003)↓ 

Apolipoprotein AII ↑(Abdi et al., 2006; Zhang et al., 2005) 
Apolipoprotein E (Davidsson et al., 2002; Puchades et al., 

2003)↓  
↑(Finehout et al., 2007)  

BACE 1 ↑(Ewers et al., 2008; Zhong et al., 2007) 
24S-Hydroxycholesterol ↑(Leoni et al., 2006) 
C3a ↑(Simonsen et al., 2007; Simonsen et al., 2008) 
C4a ↑(Abdi et al., 2006; Simonsen et al., 2007; 

Zhang et al., 2005)  

Cystatin C  ↑(Carrette et al., 2003; Hu et al., 2005) 
Cystatin C, 8 amino acid N-terminal 
truncation 

↑(Simonsen et al., 2007; Simonsen et al., 2008) 

Immunoglobulin heavy chain ↓(Abdi et al., 2006; Zhang et al., 2005) 
Leucine-rich repeat-containing protein 4B ↑(Abdi et al., 2006; Zhang et al., 2005) 
Leucine-rich repeat-containg protein 4B ↓(Abdi et al., 2006; Zhang et al., 2005) 
N-acetyllactosamine ↓(Abdi et al., 2006; Zhang et al., 2005) 
Neuronal pentraxin-1 ↑(Abdi et al., 2006; Finehout et al., 2007; 

Zhang et al., 2005) 
Prostaglandin-H2 D-isomerase ↓(Korolainen et al., 2007; Puchades et al., 

2003)  
↑(Hu et al., 2005) 

Retinol-binding protein ↑(Abdi et al., 2006; Davidsson et al., 2002; 
Zhang et al., 2005)  
↓(Jung et al., 2008; Puchades et al., 2003) 

Thioredoxin ↑(Abdi et al., 2006; Hu et al., 2005) 
Transthyretin  ↓ (Castano et al., 2006; Korolainen et al., 2007; 

Puchades et al., 2003)  
↑(Abdi et al., 2006; Davidsson et al., 2002; 
Finehout et al., 2007; Zhang et al., 2005)  

VGF ↓(Carrette et al., 2003; Simonsen et al., 2007; 
Simonsen et al., 2008) 

α-1-Antitrypsin ↑(Abdi et al., 2006; Finehout et al., 2007; 
Zhang et al., 2005) 
↓(Puchades et al., 2003) 

α-1β Glycoprotein ↑(Hu et al., 2005; Puchades et al., 2003) 
α-2HS Glycoprotein ↑(Zhang et al., 2005) 

↓ (Puchades et al., 2003) 
β Fibrinogen ↑(Abdi et al., 2006; Finehout et al., 2007) 
β-2-Microglobulin  ↑(Abdi et al., 2006; Carrette et al., 2003; 

Davidsson et al., 2002; Hu et al., 2005; 
Simonsen et al., 2007) 
↓ (Puchades et al., 2003; Simonsen et al., 
2008) 
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